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Abstract

For a given graph G = (V(G), E(Q)), a proper total coloring ¢ : V(G)U
E(G) — {1,2,...,k} is neighbor sum distinguishing if f(u) # f(v) for each
edge uv € E(G), where f(v) =3, ,cpc) ¢(uv)+¢(v), v€V(G). The small-
est integer k in such a coloring of G is the neighbor sum distinguishing
total chromatic number, denoted by x%(G). Piléniak and Wozniak first
introduced this coloring and conjectured that x%(G) < A(G) + 3 for any
graph with maximum degree A(G). In this paper, by using the discharging
method, we prove that for any planar graph G without 5-cycles, x%(G) <
max{A(G)+2,10}. The bound A(G) + 2 is sharp. Furthermore, we get the
exact value of x%(G) if A(G) > 9.
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1. INTRODUCTION

In this paper, all graphs considered are simple, finite and undirected. For the
terminology and notation not defined in this paper can be found in [1]. For
a graph G, we denote its vertex set, edge set and maximum degree by V(G),
E(G) and A(G), respectively. If G is a planar graph embedded in the plane,
we use F(G) to denote its face set. A vertex v is a t-vertex, t~-verter, t™-
vertex if dg(v) = t, dg(v) <t, dg(v) >t in G, respectively. A t-face is defined
similarly. An [-face vive--- vy is a (b1, ba, ..., b)-face, where v; is a b;-vertex, for
1=1,2,...,1. Let dtc(v) denote the number of t-vertices adjacent to v in G. Let
né(v) denote the number of d-faces incident with v in G. A configuration F is
reducible to G, if it cannot be a configuration of G.
Given a graph G, set n;(G) = {v € V(G) : dg(v) = i}| fori =1,2,...,A(G).
A graph G’ is smaller than G if one of the following holds:
(1) [E(@)] < |E@),
(2) |E(G"|=|E(GQ)|and (nt(G"),ne—1(G"),...,n1(G")) precedes (ni(G), ni—1(G),
...,n1(G)) with respect to the standard lexicographic order, where ¢t =

max {A(G), A(G)}.

A graph is minimum for a property if no smaller graph satisfies it.

Given a graph G and a positive integer k, a proper total k-coloring of G is a
mapping ¢: V(G) U E(G) — {1,2,...,k} such that ¢(x) # ¢(y) for each pair of
adjacent or incident elements z, y € V(G)UE(G). Let f(v) =3 ,,cpq) ¢(w) +
o), v € V(G). If f(u) # f(v) for each edge uwv € E(G), then ¢ is a neighbor
sum distinguishing total k-coloring, or k-tnsd-coloring for simplicity. The small-
est number k is the neighbor sum distinguishing total chromatic number of G,
denoted by x%(G). For k-tnsd-coloring, Pil$niak and WozZniak gave the following
conjecture.

Conjecture 1 [11]. For any graph G, x%(G) < A(G) + 3.

Pilsniak and Wozniak confirmed Conjecture 1 for bipartite graphs, complete
graphs, cycles and subcubic graphs. Dong et al. [3] showed that Conjecture 1
holds for some sparse graphs. Yao et al. [21, 22] considered tnsd-coloring of
degenerate graphs. Li et al. [9] proved that Conjecture 1 holds for K4-minor
free graphs. Song et al. [15] determined x¥%(G) for K4-minor free graph G with
A(G) > 5. For planar graph, it was proved that this conjecture holds with
A(G) > 13 by Li et al. [7] and A(G) > 11 by Qu et al. [12]. For planar graph,
it was proved that x4 (G) < A(G) + 2 holds with A(G) > 14 by Cheng et al. [2],
A(G) > 12 by Song et al. [14] and A(G) > 11 by Yang et al. [20]. The bound
A(G) + 2 is sharp. Some results about planar graphs with cycle restrictions can
be seen in [5, 8, 10] and [16-19]. More references on tnsd-coloring can be seen in
[4] and [13].



NEIGHBOR SUM DISTINGUISHING TOTAL CHROMATIC NUMBER 245

Recently, Ge et al. [6] got the following result.

Theorem 2 [6]. Let G be a planar graph without 5-cycles. Then
X% (G) < max{ A(G) + 3,10}.

In this paper, we prove the following results.

Theorem 3. Let G be a planar graph without 5-cycles. Then
X%(G) < max{A(G) + 2,10}.

Theorem 4. Let G be a planar graph without 5-cycles and without adjacent
A(G)-vertices. Then x%(G) < max {A(G) + 1, 10}.

Clearly, X%(G) > A(G)+1 for any graph G. If G has adjacent A(G)-vertices,
then x%(G) > A(G) + 2. Thus we get the following corollary.

Corollary 5. Let G be a planar graph without 5-cycles and A(G) > 9. If G has
no adjacent A(G)-vertices, then x%.(G) = A(G)+1, otherwise x%(G) = A(G)+2.

2. THE PROOF OF THEOREM 3

We will prove it by contradiction. Let G be a minimum counterexample to
Theorem 3 which is embedded in the plane. Set k& = max {A(G) + 2,10}. By
the choice of G, any planar graph G’ without 5-cycles which is smaller than G
has a k-tnsd-coloring ¢’. In the following, we will choose some G’ and extend
the coloring ¢’ of G’ to a desired coloring ¢ of G to get a contradiction. Unless
otherwise stated, for any x € (V(G)UE(G))N(V(G")UE(G)), set ¢(z) = ¢'(z).

In the following proof, we will omit the coloring of all 3~ -vertices. Since they
have at most 9 forbidden colors and &£ > 10, they can be colored easily.

In Figure 1, we draw a vertex z in black if it has no other neighbors than the
ones already depicted, and a vertex x in white if it might have more neighbors
than the ones shown in the figure.

Claim 1. These configurations of Fy, Fs, F3 and Fy in Figure 1 are reducible.

Proof. (1) Suppose to the contrary that G contains configuration F;. We obtain
a smaller graph G’ by splitting v; into u;, v; for i = 1,2 (see F| in Figure 1).
Thus G’ is a planar graph without 5-cycles which is smaller than G. Hence G’
admits a k-tnsd-coloring ¢’. We can stick u;, v; together properly for i = 1,2 (if
necessary, exchange the colors of uu; and uusg), and then recolor u;, v;, thus we
can obtain a k-tnsd-coloring ¢ of GG, a contradiction.

(2) Suppose to the contrary that G contains configuration F,. We obtain a
smaller graph G’ by splitting v; into u;, v; for i = 1,2 (see F in Figure 1) without
producing 5-cycles. Thus G’ has a k-tnsd-coloring ¢’.
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(1) 16 ¢/ (1) # & (uuz) or o (wur) = & () & {¢/(v01), &/ (v02)}, then we
can stick wu;, v; together for i = 1,2 (if necessary, exchange the colors of vv; and
UUQ).

(ii) If ¢' (wur) = ¢ (uug) € {¢'(vv1), ¢ (vua)}, without loss of generality,
suppose that ¢’ (uuz) = ¢’ (vvy). Exchange the colors of vv; (uug) and wv.
Therefore, we can stick u;, v; together for ¢ = 1,2. Thus, by recoloring, we can
obtain a k-tnsd-coloring ¢ of G, a contradiction.

U1 U1 u1 V1 U1 w
/ /_C ‘_O
v U v \ u v u
V2 V2 U2 V2 U2
r F! F}
v v v
vs V11 V31 V41
——
’1}17 V32 'U42
u w u w z
V2 Vy W V3 V2 W V3
Fy Fl F, F}

Figure 1. Illustration of Claim 1.

(3) Suppose to the contrary that G contains configuration F3. We obtain
a smaller graph G’ by splitting v; into v;1, v for i = 1,3 (see Fy in Figure 1)
without producing 5-cycles. Thus G’ has a k-tnsd-coloring ¢'.

(i) If ¢ (uvi2) # ¢’ (wvzg) or ¢ (uvi2) = ¢ (wvs2) ¢ {¢' (von1), ¢ (vvs1)},
then we can stick v;1, v;2 together for i = 1,3 (if necessary, exchange the colors
of vuy; and vvsy).

(ii) If ¢’ (uv12) = ¢ (wvs2) € {¢' (vu11), ¢’ (vus1)}, without loss of generality,
suppose that ¢'(uvi2) = ¢'(vv11). Then we exchange the colors of uv1y and uvs.
Therefore, we can stick v;1, v;o together for ¢ = 1,3. Thus, by recoloring, we can
obtain a k-tnsd-coloring ¢ of G, a contradiction.

(4) Suppose to the contrary that G contains configuration Fj;. We obtain
a smaller graph G’ by splitting v; into v;1, v for i = 1,4 (see Fj in Figure 1)
without producing 5-cycles. Thus G’ admits a k-tnsd-coloring ¢'.

(i) If ¢’ (uv12) # ¢' (zva2) or ¢ (uv12) = ¢’ (2v42) ¢ {¢'(vv11), ¢’ (vva1)}, then
we can stick v;1, vie together for i = 1,4 (if necessary, exchange the colors of vviq
and vvyg).
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(ii) If ¢’ (uv12) = ¢ (zv42) € {¢' (vv11), ¢ (vva1)}, without loss of generality,
suppose that ¢’ (uv12) = ¢ (zv42) = ¢’ (vv11). Since ¢’ (wvy) # ¢’ (wwvs3), suppose
that ¢’ (wvy) # ¢ (uv12). We exchange the colors of uvis and uwvy. Therefore,
we can stick v;1, v;o together for ¢ = 1,4. Thus, by recoloring, we can obtain a
k-tnsd-coloring ¢ of G, a contradiction. ]

It is easy to see that the following claim given in [16] also holds with the
graph G in our proof.

Claim 2 [16]. In the graph G, the following results holds.
(1) Each t™-vertex is not adjacent to any (7 — t)™ -vertez, where t = 4, 5.

(2) For each vertezx v € V(G), if di;(v) > 1, then d%(v) = 0; if d}y(v) > 2, then

dg(v) = 0.
(3) Ifdg(v) =5, then d%(v) < 1.
(4) If dg(v) = 6, then d, (v) < 2. Furthermore, if d2, (v) > 1, then d3, (v) <1
(5) If dg(v) =7, then d% (v) < 2. Furthermore, if dz, (v) > 1, then dg, (v) < 2.
(6) If dg(v) =1 (I > 8), then d(v) < [L].
(7) If dg(v) =1 (I > 8) and d%(v) > 1, then d2(v) + d3,(v) <1 —1.
(8) FEach 3-face in G is a (2,6,6%)-face, a (3,5%,5")-face or a (41,47 ,5%)-

face.

Claim 3. Fach 4-face in G is a (2,6%,37,6%)-face, a (3,67,3,67)-face, a
(3,5T,4%, 5F)-face or a (47,47, 4% 47)-face.

Proof. Let T = vivouzvgv; be a 4-face of G, and assume that dg(vi) < dg(vi),
where i = 2,3,4. If dg(vy) = 2, by Claim 2(1), dg(v2) > 6,dg(vs) > 6. By
Claim 1, Fy is reducible, thus T is a (2,6%,3%,6%)-face. If dg(v1) = d ( 3) =
3, by Claim 2(1) and Claim 2(3), dg(v2) > 6 and dg(vs) > 6, thus T is a
(3,6T,3,6")-face. If dg(v1) = 3 and dg(v3) > 4, by Claim 2(1), dg(ve) > 5 and
dc(vs) > 5, thus T is a (3,57,41,5%)-face. If dg(vi) > 4 and dg(vs) > 4, by
Claim 2(1), dg(ve) > 4 and dg(vs) > 4, thus T is a (41,47, 4% 47)-face. m

Let H be the graph obtained from G by removing all 1-vertices. By Claims
1-3, we have the following facts.

Fact 1. For the graph H, we have §(H) > 2; dg(v) = dg(v), for 2 < dg(v) < 5.

If dg(v) > 6, then dy(v) > 5.

Fact 2.

(1) In the graph H, each 3~ -vertex is not adjacent to any 4~ -vertex.

(2) If dp(v) = 5, then d%(v) = 0 and d%(v) < 1.

(3) If dg(v) = 6, then d%(v) < 1; furthermore, if d%;(v) = 1, then d%;(v) = 0; if
d?,(v) = 0, then d3;(v ) <2
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(4) If dg(v) = 7, then d%(v) < 2; furthermore, if d% (v) = 2, then d%;(v) = 0; if

d?;(v) = 1, then dj;(v) < 1.

(5) If dg(v) =1 (I > 8), then d%(v) <1 —1.

Fact 3.

(1) Each 3-face in H is a (2,6™,6T)-face, a (3,51, 5%)-face or a (47,47, 5T )-face.

(2) Each 4-face in H is a (2,61,3%,67)-face, a (3,67,3,6")-face, a (3,5%,4T,
5%)-face or a (41,47, 4% 47)-face.

A (2,6%,6T)-face or a (3,51,5T)-face is called a bad 3-face. A (41,57, 5%)-
face is called a normal 3-face. A (2,67, 3,6 )-face or a (3,6, 3,6™)-face is called
a bad 4-face, and other 4-face is a normal 4-face. We use n}(v), n//(v) to denote
the number of bad i¢-faces and the number of normal i-faces incident with v in
H, respectively, i = 3, 4.

Since G has no 5-cycles, we have the following fact.

Fact 4. These configurations are reducible to H:
(1) a 5-face,
(2) a 3-face adjacent to two 3-faces,

(3) a 3-face adjacent to a 4-face, and they are sharing only one edge.

By Fact 4, we have the following fact.
Fact 5. If dg(v) =1 and n3;(v) > 0, then n3,(v) + n}(v) <1 —2.

By Euler’s formula, we have

> @du(v)—6)+ > (du(f)—6)=—12.

veV (H) feF(H)

We will use the discharging method to obtain a contradiction. First, we give an
initial charge function: w(v) = 2dg(v) — 6 for each v € V(H); w(f) = dg(f) — 6
for each f € F(H). Next, we will design some discharging rules. Let w’ be the
new charge after the discharging process. It suffices to show that w'(x) > 0 for
each x € V(H) U F(H), which leads to a contradiction.

In the following, a k-face means a k-face in H, the discharging rules are
defined as follows.

R1 Every 2-vertex v in H takes 1 from each neighbor.

R2 Every 4-vertex v in H gives 1 to each incident 3-face, gives % to each
incident 4-face.

R3 Every 5T-vertex v in H gives % to each incident bad 3-face, gives 1 to
each incident normal 3-face.
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R4 Every 5T-vertex v in H gives 1 to each incident bad 4-face, gives %

each incident normal 4-face.

We will verify the new charge of each z € V(H) U F(H). In the following,
we use d(v), d;(v), ni(v) and d(f) to denote dg(v), diy(v), nly(v) and dy(f),
respectively. We first consider the new charge of each f € F(H).

e d(f)=3. If f is a bad 3-face, by R3, w'(f) =3 -6+ % -2 = 0; otherwise,
by R2 and R3, w'(f) =3—-6+1-3=0.

e d(f) =4. If f is a bad 4-face, by R4, w/'(f) =4—-6+1-2=0. If fisa
(2,6,4%,6)-face or a (3,5,4%, 57)-face, by R2 and R4, w'(f) >4—6+ % ‘24
=0. If fisa (47,47,4% 4%)-face, by R2 and R4, w'(f) >4 -6+ 3 -4 =0.

ed(f)y=t(t>6). w'(f)=w(f)=t—6>0.
Next we will consider the new charge of each v € V(H).

ed(v)=2. ByRl,w'(v)=2-2—-6+1-2=0.

e d(v) = 3. No rule applies to v, w'(v) =2-3 -6 =0.

e d(v) = 4. By Fact 2( ), da(v) = d3(v) = 0. If n3(v) = 0, by R2, w'(v
2:4—6— 3 -ng(v) >2—3-4=0. If n3(v) > 0, by Fact 5, ng(v) + na(v)
By R2, w'(v) =2-4—6—1-n3(v) — 1 na(v) >2—-1-2=0.

e d(v) = 5. By Fact 2(2), d2(v) = 0, d3(v) < 1, so we have n’g(v) <
nﬁl(v)zo.Ifng(v)zo,byR4,w’(v):2-5—6—% H(v) >4 — =
If nz(v) > 0, by Fact 5, nz(v) +nj(v) < 3. By R3 and R4, w'(v) =
ny(v) —1-nf(v) =3 . nj(v)>4—-3.2-1=0.

e d(v) = 6. By Fact 2(3), da(v) <1
(a) da(v) = 1. By Fact 2(3), ds3(v) = 0, so we have n4(v) < 1 and nj(v ) =0.

to

1
2

) =
2.

If n3(v) = 0, by R1 and R4, w'(v) =2-6 —6 —da(v) — 2 -nf(v) > 6—1—2.
3 > 0. If ng(v) > 0, by Fact 5, ng(v) +nff(v) < 4. By RI, R3 and R4,
w'(v) =2:6—6—da(v)—3-nh(v)—1-nf(v)—2-nf(v) > 6-1-3.1-1.3=1 > 0.

(b) da(v) = 0. If n(v) = 0, byR4 w(v)>2-6—6—1-ny(v) >6—1-6=0.
If n3(v) > 0, by Fact 5, n3(v) + na(v) < 4. By R3 and R4, w'(v) >2-6 —6 — 3 -
ng(v) —1-ny(v) >6—3-4=0.

e d(v) = 7. By Fact 2(4), dg( )< 2.

(a) d2(v) = 2. By Fact 2(4), d3(v) = 0. By Claim 1, F; and F5 are reducible,

so we have nj(v) = nj(v) = 0. If nz(v) 0, by R1 and R4, w'(v) = 2 -
7—6—d2()—g.ng() 8—2-3.7= g>o. If ng(v) > 0, by Fact
5, ng()+n4()§ Noting that n4(v) = nj(v) = 0, By R1, R3 and R4,
w()—27 —da(v) —1-nf(v) — 3 -nf(v) >8—-2—-1-5>0.

d.
(v)
(b) da(v) < 1. If ng(v) = 0, by R1 and R4, w'(v) > 2-7—6—da(v)—1-n4(
8—1-1-7=0. Ifng( ) > 0, by Fact 4 and Fact 5, n3(v) < 4 and n3(v)+mna(v)
By R1, R3 and R4, w'(v) > 2:7—6—dy(v)— 3 -ng(v) —1-na(v) > 8—1-3-4—1

o d(v) =1 (I >8), by Fact 2(5), da(v) < [ — 1.

NS
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(a) d2(v) =1—1. By Claim 1, F; and F» are reducible, so we have n3(v) =0
and ny(v) < 2. By Rl and R4 ,w'(v) > 2l — 6 —da(v) — 1 -nyg(v) > 21— 6 — (I —
1)—1-2=1-7>0.

(b) da(v) =1—2.

(bl) n3(v) = 0. By Claim 1, F} is reducible, so we have n4(v) < 4. By R1
and R4, w'(v) > 20l —6 —da(v) = 1-ng(v) >20—6—-(1—-2)—4=1-8>0.

(b2) n3(v) > 0. By Claim 1, F; and F; are reducible, and by Fact 4, we have
n3(v) = 1 and na(v) = 0. By R1 and R3, w'(v) > 20 — 6 — da(v) — 2 - nz(v) >
20-6—(1-2)—3=1-1 >0

(c) da(v) =1-3.

(cl) ng(v) = 0. By Claim 1, F} is reducible, so we have n4(v) < 6.

If ny(v) = 6, by Claim 1, F3 is reducible, so we have nj(v) = 0. By R1 and
R4, w'(v) =2l — 6 —do(v) — 2 - nfj(v) =201—6—-(1-3)—3-6=1—2>0.

If ng(v) <5, by R1 and R4, w'(v) > 2l — 6 — da(v) — 1 -ng(v) > 20l —6 — (I —
3)—1-5=1-8>0.

(c2) n3(v) > 0. By Claim 1, F» is reducible, so we have n3(v) < 2. By
Claim 1, F} is reducible, and by Fact 4, we have ny(v) < 2. By R1, R3 and R4,
w'(v) > 20—6—da(v)— 3 -n3(v) —1-na(v) >20—6—(1-3)—3.2-2=1-8>0.

(d) da(v) =1—4.

(d1) n3(v) = 0. By Claim 1, F} is reducible, so we have n4(v) < 8.

na(v) =i (i = 7,8). By Claim 1, F3 is reducible, so we have nj(v) < 8 — 1.
By R1 and R4, w'(v) =20 — 6 — da(v) — 1-nj(v) — 2 -nf(v) > 20— 6 — (1 — 4) —
1-(8—i)—3-(i—(8—i)=1—-4-%>0.

n4a(v) < 6. By R1 and R4, w'(v) > 2l — 6 — da(v) — 1 -nyg(v) > 20— 6 — (I —
4)—1-6=1-8>0.

(d2) n3(v) > 0. By Claim 1, F; is reducible, so each 2-neighbor of v is not
incident with a 3-face. And note that each 3-face is not adjacent to two 3-faces,
so we have ng(v) < 2.

n3(v) =i (i = 1,2). By Claim 1, F; and F» are reducible, and note that each
3-face is not adjacent to a 4-face, we have ny(v) < 6 — 2i. By R1, R3 and R4,
w'(v) > 21— 6—da(v) — 3 -n3(v) —1-n4(v) 220 —6—(1—4)—3-i—1-(6—2i) =
[—8+4>0.

(e) do(v) =1—5.

(el) n3(v) = 0. If ng(v) <1—1, by R1 and R4, w'(v) > 2l — 6 — da(v) — 1 -
na(v) >2l—6—(l—5)—1-(l—1)=0. Now suppose that ns(v) = [. By Claim
1, Fy is reducible, so we have ds(v) < L%J Noting that ds(v) =1 — 5, we have
8 <1< 10. By Claim 1, Fy, F3 and Fy are reducible, so we have n(v) < 4. By R1
and R4, w'(v) = 21—6—da(v) —1-nfy(v)—3-nj(v) > 21—6—(1—5)—1-4—3-(1—4) =
L—2>0.

(e2) n3(v) > 0. By Claim 1, F; is reducible, and by Fact 4, we have n3(v) < 3
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n3(v) = 3. By Claim 1, F} is reducible, and by Fact 4, we have n4(v) = 0. By
R1and R3, w'(v) > 20 —6—da(v) — 3 -ng(v) > 20—6—(I1-5)-3.3=1-L > 0.

n3(v) =4 (i = 1,2). By Claim 1, F} is reducible, and by Fact 4, we have
n4(v) < 8 —2i. By Claim 1, F3 is reducible. So if n4(v) = 8 — 2i, we have
ny(v) = 0. By R1, R3 and R4, w'(v) > 21 — 6 — da(v) — 3 - nz(v) — 3 - nff(v) >
20—6—(1—5)—3-i—3.(8—2i) =1—7> 0. If ny(v) < 7—2i, by R1, R3 and R4,
w'(v) > 21 —6—do(v) — 3 - n3(v) —1-ng(v) >20—6—(1—5)—3-i—1-(7—2i) =

[+5—8>0.
(f) da2(v) <1—6. Set t = {w—‘ By Claim 1, F3 is reducible, and by
Fact 4, we have n3(v) <t, ny(v) <l and if ng(v) > 0, then n3(v) +na(v) <1 —2.
(f1) n3(v) = 0, by R1 and R4, w'(v) > 21—6—da(v)—1 > 21—6—(1—6)—1 = 0.
(f2)nz(v) > 0, by R1, R3 and R4, w'(v) > 21— 6 —da(v) — 3 - n3(v) —na(v) >
20— 6—da(v) — 3 -n3(v) — (1 —2—n3(v)) > 1 —4—da(v) — Lt =1—4—dy(v) —

Hw]zo.

Now we get that for each z € V(H)UF(H), w'(xz) > 0, which is a contradic-
tion. This completes the proof of Theorem 3.

3. THE PROOF OF THEOREM 4

The proof of Theorem 4 is almost the same as the proof of Theorem 3 except
for some details. Let G be a minimum counterexample to Theorem 4 which is
embedded in the plane. Set k& = max{A(G) + 1,10}. By the choice of G, any
planar graph G’ without 5-cycles and without adjacent A(G)-vertices which is
smaller than G has a k-tnsd-coloring ¢’. Similarly, we will choose some G’ and
extend the coloring ¢’ of G’ to a desired coloring ¢ of G to get a contradiction. It
is easy to see that all the claims in the proof of Theorem 3 except for Claim 2(6)
and Claim 2(7) also hold here. The proof of Claim 2(6) and Claim 2(7) can be
seen in [5]. The rest of the proof including the discharging method is the same
as the proof of Theorem 3.
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