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Abstract

Let G2n, H2n be two non-isomorphic connected cubic multigraphs of or-
der 2n with parallel edges permitted but without loops. Let t

(
G2n

)
, t
(
H2n

)

denote the number of spanning trees in G2n, H2n, respectively. We prove
that for n ≥ 3 there is the unique G2n such that t

(
G2n

)
< t

(
H2n

)
for

any H2n. Furthermore, we prove that such a graph has t
(
G2n

)
= 522n−3

spanning trees. Based on our results we give a conjecture for the unique
r-regular connected graph H2n of order 2n and odd degree r that minimizes
the number of spanning trees.
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1. Introduction

There is an extensive literature devoted to identifying connected graphs G on
V (G) vertices and E(G) edges and with either maximum or minimum number of
spanning trees t(G) when |V (G)| and |E(G)| are predetermined. Identifying such
graphs allows establishing upper and lower bounds for the number of spanning
trees in families of connected graphs when |V (G)| and |E(G)| are fixed. Most
published papers focused on the maximum number of spanning trees cover just
a few restricted families of graphs, e.g., [5, 6, 9]. Determining the graphs with
the minimum number of spanning trees was much more successful. In particular,
it was determined in [4] that specific threshold graph G minimizes the number
of spanning trees over all connected simple graphs with the same number of
vertices and edges. However, it was also determined that G was not unique.
Based on that, it was subsequently proved in [2] that there is a well-defined
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class of connected simple graphs that minimize the number of spanning trees
among the simple connected graphs on the same number of vertices and edges.
Corresponding results for the maximum number of spanning trees in undirected
simple graphs have yet to be found.

In addition to identifying the connected simple graphs with minimum number
of spanning trees, there were also number of papers recently published devoted
to the minimum number of spanning trees in the special families of connected
graphs. Kostochka [7] identified the minimum number of spanning trees in a
simple cubic graph with fixed number of vertices. In [1] we proved that there
is a unique threshold graph that minimizes the number of spanning trees over
all 2-connected chordal graphs, and in [3] we identified simple cubic connected
graphs that minimize the number of spanning trees over other cubic graphs, on
the same number of vertices. Most recently, Ok and Thomassen [8] determined
a lower bound on the number of spanning trees in a k-edge-connected graph and
identified the extremal k-edge-connected graph.

In this paper we consider all connected cubic graphs of given order 2n without
loops, and prove/identify that there is the unique graph M2n belonging to this
family that minimizes the number of spanning trees. For convenience, throughout
the rest of this paper by graph we mean either a multigraph without loops and
with at least one pair of parallel edges, or a simple graph. Hence, if G2n is a
cubic graph, then either G2n contains induced C2 or it is simple.

2. Connected Cubic Multigraphs with Minimal Spanning Trees

Let M3 be a multigraph constructed from a C2 cycle on two vertices v1, v2 by
joining a third vertex v3 with two single edges to vertices v1 and v2. Let M2n =
M2(3+k), n ≥ 3, be a connected cubic multigraph on 2n vertices that consists
of two M3 subgraphs and k C2 cycles, all joined with one another by single
edges—see Figure 1.

 

 

 

M3 M3 C2 C2 C2 

Figure 1. Graph M2n.

For parallel edges e1, e2 we assume that two spanning trees containing e1, e2
respectively are distinct. In addition, if G is isomorphic to H, then we write
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G ≃ H, otherwise we write G ≇ H. The proof of our main result in Theorem 3
is based on graph transformations derived from the following simple lemma.

Lemma 1. Let T (G) be a spanning tree of connected G that includes an edge e.
Let H be a graph obtained from G by contracting e into a vertex. Then contracting

e into a vertex in T (G) produces a spanning tree T (H). Furthermore, t(H) equals
the number of spanning trees in G that contain e.

Proof. Clearly, contracting e into a vertex in T (G) does not produce a cycle and
results in a connected spanning subgraph of H, which is T (H). Hence, to every
unique spanning tree of H there corresponds a unique spanning tree of G that
contains edge e.

We also need the following lemma.

Lemma 2. Connected cubic graph G6 minimizes t (G6) if and only if G6 ≃ M6.

Proof. It’s easy to verify that there are only six pairwise non-isomorphic con-
nected cubic graphs on six vertices (Figure 2): (1) Möbius ladder H6, (2) prism
P6 ≃ C2�C3, (3) multigraph C2 × 1 with one induced C2 cycle, (4) multigraph
C2 × 2 with two induced C2 cycles, (5) multigraph C2 × 3 with three induced C2

cycles, and (6) M6.

 

M6 H6 P6 C2 x 1 C2 x 3 C2 x 2 

Figure 2. All distinct connected cubic graphs on six vertices.

Furthermore, it’s trivial to verify based on a well-known Kirchhoff’s matrix-tree
theorem that t(H6) = 81 > t(P6) = 75 > t(C2 × 1) = 56 > t(C2 × 2) = 45 >
t(C2 × 3) = 36 > t(M6) = 25.

We can now state the main result as follows.

Theorem 3. Connected cubic graph G2n minimizes t(G2n) for given n ≥ 3 if

and only if G2n ≃ M2n.

Proof. For n = 3, according to Lemma 2, G2n minimizes t(G2n) if and only if
G6 ≃ M6. Suppose there exists G2n for n ≥ 4 such that t(G2n) ≤ t(M2n) and
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G2n ≇ M2n. Without loss of generality, assume G2n to be with minimum n ≥ 4
that satisfies t(G2n) ≤ t(M2n) and G2n ≇ M2n.

Suppose G2n contains a simple cycle Ci on i vertices, where Ci is not included
in anyM3 component ofG2n. If replacing inG2n componentX with component Y
produces connected cubic graph H2m, then we denote it by G2n(X → Y ) → H2m.
If i-th spanning tree in a graph G induces a spanning tree in a subgraph S of G,
then such a spanning tree in G we denote by Ti(G,S). Otherwise, i-th spanning
tree in G we denote by T̂i(G,S). Then we have the following:

Claim 1. G2n does not contain C2 that is not included in M3.

 

 

e
2
 

x2 x1 x2 x1 

G1 H1 

e
1
 

x1’ x
2
’ 

Figure 3. Transformation based on C2 component.

Proof. IfG2n contains C2 outsideM3 components, then there is a transformation
illustrated in Figure 3. The subgraph G1 does not have to be an induced subgraph
of G (e.g., there might be an edge between x1 and x2 in G1). If x1 = x2 in Figure
3, then C2 belongs to M3—a contradiction. So, transformation in Figure 3 does
not produce a loop. Consequently, we can transform G2n as follows G2n(G

1 →
H1) → H2n−2. Furthermore, for every spanning tree Ti(H2n−2, H

1) there are two
unique spanning trees:

1. Ti1(G2n, G
1) with edges (x1, x

′

1), e1, (x
′

2, x2),
2. Ti2(G2n, G

1) with edges (x1, x
′

1), e2, (x
′

2, x2),

and for every spanning tree T̂i(H2n−2, H
1) there are five unique spanning trees:

1. T̂i1(G2n, G
1) with edges (x1, x

′

1), e1,

2. T̂i2(G2n, G
1) with edges (x1, x

′

1), e2,

3. T̂i3(G2n, G
1) with edges e1, (x

′

2, x2)

4. T̂i4(G2n, G
1) with edges e2, (x

′

2, x2),

5. T̂i5(G2n, G
1) with edges (x1, x

′

1), (x
′

2, x2).

If there is an edge between x1 and x2 in G1, then 3t(H2n−2) < t(G2n) ≤
t(M2n) = 2t(M2n−2) implying t(H2n−2) < t(M2n−2)—a contradiction. If there
is no edge between x1 and x2 in G1, then 2t(H2n−2) ≤ t(G2n) ≤ t(M2n) =
2t(M2n−2) and H2n−2 ≇ M2n−2—a contradiction. These contradictions prove
Claim 1.

Claim 2. G2n does not contain induced C3.
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Proof. Suppose a subgraph of G2n exists that includes induced cycle C3 =
x′1x

′

2x
′

3. Let (x1, x
′

1), (x2, x
′

2), (x3, x
′

3) be the edges not in E(C3). There are
two cases to consider based on the vertices x1, x2, x3.

Case 1. x1, x2, x3 are pairwise distinct. In this case there is a transformation
G2n(C3 → x′1) → H2n−2, which is a contraction of C3 in G2n into a vertex x′1.
Hence, for every spanning tree Ti(H2n−2, x

′

1) = Ti(H2n−2) there are three unique
spanning trees:

1. Ti1(G2n, C3) with edges (x′1, x
′

2), (x
′

2, x
′

3),

2. Ti2(G2n, C3) with edges (x′2, x
′

3), (x
′

3, x
′

1),

3. Ti3(G2n, C3) with edges (x′3, x
′

1), (x
′

1, x
′

2).

Consequently, 3t(H2n−2) ≤ t(G2n) ≤ t(M2n) = 2t(M2n−2), implying t(H2n−2) <
t(M2n−2)—a contradiction.

Case 2. x1, x2, x3 are not pairwise distinct. If x1 = x2 = x3, then G2n ≃
K4—a contradiction (2n = 4 < 6). So, without loss of generality assume x1 6=
x2 = x3. In this case there is a transformation illustrated in Figure 4.

 

x
2
’ 

x3’ 

e
2
 

e
1
 

G2 

x
1
’ x2 x1’ 

x2 

H2 

Figure 4. Transformation based on C3 when x1 6= x2 = x3.

So, there is a transformation G2n(G
2 → H2) → H2n−2. Clearly, t(G2) = 8

and t(H2) = 2. This means that there are four times more Ti(G2n, G
2) spanning

trees than Ti(H2n−2, H
2) spanning trees. In addition, for every spanning tree

T̂i(H2n−2, H
2) there are eight unique spanning trees:

1. T̂i1(G2n, G
2) with edges (x′1, x

′

2), (x
′

1, x
′

3),

2. T̂i2(G2n, G
2) with edges (x′1, x

′

2), (x
′

2, x
′

3),

3. T̂i3(G2n, G
2) with edges (x′2, x

′

3), (x
′

1, x
′

3),

4. T̂i4(G2n, G
2) with edges (x2, x

′

2), (x2, x
′

3),

5. T̂i5(G2n, G
2) with edges (x2, x

′

2), (x
′

2, x
′

3),

6. T̂i6(G2n, G
2) with edges (x′2, x

′

3), (x2, x
′

3),

7. T̂i7(G2n, G
2) with edges (x′1, x

′

2), (x2, x
′

3),

8. T̂i8(G2n, G
2) with edges (x2, x

′

2), (x
′

1, x
′

3).
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Hence, 2t(H2n−2)<t(G2n)≤ t(M2n)=2t(M2n−2), implying t(H2n−2)<t(M2n−2),
a contradiction.

Consequently, contradictions of Cases 1–2 prove Claim 2.

Claim 3. G2n does not contain induced C4.

Proof. Suppose that G2n contains induced square C4—Figure 5. In Figure 5 we
allow x1 = x3 and x2 = x4 but due to Claim 2 we do not allow other xi = xj for
i 6= j.

 

 

  x3    x2 

  x2’ 

  x1’ 

   x1   x4 

  x2 
x3 

  x4 

 x4’ 

 x3’ 

 x2’ 

 x1’ 

  x1 

G3 H3 

Figure 5. Transformation based on C4.

So, there is a transformation G2n(G
3 → H3) → H2n−2. Let X be a subgraph of

G2n induced by {x′1, x
′

2, x
′

3, x
′

4}, and let Y be a subgraph of H2n−2 induced by
{x′1, x

′

2} corresponding to Figure 5. Clearly, t(X) = 4 and t(Y ) = 1. This means
that there are four times more Ti(G2n, X) spanning trees than Ti(H2n−2, Y )
spanning trees. In addition, for every spanning tree T̂i(H2n−2, Y ) there is a
path PH = x′1 · · ·x

′

2 on at least three vertices. Hence, for every spanning tree

T̂i(H2n−2, Y ) there are at least three unique spanning trees of G2n based on the
following four cases.

Case 1. T̂i(H2n−2, Y ) contains PH = x′1x1 · · ·x2x
′

2. For every T̂i(H2n−2, Y )

there correspond three unique spanning trees T̂ij (G2n, X) that contain all edges

of T̂i(H2n−2, Y ) and the following:

1. T̂i1(G2n, X) contains additional edges (x′1, x
′

4), (x
′

2, x
′

3),

2. T̂i2(G2n, X) contains additional edges (x′2, x
′

3), (x
′

3, x
′

4),

3. T̂i3(G2n, X) contains additional edges (x′1, x
′

4), (x
′

3, x
′

4).

Case 2. T̂i(H2n−2, Y ) contains PH = x′1x1 · · ·x3x
′

2. For every T̂i(H2n−2, Y )

there correspond four unique spanning trees T̂ij (G2n, X) that contain all edges

of T̂i(H2n−2, Y ) and the following:
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1. T̂i1(G2n, X) contains additional edges (x′1, x
′

4), (x
′

2, x
′

3),

2. T̂i2(G2n, X) contains additional edges (x′2, x
′

3), (x
′

3, x
′

4),

3. T̂i3(G2n, X) contains additional edges (x′1, x
′

2), (x
′

1, x
′

4),

4. T̂i4(G2n, X) contains additional edges (x′1, x
′

2), (x
′

3, x
′

4).

Case 3. T̂i(H2n−2, Y ) contains PH = x′1x4 · · ·x3x
′

2. For every T̂i(H2n−2, Y )

there correspond three unique spanning trees T̂ij (G2n, X) that contain all edges

of T̂i(H2n−2, Y ) and the following:

1. T̂i1(G2n, X) contains additional edges (x′1, x
′

4), (x
′

2, x
′

3),

2. T̂i2(G2n, X) contains additional edges (x′1, x
′

2), (x
′

2, x
′

3),

3. T̂i3(G2n, X) contains additional edges (x′1, x
′

2), (x
′

1, x
′

4).

Case 4. T̂i(H2n−2, Y ) contains PH = x′1x4 · · ·x2x
′

2. For every T̂i(H2n−2, Y )

there correspond four unique spanning trees T̂ij (G2n, X) that contain all edges

of T̂i(H2n−2, Y ) and the following:

1. T̂i1(G2n, X) contains additional edges (x′1, x
′

4), (x
′

2, x
′

3),

2. T̂i2(G2n, X) contains additional edges (x′1, x
′

2), (x
′

2, x
′

3),

3. T̂i3(G2n, X) contains additional edges (x′1, x
′

4), (x
′

3, x
′

4),

4. T̂i4(G2n, X) contains additional edges (x′1, x
′

2), (x
′

3, x
′

4).

None of the added edges, or combination of these edges, in Cases 1–4 could result
in a cycle in T̂ij (G2n, X) because it would imply a cycle in T̂i(H2n−2, Y ) from
which it was constructed. So, by Cases 1–4, there are at least three times more
T̂i(G2n, X) spanning trees than Ti(H2n−2, Y ) spanning trees. Hence, 3t(H2n−2) ≤
t(G2n) ≤ t(M2n) = 2t(M2n−2), implying t(H2n−2) < t(M2n−2)—a contradiction,
which proves Claim 3.

Claim 4. G2n does not contain induced Ck for k ≥ 5.

Proof. Suppose that G2n contains induced cycle Ck for k ≥ 5—Figure 6. In
Figure 6 we allow x1 = x4 but all other vertices xi, xj are pairwise distinct for i ≤
4 and j ≤ 4. Otherwise, either Claim 2 or Claim 3 would be violated. In particular
x2 6= x3. Let G4 be a subgraph of Gn. So, there is a transformation G2n(G

4 →
H4) → H2n−2. Let X be a subgraph of G4 induced by {x2, x3, x

′

1, x
′

2, x
′

3, x
′

4},
and let Y be a subgraph of H4 induced by {x2, x3, x

′

1, x
′

4} indicated in Figure 6
with thick solid lines each. There are important properties of the subgraphs
X,Y,G4, H4 in Figure 6 as follows: (1) edges of Y do not belong to E(Gn),
(2) other edges of H4 than the ones in Y belong to E(Gn), (3) edges of X do
not belong to E(Hn−2), and (4) edges of X belong to E(Gn). We explore these
properties in the following four cases.
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Figure 6. Transformation based on Ck for k ≥ 5.

Case 1. T̂i(H2n−2, Y ) contains neither (x′1, x2) nor (x3, x
′

4).

1. T̂i1(G2n, X) contains edges (x′1, x
′

2), (x
′

2, x
′

3) ∈ E(X),

2. T̂i2(G2n, X) contains edges (x2, x
′

2), (x
′

2, x
′

3) ∈ E(X),

3. T̂i3(G2n, X) contains edges (x′2, x
′

3), (x3, x
′

3) ∈ E(X),

4. T̂i4(G2n, X) contains edges (x′2, x
′

3), (x
′

3, x
′

4) ∈ E(X).

In addition, each T̂ij (G2n, X) contains edges E(T̂i(H2n−2, Y )), for 4 ≥ j ≥ 1,

which together represent all edges in T̂i1(G2n, X).

Case 2. T̂i(H2n−2, Y ) contains (x′1, x2) but not (x3, x
′

4).

1. T̂i1(G2n, X) contains edges (x′1, x
′

2), (x2, x
′

2), (x
′

2, x
′

3) ∈ E(X),

2. T̂i2(G2n, X) contains edges (x′1, x
′

2), (x2, x
′

2), (x3, x
′

3) ∈ E(X),

3. T̂i3(G2n, X) contains edges (x′1, x
′

2), (x2, x
′

2), (x
′

3, x
′

4) ∈ E(X).

In addition, each T̂ij (G2n, X) contains edges E(T̂i(H2n−2, Y ))\{(x′1, x2)}, for 3 ≥

j ≥ 1, which together represent all edges in T̂i1(G2n, X).

Case 3. T̂i(H2n−2, Y ) contains (x3, x
′

4) but not (x
′

1, x2).

1. T̂i1(G2n, X) contains edges (x3, x
′

3), (x
′

3, x
′

4), (x
′

2, x
′

3) ∈ E(X),

2. T̂i2(G2n, X) contains edges (x3, x
′

3), (x
′

3, x
′

4), (x2, x
′

2) ∈ E(X),

3. T̂i3(G2n, X) contains edges (x′2, x
′

3), (x
′

3, x
′

4), (x
′

1, x
′

2) ∈ E(X).

In addition, each T̂ij (G2n, X) contains edges E(T̂i(H2n−2, Y ))\{(x3, x
′

4)}, for 3 ≥

j ≥ 1, which together represent all edges in T̂i1(G2n, X).

Case 4. T̂i(H2n−2, Y ) contains (x′1, x2) and (x3, x
′

4). In this case there is

a T̂i1(G2n, X) that contains edges (x′1, x
′

2), (x2, x
′

2), (x3, x
′

3), (x′3, x
′

4) ∈ E(X).

Furthermore, removing either (x3, x
′

3) or (x′3, x
′

4) from T̂i1(G2n, X) induces for-
est Zn of two trees. Clearly, vertices x3, x

′

4 must belong to two different trees
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in Zn. This implies that either x3, x
′

1 or x′4, x
′

1 belong to two separate trees
in either case. If x3, x

′

1 belong to two separate trees, then we obtain second

T̂i2(G2n, X) with edges (x′1, x
′

2), (x2, x
′

2), (x
′

2, x
′

3), (x3, x
′

3) ∈ E(X). Otherwise,

x′4, x
′

1 belong to two separate trees and we obtain another second T̂i2(G2n, X)
with edges (x′1, x

′

2), (x2, x
′

2), (x
′

2, x
′

3), (x
′

3, x
′

4) ∈ E(X) instead.

On the other hand, removing either (x′1, x
′

2) or (x2, x
′

2) from T̂i1(G2n, X) in-
duces different forest Zn of two trees. Clearly, vertices x′1, x2 must belong to two
different trees in Zn. This implies that either x′1, x

′

4 or x2, x
′

4 belong to two sep-
arate trees in either case. If x′1, x

′

4 belong to two separate trees, then we obtain

third T̂i3(G2n, X) with edges (x′1, x
′

2), (x
′

2, x
′

3), (x3, x
′

3), (x
′

3, x
′

4) ∈ E(X). Other-

wise, x2, x
′

4 belong to two separate trees and we obtain another third T̂i3(G2n, X)
with edges (x2, x

′

2), (x
′

2, x
′

3), (x3, x
′

3), (x
′

3, x
′

4) ∈ E(X) instead. In addition, each

T̂ij (G2n, X) contains edges E(T̂i(H2n−2, Y ))\{(x′1, x2), (x3, x
′

4)}, for 3 ≥ j ≥ 1,

which together with edges of previous three T̂i1(G2n, X) trees represent all edges
in T̂i1(G2n, X).

In Cases 1–4 we examined all possible spanning trees of H2n−2. We con-
clude that for every spanning tree of H2n−2 there are at least three unique span-
ning trees of Gn. Hence, 3t(H2n−2) ≤ t(G2n) ≤ t(M2n) = 2t(M2n−2), implying
t(H2n−2) < t(M2n−2)—a contradiction, which proves Claim 4.

 

 

 

 

 

e
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e
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x
2
’ x1’ 

x1 

x3 
x2 

x2 

x1 

G 
5  H 

5 

Figure 7. Transformation based on M3.

Based on Claims 1–4 we conclude that every cycle of G2n must belong to some
component M3 in G2n. So, G2n must consist of at least three M3 components.
This implies that transformation G2n(G

5 → H5) → H2n−2 illustrated in Figure
7 is possible.

Edges (x1, x3), (x2, x3) in G5 do not belong to any cycle. The number of
spanning trees in G5 is t(G5) = 5, while in H5 is t(H5) = 2. Consequently,
5
2 t(H2n−2) ≤ t(G2n) ≤ t(M2n) = 2t(M2n−2), implying t(H2n−2) < t(M2n−2), a
contradiction. This contradiction proves Theorem 3.

We note that M2n is the unique graph as opposed to the simple connected
cubic graphs of order 2n that minimize the number of spanning trees, which were
identified in [3].
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3. Extension of M2n to All Connected, Odd-Regular Multigraphs

We define a regular multigraph M
d−1

2

2n of odd degree d, d ≥ 3, and on 2n verices
as follows:

(1) M1
2n := M2n, and it consists of components M1

3 := M3, C
1
2 := C2,

(2) M i+1
2n is constructed from M i

2n as follows:
(i) add one edge for every pair of vertices in both M i

3 components of M i
2n,

(ii) for every component Ci
2 not included in M i

3 add two parallel edges.
First, consider the number of spanning trees in M i

2n.

Theorem 4. t(Mk
2n) = k2(3k + 2)2(k + 1)n−3

, for n ≥ 3 and k ≥ 1.

Proof. Based on the definition, Mk
2n contains two Mk

3 components and n−3 Ck
2

components. It is easy to see that t(Mk
3 ) = (k2+k(k+1)+k(k+1)) = k(3k+2)

and t(Ck
2 ) = k + 1. Since these components do not belong to any cycle, the

number of spanning trees in Mk
2n equals

(t(Mk
3 ))

2 · (t(Ck
2 ))

n−3 = k2(3k + 2)2(k + 1)n−3.

In particular, for the connected cubic graphs we get lower sharp bound for
the number of spanning trees as follows.

Corollary 4. Let G2n be a connected cubic graph of order 2n ≥ 6. Then t(G2n) ≥
522n−3.

Proof. According to Theorem 3, t(G2n) ≥ t(M2n), and according to Theorem 4,
t(M2n) = 522n−3 for n ≥ 3.

Finally, based on our results we propose the following.

Conjecture 5. Connected r-regular graph G2n of order 2n minimizes t(G2n) for

r odd and r, n ≥ 3 if and only if G2n ≃ M
r−1

2

2n .

If our conjecture is true then ((r− 1)/2)2((3r+1)/2)2((r+1)/2)n−3 is lower
sharp bound for the number of spanning trees in connected r-regular graphs of
order 2n and r odd.
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