
Discussiones Mathematicae
Graph Theory 40 (2020) 243–253
doi:10.7151/dmgt.2122

NEIGHBOR SUM DISTINGUISHING TOTAL

CHROMATIC NUMBER OF PLANAR GRAPHS

WITHOUT 5-CYCLES
1

Xue Zhao

and

Chang-Qing Xu2

School of Science,

Hebei University of Technology

Tianjin 300401, P.R. China

e-mail: zhaoxhxy@163.com
chqxu@hebut.edu.cn

Abstract

For a given graph G = (V (G), E(G)), a proper total coloring φ : V (G)∪
E(G) → {1, 2, . . . , k} is neighbor sum distinguishing if f(u) 6= f(v) for each
edge uv∈E(G), where f(v)=

∑

uv∈E(G) φ(uv)+φ(v), v∈V (G). The small-
est integer k in such a coloring of G is the neighbor sum distinguishing
total chromatic number, denoted by χ′′

Σ(G). Piĺsniak and Woźniak first
introduced this coloring and conjectured that χ′′

Σ(G) ≤ ∆(G) + 3 for any
graph with maximum degree ∆(G). In this paper, by using the discharging
method, we prove that for any planar graph G without 5-cycles, χ′′

Σ(G) ≤
max{∆(G)+2, 10}. The bound ∆(G)+2 is sharp. Furthermore, we get the
exact value of χ′′

Σ(G) if ∆(G) ≥ 9.
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1. Introduction

In this paper, all graphs considered are simple, finite and undirected. For the
terminology and notation not defined in this paper can be found in [1]. For
a graph G, we denote its vertex set, edge set and maximum degree by V (G),
E(G) and ∆(G), respectively. If G is a planar graph embedded in the plane,
we use F (G) to denote its face set. A vertex v is a t-vertex, t−-vertex, t+-
vertex if dG(v) = t, dG(v) ≤ t, dG(v) ≥ t in G, respectively. A t-face is defined
similarly. An l-face v1v2 · · · vl is a (b1, b2, . . . , bl)-face, where vi is a bi-vertex, for
i = 1, 2, . . . , l. Let dtG(v) denote the number of t-vertices adjacent to v in G. Let
nd
G(v) denote the number of d-faces incident with v in G. A configuration F is

reducible to G, if it cannot be a configuration of G.
Given a graph G, set ni(G) = |{v ∈ V (G) : dG(v) = i}| for i = 1, 2, . . . ,∆(G).

A graph G′ is smaller than G if one of the following holds:
(1) |E(G′)| < |E(G)|,

(2) |E(G′)|= |E(G)| and (nt(G
′), nt−1(G

′), . . . , n1(G
′)) precedes (nt(G), nt−1(G),

. . . , n1(G)) with respect to the standard lexicographic order, where t =
max {∆(G),∆(G′)}.

A graph is minimum for a property if no smaller graph satisfies it.
Given a graph G and a positive integer k, a proper total k-coloring of G is a

mapping φ: V (G) ∪ E(G) → {1, 2, . . . , k} such that φ(x) 6= φ(y) for each pair of
adjacent or incident elements x, y ∈ V (G)∪E(G). Let f(v) =

∑

uv∈E(G) φ(uv)+
φ(v), v ∈ V (G). If f(u) 6= f(v) for each edge uv ∈ E(G), then φ is a neighbor

sum distinguishing total k-coloring, or k-tnsd-coloring for simplicity. The small-
est number k is the neighbor sum distinguishing total chromatic number of G,
denoted by χ′′

Σ(G). For k-tnsd-coloring, Piĺsniak and Woźniak gave the following
conjecture.

Conjecture 1 [11]. For any graph G, χ′′

Σ(G) ≤ ∆(G) + 3.

Piĺsniak and Woźniak confirmed Conjecture 1 for bipartite graphs, complete
graphs, cycles and subcubic graphs. Dong et al. [3] showed that Conjecture 1
holds for some sparse graphs. Yao et al. [21, 22] considered tnsd-coloring of
degenerate graphs. Li et al. [9] proved that Conjecture 1 holds for K4-minor
free graphs. Song et al. [15] determined χ′′

Σ(G) for K4-minor free graph G with
∆(G) ≥ 5. For planar graph, it was proved that this conjecture holds with
∆(G) ≥ 13 by Li et al. [7] and ∆(G) ≥ 11 by Qu et al. [12]. For planar graph,
it was proved that χ′′

Σ(G) ≤ ∆(G) + 2 holds with ∆(G) ≥ 14 by Cheng et al. [2],
∆(G) ≥ 12 by Song et al. [14] and ∆(G) ≥ 11 by Yang et al. [20]. The bound
∆(G) + 2 is sharp. Some results about planar graphs with cycle restrictions can
be seen in [5, 8, 10] and [16–19]. More references on tnsd-coloring can be seen in
[4] and [13].
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Recently, Ge et al. [6] got the following result.

Theorem 2 [6]. Let G be a planar graph without 5-cycles. Then

χ′′

Σ(G) ≤ max { ∆(G) + 3, 10}.

In this paper, we prove the following results.

Theorem 3. Let G be a planar graph without 5-cycles. Then

χ′′

Σ(G) ≤ max{∆(G) + 2, 10}.

Theorem 4. Let G be a planar graph without 5-cycles and without adjacent

∆(G)-vertices. Then χ′′

Σ(G) ≤ max {∆(G) + 1, 10}.

Clearly, χ′′

Σ(G) ≥ ∆(G)+1 for any graph G. If G has adjacent ∆(G)-vertices,
then χ′′

Σ(G) ≥ ∆(G) + 2. Thus we get the following corollary.

Corollary 5. Let G be a planar graph without 5-cycles and ∆(G) ≥ 9. If G has

no adjacent ∆(G)-vertices, then χ′′

Σ(G) = ∆(G)+1, otherwise χ′′

Σ(G) = ∆(G)+2.

2. The Proof of Theorem 3

We will prove it by contradiction. Let G be a minimum counterexample to
Theorem 3 which is embedded in the plane. Set k = max {∆(G) + 2, 10}. By
the choice of G, any planar graph G′ without 5-cycles which is smaller than G
has a k-tnsd-coloring φ′. In the following, we will choose some G′ and extend
the coloring φ′ of G′ to a desired coloring φ of G to get a contradiction. Unless
otherwise stated, for any x ∈ (V (G)∪E(G))∩ (V (G′)∪E(G′)), set φ(x) = φ′(x).

In the following proof, we will omit the coloring of all 3−-vertices. Since they
have at most 9 forbidden colors and k ≥ 10, they can be colored easily.

In Figure 1, we draw a vertex x in black if it has no other neighbors than the
ones already depicted, and a vertex x in white if it might have more neighbors
than the ones shown in the figure.

Claim 1. These configurations of F1, F2, F3 and F4 in Figure 1 are reducible.

Proof. (1) Suppose to the contrary that G contains configuration F1. We obtain
a smaller graph G′ by splitting vi into ui, vi for i = 1, 2 (see F ′

1 in Figure 1).
Thus G′ is a planar graph without 5-cycles which is smaller than G. Hence G′

admits a k-tnsd-coloring φ′. We can stick ui, vi together properly for i = 1, 2 (if
necessary, exchange the colors of uu1 and uu2), and then recolor ui, vi, thus we
can obtain a k-tnsd-coloring φ of G, a contradiction.

(2) Suppose to the contrary that G contains configuration F2. We obtain a
smaller graph G′ by splitting vi into ui, vi for i = 1, 2 (see F ′

2 in Figure 1) without
producing 5-cycles. Thus G′ has a k-tnsd-coloring φ′.
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(i) If φ′ (wu1) 6= φ′ (uu2) or φ
′ (wu1) = φ′ (uu2) /∈ {φ′(vv1), φ

′(vv2)}, then we
can stick ui, vi together for i = 1, 2 (if necessary, exchange the colors of vv1 and
vv2).

(ii) If φ′ (wu1) = φ′ (uu2) ∈ {φ′(vv1), φ
′(vv2)}, without loss of generality,

suppose that φ′ (uu2) = φ′ (vv1). Exchange the colors of vv1 (uu2) and uv.
Therefore, we can stick ui, vi together for i = 1, 2. Thus, by recoloring, we can
obtain a k-tnsd-coloring φ of G, a contradiction.
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Figure 1. Illustration of Claim 1.

(3) Suppose to the contrary that G contains configuration F3. We obtain
a smaller graph G′ by splitting vi into vi1, vi2 for i = 1, 3 (see F ′

3 in Figure 1)
without producing 5-cycles. Thus G′ has a k-tnsd-coloring φ′.

(i) If φ′ (uv12) 6= φ′ (wv32) or φ′ (uv12) = φ′ (wv32) /∈ {φ′ (vv11) , φ
′ (vv31)},

then we can stick vi1, vi2 together for i = 1, 3 (if necessary, exchange the colors
of vv11 and vv31).

(ii) If φ′ (uv12) = φ′ (wv32) ∈ {φ′ (vv11) , φ
′ (vv31)}, without loss of generality,

suppose that φ′(uv12) = φ′(vv11). Then we exchange the colors of uv12 and uv2.
Therefore, we can stick vi1, vi2 together for i = 1, 3. Thus, by recoloring, we can
obtain a k-tnsd-coloring φ of G, a contradiction.

(4) Suppose to the contrary that G contains configuration F4. We obtain
a smaller graph G′ by splitting vi into vi1, vi2 for i = 1, 4 (see F ′

4 in Figure 1)
without producing 5-cycles. Thus G′ admits a k-tnsd-coloring φ′.

(i) If φ′ (uv12) 6= φ′ (zv42) or φ
′ (uv12) = φ′ (zv42) /∈ {φ′(vv11), φ

′(vv41)}, then
we can stick vi1, vi2 together for i = 1, 4 (if necessary, exchange the colors of vv11
and vv41).
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(ii) If φ′ (uv12) = φ′ (zv42) ∈ {φ′ (vv11) , φ
′ (vv41)}, without loss of generality,

suppose that φ′ (uv12) = φ′ (zv42) = φ′ (vv11). Since φ′ (wv2) 6= φ′ (wv3), suppose
that φ′ (wv2) 6= φ′ (uv12). We exchange the colors of uv12 and uv2. Therefore,
we can stick vi1, vi2 together for i = 1, 4. Thus, by recoloring, we can obtain a
k-tnsd-coloring φ of G, a contradiction.

It is easy to see that the following claim given in [16] also holds with the
graph G in our proof.

Claim 2 [16]. In the graph G, the following results holds.

(1) Each t−-vertex is not adjacent to any (7− t)−-vertex, where t = 4, 5.

(2) For each vertex v ∈ V (G), if d1G(v) ≥ 1, then d2G(v) = 0; if d1G(v) ≥ 2, then
d3G(v) = 0.

(3) If dG(v) = 5, then d3G(v) ≤ 1.

(4) If dG(v) = 6, then d3
−

G (v) ≤ 2. Furthermore, if d2
−

G (v) ≥ 1, then d3
−

G (v) ≤ 1.

(5) If dG(v) = 7, then d2
−

G (v) ≤ 2. Furthermore, if d2
−

G (v) ≥ 1, then d3
−

G (v) ≤ 2.

(6) If dG(v) = l (l ≥ 8), then d1G(v) <
⌈

l
2

⌉

.

(7) If dG(v) = l (l ≥ 8) and d2G(v) ≥ 1, then d2G(v) + d3G(v) ≤ l − 1.

(8) Each 3-face in G is a (2, 6+, 6+)-face, a (3, 5+, 5+)-face or a (4+, 4+, 5+)-
face.

Claim 3. Each 4-face in G is a (2, 6+, 3+, 6+)-face, a (3, 6+, 3, 6+)-face, a

(3, 5+, 4+, 5+)-face or a (4+, 4+, 4+, 4+)-face.

Proof. Let T = v1v2v3v4v1 be a 4-face of G, and assume that dG(v1) ≤ dG(vi),
where i = 2, 3, 4. If dG(v1) = 2, by Claim 2(1), dG(v2) ≥ 6, dG(v4) ≥ 6. By
Claim 1, F1 is reducible, thus T is a (2, 6+, 3+, 6+)-face. If dG(v1) = dG(v3) =
3, by Claim 2(1) and Claim 2(3), dG(v2) ≥ 6 and dG(v4) ≥ 6, thus T is a
(3, 6+, 3, 6+)-face. If dG(v1) = 3 and dG(v3) ≥ 4, by Claim 2(1), dG(v2) ≥ 5 and
dG(v4) ≥ 5, thus T is a (3, 5+, 4+, 5+)-face. If dG(v1) ≥ 4 and dG(v3) ≥ 4, by
Claim 2(1), dG(v2) ≥ 4 and dG(v4) ≥ 4, thus T is a (4+, 4+, 4+, 4+)-face.

Let H be the graph obtained from G by removing all 1-vertices. By Claims
1–3, we have the following facts.

Fact 1. For the graph H, we have δ(H) ≥ 2; dH(v) = dG(v), for 2 ≤ dG(v) ≤ 5.
If dG(v) ≥ 6, then dH(v) ≥ 5.

Fact 2.

(1) In the graph H, each 3−-vertex is not adjacent to any 4−-vertex.

(2) If dH(v) = 5, then d2H(v) = 0 and d3H(v) ≤ 1.

(3) If dH(v) = 6, then d2H(v) ≤ 1; furthermore, if d2H(v) = 1, then d3H(v) = 0; if
d2H(v) = 0, then d3H(v) ≤ 2.
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(4) If dH(v) = 7, then d2H(v) ≤ 2; furthermore, if d2H(v) = 2, then d3H(v) = 0; if
d2H(v) = 1, then d3H(v) ≤ 1.

(5) If dH(v) = l (l ≥ 8), then d2H(v) ≤ l − 1.

Fact 3.

(1) Each 3-face inH is a (2, 6+, 6+)-face, a (3, 5+, 5+)-face or a (4+, 4+, 5+)-face.

(2) Each 4-face in H is a (2, 6+, 3+, 6+)-face, a (3, 6+, 3, 6+)-face, a (3, 5+, 4+,
5+)-face or a (4+, 4+, 4+, 4+)-face.

A (2, 6+, 6+)-face or a (3, 5+, 5+)-face is called a bad 3-face. A (4+, 5+, 5+)-
face is called a normal 3-face. A (2, 6+, 3, 6+)-face or a (3, 6+, 3, 6+)-face is called
a bad 4-face, and other 4-face is a normal 4-face. We use n′

i(v), n
′′

i (v) to denote
the number of bad i-faces and the number of normal i-faces incident with v in
H, respectively, i = 3, 4.

Since G has no 5-cycles, we have the following fact.

Fact 4. These configurations are reducible to H:

(1) a 5-face,

(2) a 3-face adjacent to two 3-faces,

(3) a 3-face adjacent to a 4-face, and they are sharing only one edge.

By Fact 4, we have the following fact.

Fact 5. If dH(v) = l and n3
H(v) > 0, then n3

H(v) + n4
H(v) ≤ l − 2.

By Euler’s formula, we have

∑

v∈V (H)

(2dH(v)− 6) +
∑

f∈F (H)

(dH(f)− 6) = −12.

We will use the discharging method to obtain a contradiction. First, we give an
initial charge function: w(v) = 2dH(v)− 6 for each v ∈ V (H); w(f) = dH(f)− 6
for each f ∈ F (H). Next, we will design some discharging rules. Let w′ be the
new charge after the discharging process. It suffices to show that w′(x) ≥ 0 for
each x ∈ V (H) ∪ F (H), which leads to a contradiction.

In the following, a k-face means a k-face in H, the discharging rules are
defined as follows.

R1 Every 2-vertex v in H takes 1 from each neighbor.

R2 Every 4-vertex v in H gives 1 to each incident 3-face, gives 1
2 to each

incident 4-face.

R3 Every 5+-vertex v in H gives 3
2 to each incident bad 3-face, gives 1 to

each incident normal 3-face.
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R4 Every 5+-vertex v in H gives 1 to each incident bad 4-face, gives 3
4 to

each incident normal 4-face.
We will verify the new charge of each x ∈ V (H) ∪ F (H). In the following,

we use d(v), di(v), ni(v) and d(f) to denote dH(v), diH(v), ni
H(v) and dH(f),

respectively. We first consider the new charge of each f ∈ F (H).

• d(f) = 3. If f is a bad 3-face, by R3, w′(f) = 3− 6 + 3
2 · 2 = 0; otherwise,

by R2 and R3, w′(f) = 3− 6 + 1 · 3 = 0.

• d(f) = 4. If f is a bad 4-face, by R4, w′(f) = 4 − 6 + 1 · 2 = 0. If f is a
(2, 6+, 4+, 6+)-face or a (3, 5+, 4+, 5+)-face, by R2 and R4, w′(f) ≥ 4−6+ 3

4 ·2+
1
2 = 0. If f is a (4+, 4+, 4+, 4+)-face, by R2 and R4, w′(f) ≥ 4− 6 + 1

2 · 4 = 0.

• d(f) = t (t ≥ 6). w′(f) = w(f) = t− 6 ≥ 0.

Next we will consider the new charge of each v ∈ V (H).

• d(v) = 2. By R1, w′(v) = 2 · 2− 6 + 1 · 2 = 0.

• d(v) = 3. No rule applies to v, w′(v) = 2 · 3− 6 = 0.

• d(v) = 4. By Fact 2(1), d2(v) = d3(v) = 0. If n3(v) = 0, by R2, w′(v) =
2 · 4 − 6 − 1

2 · n4(v) ≥ 2 − 1
2 · 4 = 0. If n3(v) > 0, by Fact 5, n3(v) + n4(v) ≤ 2.

By R2, w′(v) = 2 · 4− 6− 1 · n3(v)−
1
2 · n4(v) ≥ 2− 1 · 2 = 0.

• d(v) = 5. By Fact 2(2), d2(v) = 0, d3(v) ≤ 1, so we have n′

3(v) ≤ 2 and
n′

4(v) = 0. If n3(v) = 0, by R4, w′(v) = 2 · 5− 6− 3
4 · n′′

4(v) ≥ 4− 3
4 · 5 = 1

4 > 0.
If n3(v) > 0, by Fact 5, n3(v) + n′′

4(v) ≤ 3. By R3 and R4, w′(v) = 2 · 5− 6− 3
2 ·

n′

3(v)− 1 · n′′

3(v)−
3
4 · n′′

4(v) ≥ 4− 3
2 · 2− 1 = 0.

• d(v) = 6. By Fact 2(3), d2(v) ≤ 1.
(a) d2(v) = 1. By Fact 2(3), d3(v) = 0, so we have n′

3(v) ≤ 1 and n′

4(v) = 0.
If n3(v) = 0, by R1 and R4, w′(v) = 2 · 6− 6− d2(v)−

3
4 · n

′′

4(v) ≥ 6− 1− 3
4 · 6 =

1
2 > 0. If n3(v) > 0, by Fact 5, n3(v) + n′′

4(v) ≤ 4. By R1, R3 and R4,
w′(v) = 2 ·6−6−d2(v)−

3
2 ·n

′

3(v)−1 ·n′′

3(v)−
3
4 ·n

′′

4(v) ≥ 6−1− 3
2 ·1−1 ·3 = 1

2 > 0.
(b) d2(v) = 0. If n3(v) = 0, by R4, w′(v) ≥ 2 · 6− 6− 1 ·n4(v) ≥ 6− 1 · 6 = 0.

If n3(v) > 0, by Fact 5, n3(v) + n4(v) ≤ 4. By R3 and R4, w′(v) ≥ 2 · 6− 6− 3
2 ·

n3(v)− 1 · n4(v) ≥ 6− 3
2 · 4 = 0.

• d(v) = 7. By Fact 2(4), d2(v) ≤ 2.
(a) d2(v) = 2. By Fact 2(4), d3(v) = 0. By Claim 1, F1 and F2 are reducible,

so we have n′

3(v) = n′

4(v) = 0. If n3(v) = 0, by R1 and R4, w′(v) = 2 ·
7 − 6 − d2(v) −

3
4 · n′′

4(v) ≥ 8 − 2 − 3
4 · 7 = 3

4 > 0. If n3(v) > 0, by Fact
5, n3(v) + n4(v) ≤ 5. Noting that n′

3(v) = n′

4(v) = 0, By R1, R3 and R4,
w′(v) = 2 · 7− 6− d2(v)− 1 · n′′

3(v)−
3
4 · n′′

4(v) ≥ 8− 2− 1 · 5 > 0.
(b) d2(v) ≤ 1. If n3(v) = 0, by R1 and R4, w′(v) ≥ 2·7−6−d2(v)−1·n4(v) ≥

8−1−1·7 = 0. If n3(v) > 0, by Fact 4 and Fact 5, n3(v) ≤ 4 and n3(v)+n4(v) ≤ 5.
By R1, R3 and R4, w′(v) ≥ 2·7−6−d2(v)−

3
2 ·n3(v)−1·n4(v) ≥ 8−1− 3

2 ·4−1 = 0.

• d(v) = l (l ≥ 8), by Fact 2(5), d2(v) ≤ l − 1.
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(a) d2(v) = l− 1. By Claim 1, F1 and F2 are reducible, so we have n3(v) = 0
and n4(v) ≤ 2. By R1 and R4 ,w′(v) ≥ 2l − 6− d2(v)− 1 · n4(v) ≥ 2l − 6− (l −
1)− 1 · 2 = l − 7 > 0.

(b) d2(v) = l − 2.

(b1) n3(v) = 0. By Claim 1, F1 is reducible, so we have n4(v) ≤ 4. By R1
and R4, w′(v) ≥ 2l − 6− d2(v)− 1 · n4(v) ≥ 2l − 6− (l − 2)− 4 = l − 8 ≥ 0.

(b2) n3(v) > 0. By Claim 1, F1 and F2 are reducible, and by Fact 4, we have
n3(v) = 1 and n4(v) = 0. By R1 and R3, w′(v) ≥ 2l − 6 − d2(v) −

3
2 · n3(v) ≥

2l − 6− (l − 2)− 3
2 = l − 11

2 > 0.

(c) d2(v) = l − 3.

(c1) n3(v) = 0. By Claim 1, F1 is reducible, so we have n4(v) ≤ 6.

If n4(v) = 6, by Claim 1, F3 is reducible, so we have n′

4(v) = 0. By R1 and
R4, w′(v) = 2l − 6− d2(v)−

3
4 · n′′

4(v) = 2l − 6− (l − 3)− 3
4 · 6 = l − 15

2 > 0.

If n4(v) ≤ 5, by R1 and R4, w′(v) ≥ 2l− 6− d2(v)− 1 · n4(v) ≥ 2l− 6− (l−
3)− 1 · 5 = l − 8 ≥ 0.

(c2) n3(v) > 0. By Claim 1, F2 is reducible, so we have n3(v) ≤ 2. By
Claim 1, F1 is reducible, and by Fact 4, we have n4(v) ≤ 2. By R1, R3 and R4,
w′(v) ≥ 2l−6−d2(v)−

3
2 ·n3(v)−1 ·n4(v) ≥ 2l−6− (l−3)− 3

2 ·2−2 = l−8 ≥ 0.

(d) d2(v) = l − 4.

(d1) n3(v) = 0. By Claim 1, F1 is reducible, so we have n4(v) ≤ 8.

n4(v) = i (i = 7, 8). By Claim 1, F3 is reducible, so we have n′

4(v) ≤ 8 − i.
By R1 and R4, w′(v) = 2l − 6− d2(v)− 1 · n′

4(v)−
3
4 · n

′′

4(v) ≥ 2l − 6− (l − 4)−
1 · (8− i)− 3

4 · (i− (8− i)) = l − 4− i
2 ≥ 0.

n4(v) ≤ 6. By R1 and R4, w′(v) ≥ 2l − 6− d2(v)− 1 · n4(v) ≥ 2l − 6− (l −
4)− 1 · 6 = l − 8 ≥ 0.

(d2) n3(v) > 0. By Claim 1, F2 is reducible, so each 2-neighbor of v is not
incident with a 3-face. And note that each 3-face is not adjacent to two 3-faces,
so we have n3(v) ≤ 2.

n3(v) = i (i = 1, 2). By Claim 1, F1 and F2 are reducible, and note that each
3-face is not adjacent to a 4-face, we have n4(v) ≤ 6 − 2i. By R1, R3 and R4,
w′(v) ≥ 2l− 6− d2(v)−

3
2 ·n3(v)− 1 ·n4(v) ≥ 2l− 6− (l− 4)− 3

2 · i− 1 · (6− 2i) =
l − 8 + i

2 > 0.

(e) d2(v) = l − 5.

(e1) n3(v) = 0. If n4(v) ≤ l − 1, by R1 and R4, w′(v) ≥ 2l − 6− d2(v)− 1 ·
n4(v) ≥ 2l − 6− (l − 5)− 1 · (l − 1) = 0. Now suppose that n4(v) = l. By Claim
1, F1 is reducible, so we have d2(v) ≤

⌊

l
2

⌋

. Noting that d2(v) = l − 5, we have
8 ≤ l ≤ 10. By Claim 1, F1, F3 and F4 are reducible, so we have n′

4(v) ≤ 4. By R1
and R4, w′(v) = 2l−6−d2(v)−1·n′

4(v)−
3
4 ·n

′′

4(v) ≥ 2l−6−(l−5)−1·4− 3
4 ·(l−4) =

l
4 − 2 ≥ 0.

(e2) n3(v) > 0. By Claim 1, F2 is reducible, and by Fact 4, we have n3(v) ≤ 3
.
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n3(v) = 3. By Claim 1, F1 is reducible, and by Fact 4, we have n4(v) = 0. By
R1 and R3, w′(v) ≥ 2l−6−d2(v)−

3
2 ·n3(v) ≥ 2l−6− (l−5)− 3

2 ·3 = l− 11
2 > 0.

n3(v) = i (i = 1, 2). By Claim 1, F1 is reducible, and by Fact 4, we have
n4(v) ≤ 8 − 2i. By Claim 1, F3 is reducible. So if n4(v) = 8 − 2i, we have
n′

4(v) = 0. By R1, R3 and R4, w′(v) ≥ 2l − 6 − d2(v) −
3
2 · n3(v) −

3
4 · n′′

4(v) ≥
2l−6− (l−5)− 3

2 · i−
3
4 · (8−2i) = l−7 > 0. If n4(v) ≤ 7−2i, by R1, R3 and R4,

w′(v) ≥ 2l− 6− d2(v)−
3
2 ·n3(v)− 1 ·n4(v) ≥ 2l− 6− (l− 5)− 3

2 · i− 1 · (7− 2i) =
l + i

2 − 8 > 0.

(f) d2(v) ≤ l− 6. Set t =
⌈

2(l−d2(v)−1)
3

⌉

. By Claim 1, F2 is reducible, and by

Fact 4, we have n3(v) ≤ t, n4(v) ≤ l and if n3(v) > 0, then n3(v)+n4(v) ≤ l− 2.
(f1) n3(v) = 0, by R1 and R4, w′(v) ≥ 2l−6−d2(v)−l ≥ 2l−6−(l−6)−l = 0.
(f2)n3(v) > 0, by R1, R3 and R4, w′(v) ≥ 2l− 6− d2(v)−

3
2 ·n3(v)−n4(v) ≥

2l− 6− d2(v)−
3
2 · n3(v)− (l− 2− n3(v)) ≥ l− 4− d2(v)−

1
2 · t = l− 4− d2(v)−

1
2

⌈

2(l−d2(v)−1)
3

⌉

≥ 0.

Now we get that for each x ∈ V (H)∪F (H), w′(x) ≥ 0, which is a contradic-
tion. This completes the proof of Theorem 3.

3. The Proof of Theorem 4

The proof of Theorem 4 is almost the same as the proof of Theorem 3 except
for some details. Let G be a minimum counterexample to Theorem 4 which is
embedded in the plane. Set k = max{∆(G) + 1, 10}. By the choice of G, any
planar graph G′ without 5-cycles and without adjacent ∆(G)-vertices which is
smaller than G has a k-tnsd-coloring φ′. Similarly, we will choose some G′ and
extend the coloring φ′ of G′ to a desired coloring φ of G to get a contradiction. It
is easy to see that all the claims in the proof of Theorem 3 except for Claim 2(6)
and Claim 2(7) also hold here. The proof of Claim 2(6) and Claim 2(7) can be
seen in [5]. The rest of the proof including the discharging method is the same
as the proof of Theorem 3.
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