NEIGHBOR SUM DISTINGUISHING TOTAL CHROMATIC NUMBER OF PLANAR GRAPHS WITHOUT 5-CYCLES ${ }^{1}$

Xue Zhao
AND
Chang-Qing Xu ${ }^{2}$
School of Science, Hebei University of Technology
Tianjin 300401, P.R. China
e-mail: zhaoxhxy@163.com
chqxu@hebut.edu.cn

Abstract

For a given graph $G=(V(G), E(G))$, a proper total coloring $\phi: V(G) \cup$ $E(G) \rightarrow\{1,2, \ldots, k\}$ is neighbor sum distinguishing if $f(u) \neq f(v)$ for each edge $u v \in E(G)$, where $f(v)=\sum_{u v \in E(G)} \phi(u v)+\phi(v), v \in V(G)$. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by $\chi_{\Sigma}^{\prime \prime}(G)$. Pilśniak and Woźniak first introduced this coloring and conjectured that $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$ for any graph with maximum degree $\Delta(G)$. In this paper, by using the discharging method, we prove that for any planar graph G without 5 -cycles, $\chi_{\Sigma}^{\prime \prime}(G) \leq$ $\max \{\Delta(G)+2,10\}$. The bound $\Delta(G)+2$ is sharp. Furthermore, we get the exact value of $\chi_{\Sigma}^{\prime \prime}(G)$ if $\Delta(G) \geq 9$.

Keywords: neighbor sum distinguishing total coloring, discharging method, planar graph.
2010 Mathematics Subject Classification: 05C15.

[^0]
1. Introduction

In this paper, all graphs considered are simple, finite and undirected. For the terminology and notation not defined in this paper can be found in [1]. For a graph G, we denote its vertex set, edge set and maximum degree by $V(G)$, $E(G)$ and $\Delta(G)$, respectively. If G is a planar graph embedded in the plane, we use $F(G)$ to denote its face set. A vertex v is a t-vertex, t^{-}-vertex, t^{+}vertex if $d_{G}(v)=t, d_{G}(v) \leq t, d_{G}(v) \geq t$ in G, respectively. A t-face is defined similarly. An l-face $v_{1} v_{2} \cdots v_{l}$ is a $\left(b_{1}, b_{2}, \ldots, b_{l}\right)$-face, where v_{i} is a b_{i}-vertex, for $i=1,2, \ldots, l$. Let $d_{G}^{t}(v)$ denote the number of t-vertices adjacent to v in G. Let $n_{G}^{d}(v)$ denote the number of d-faces incident with v in G. A configuration F is reducible to G, if it cannot be a configuration of G.

Given a graph G, set $n_{i}(G)=\left|\left\{v \in V(G): d_{G}(v)=i\right\}\right|$ for $i=1,2, \ldots, \Delta(G)$. A graph G^{\prime} is smaller than G if one of the following holds:
(1) $\left|E\left(G^{\prime}\right)\right|<|E(G)|$,
(2) $\left|E\left(G^{\prime}\right)\right|=|E(G)|$ and $\left(n_{t}\left(G^{\prime}\right), n_{t-1}\left(G^{\prime}\right), \ldots, n_{1}\left(G^{\prime}\right)\right)$ precedes $\left(n_{t}(G), n_{t-1}(G)\right.$, $\left.\ldots, n_{1}(G)\right)$ with respect to the standard lexicographic order, where $t=$ $\max \left\{\Delta(G), \Delta\left(G^{\prime}\right)\right\}$.
A graph is minimum for a property if no smaller graph satisfies it.
Given a graph G and a positive integer k, a proper total k-coloring of G is a mapping $\phi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ such that $\phi(x) \neq \phi(y)$ for each pair of adjacent or incident elements $x, y \in V(G) \cup E(G)$. Let $f(v)=\sum_{u v \in E(G)} \phi(u v)+$ $\phi(v), v \in V(G)$. If $f(u) \neq f(v)$ for each edge $u v \in E(G)$, then ϕ is a neighbor sum distinguishing total k-coloring, or k-tnsd-coloring for simplicity. The smallest number k is the neighbor sum distinguishing total chromatic number of G, denoted by $\chi_{\Sigma}^{\prime \prime}(G)$. For k-tnsd-coloring, Pilśniak and Woźniak gave the following conjecture.

Conjecture 1 [11]. For any graph $G, \chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$.
Pilśniak and Woźniak confirmed Conjecture 1 for bipartite graphs, complete graphs, cycles and subcubic graphs. Dong et al. [3] showed that Conjecture 1 holds for some sparse graphs. Yao et al. [21, 22] considered tnsd-coloring of degenerate graphs. Li et al. [9] proved that Conjecture 1 holds for K_{4}-minor free graphs. Song et al. [15] determined $\chi_{\Sigma}^{\prime \prime}(G)$ for K_{4}-minor free graph G with $\Delta(G) \geq 5$. For planar graph, it was proved that this conjecture holds with $\Delta(G) \geq 13$ by Li et al. [7] and $\Delta(G) \geq 11$ by Qu et al. [12]. For planar graph, it was proved that $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+2$ holds with $\Delta(G) \geq 14$ by Cheng et al. [2], $\Delta(G) \geq 12$ by Song et al. [14] and $\Delta(G) \geq 11$ by Yang et al. [20]. The bound $\Delta(G)+2$ is sharp. Some results about planar graphs with cycle restrictions can be seen in $[5,8,10]$ and $[16-19]$. More references on tnsd-coloring can be seen in [4] and [13].

Recently, Ge et al. [6] got the following result.
Theorem 2 [6]. Let G be a planar graph without 5 -cycles. Then

$$
\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{\Delta(G)+3,10\}
$$

In this paper, we prove the following results.
Theorem 3. Let G be a planar graph without 5 -cycles. Then

$$
\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{\Delta(G)+2,10\} .
$$

Theorem 4. Let G be a planar graph without 5 -cycles and without adjacent $\Delta(G)$-vertices. Then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{\Delta(G)+1,10\}$.

Clearly, $\chi_{\Sigma}^{\prime \prime}(G) \geq \Delta(G)+1$ for any graph G. If G has adjacent $\Delta(G)$-vertices, then $\chi_{\Sigma}^{\prime \prime}(G) \geq \Delta(G)+2$. Thus we get the following corollary.

Corollary 5. Let G be a planar graph without 5 -cycles and $\Delta(G) \geq 9$. If G has no adjacent $\Delta(G)$-vertices, then $\chi_{\Sigma}^{\prime \prime}(G)=\Delta(G)+1$, otherwise $\chi_{\Sigma}^{\prime \prime}(G)=\Delta(G)+2$.

2. The Proof of Theorem 3

We will prove it by contradiction. Let G be a minimum counterexample to Theorem 3 which is embedded in the plane. Set $k=\max \{\Delta(G)+2,10\}$. By the choice of G, any planar graph G^{\prime} without 5 -cycles which is smaller than G has a k-tnsd-coloring ϕ^{\prime}. In the following, we will choose some G^{\prime} and extend the coloring ϕ^{\prime} of G^{\prime} to a desired coloring ϕ of G to get a contradiction. Unless otherwise stated, for any $x \in(V(G) \cup E(G)) \cap\left(V\left(G^{\prime}\right) \cup E\left(G^{\prime}\right)\right)$, set $\phi(x)=\phi^{\prime}(x)$.

In the following proof, we will omit the coloring of all 3^{-}-vertices. Since they have at most 9 forbidden colors and $k \geq 10$, they can be colored easily.

In Figure 1, we draw a vertex x in black if it has no other neighbors than the ones already depicted, and a vertex x in white if it might have more neighbors than the ones shown in the figure.

Claim 1. These configurations of F_{1}, F_{2}, F_{3} and F_{4} in Figure 1 are reducible.
Proof. (1) Suppose to the contrary that G contains configuration F_{1}. We obtain a smaller graph G^{\prime} by splitting v_{i} into u_{i}, v_{i} for $i=1,2$ (see F_{1}^{\prime} in Figure 1). Thus G^{\prime} is a planar graph without 5 -cycles which is smaller than G. Hence G^{\prime} admits a k-tnsd-coloring ϕ^{\prime}. We can stick u_{i}, v_{i} together properly for $i=1,2$ (if necessary, exchange the colors of $u u_{1}$ and $u u_{2}$), and then recolor u_{i}, v_{i}, thus we can obtain a k-tnsd-coloring ϕ of G, a contradiction.
(2) Suppose to the contrary that G contains configuration F_{2}. We obtain a smaller graph G^{\prime} by splitting v_{i} into u_{i}, v_{i} for $i=1,2$ (see F_{2}^{\prime} in Figure 1) without producing 5 -cycles. Thus G^{\prime} has a k-tnsd-coloring ϕ^{\prime}.
(i) If $\phi^{\prime}\left(w u_{1}\right) \neq \phi^{\prime}\left(u u_{2}\right)$ or $\phi^{\prime}\left(w u_{1}\right)=\phi^{\prime}\left(u u_{2}\right) \notin\left\{\phi^{\prime}\left(v v_{1}\right), \phi^{\prime}\left(v v_{2}\right)\right\}$, then we can stick u_{i}, v_{i} together for $i=1,2$ (if necessary, exchange the colors of $v v_{1}$ and $v v_{2}$).
(ii) If $\phi^{\prime}\left(w u_{1}\right)=\phi^{\prime}\left(u u_{2}\right) \in\left\{\phi^{\prime}\left(v v_{1}\right), \phi^{\prime}\left(v v_{2}\right)\right\}$, without loss of generality, suppose that $\phi^{\prime}\left(u u_{2}\right)=\phi^{\prime}\left(v v_{1}\right)$. Exchange the colors of $v v_{1}\left(u u_{2}\right)$ and $u v$. Therefore, we can stick u_{i}, v_{i} together for $i=1,2$. Thus, by recoloring, we can obtain a k-tnsd-coloring ϕ of G, a contradiction.

Figure 1. Illustration of Claim 1.
(3) Suppose to the contrary that G contains configuration F_{3}. We obtain a smaller graph G^{\prime} by splitting v_{i} into $v_{i 1}, v_{i 2}$ for $i=1,3$ (see F_{3}^{\prime} in Figure 1) without producing 5 -cycles. Thus G^{\prime} has a k-tnsd-coloring ϕ^{\prime}.
(i) If $\phi^{\prime}\left(u v_{12}\right) \neq \phi^{\prime}\left(w v_{32}\right)$ or $\phi^{\prime}\left(u v_{12}\right)=\phi^{\prime}\left(w v_{32}\right) \notin\left\{\phi^{\prime}\left(v v_{11}\right), \phi^{\prime}\left(v v_{31}\right)\right\}$, then we can stick $v_{i 1}, v_{i 2}$ together for $i=1,3$ (if necessary, exchange the colors of $v v_{11}$ and $\left.v v_{31}\right)$.
(ii) If $\phi^{\prime}\left(u v_{12}\right)=\phi^{\prime}\left(w v_{32}\right) \in\left\{\phi^{\prime}\left(v v_{11}\right), \phi^{\prime}\left(v v_{31}\right)\right\}$, without loss of generality, suppose that $\phi^{\prime}\left(u v_{12}\right)=\phi^{\prime}\left(v v_{11}\right)$. Then we exchange the colors of $u v_{12}$ and $u v_{2}$. Therefore, we can stick $v_{i 1}, v_{i 2}$ together for $i=1,3$. Thus, by recoloring, we can obtain a k-tnsd-coloring ϕ of G, a contradiction.
(4) Suppose to the contrary that G contains configuration F_{4}. We obtain a smaller graph G^{\prime} by splitting v_{i} into $v_{i 1}, v_{i 2}$ for $i=1,4$ (see F_{4}^{\prime} in Figure 1) without producing 5 -cycles. Thus G^{\prime} admits a k-tnsd-coloring ϕ^{\prime}.
(i) If $\phi^{\prime}\left(u v_{12}\right) \neq \phi^{\prime}\left(z v_{42}\right)$ or $\phi^{\prime}\left(u v_{12}\right)=\phi^{\prime}\left(z v_{42}\right) \notin\left\{\phi^{\prime}\left(v v_{11}\right), \phi^{\prime}\left(v v_{41}\right)\right\}$, then we can stick $v_{i 1}, v_{i 2}$ together for $i=1,4$ (if necessary, exchange the colors of $v v_{11}$ and $v v_{41}$).
(ii) If $\phi^{\prime}\left(u v_{12}\right)=\phi^{\prime}\left(z v_{42}\right) \in\left\{\phi^{\prime}\left(v v_{11}\right), \phi^{\prime}\left(v v_{41}\right)\right\}$, without loss of generality, suppose that $\phi^{\prime}\left(u v_{12}\right)=\phi^{\prime}\left(z v_{42}\right)=\phi^{\prime}\left(v v_{11}\right)$. Since $\phi^{\prime}\left(w v_{2}\right) \neq \phi^{\prime}\left(w v_{3}\right)$, suppose that $\phi^{\prime}\left(w v_{2}\right) \neq \phi^{\prime}\left(u v_{12}\right)$. We exchange the colors of $u v_{12}$ and $u v_{2}$. Therefore, we can stick $v_{i 1}, v_{i 2}$ together for $i=1,4$. Thus, by recoloring, we can obtain a k-tnsd-coloring ϕ of G, a contradiction.

It is easy to see that the following claim given in [16] also holds with the graph G in our proof.
Claim 2 [16]. In the graph G, the following results holds.
(1) Each t^{-}-vertex is not adjacent to any $(7-t)^{-}$-vertex, where $t=4,5$.
(2) For each vertex $v \in V(G)$, if $d_{G}^{1}(v) \geq 1$, then $d_{G}^{2}(v)=0$; if $d_{G}^{1}(v) \geq 2$, then $d_{G}^{3}(v)=0$.
(3) If $d_{G}(v)=5$, then $d_{G}^{3}(v) \leq 1$.
(4) If $d_{G}(v)=6$, then $d_{G}^{3^{-}}(v) \leq 2$. Furthermore, if $d_{G}^{2-}(v) \geq 1$, then $d_{G}^{3-}(v) \leq 1$.
(5) If $d_{G}(v)=7$, then $d_{G}^{2-}(v) \leq 2$. Furthermore, if $d_{G}^{2-}(v) \geq 1$, then $d_{G}^{3-}(v) \leq 2$.
(6) If $d_{G}(v)=l(l \geq 8)$, then $d_{G}^{1}(v)<\left\lceil\frac{l}{2}\right\rceil$.
(7) If $d_{G}(v)=l(l \geq 8)$ and $d_{G}^{2}(v) \geq 1$, then $d_{G}^{2}(v)+d_{G}^{3}(v) \leq l-1$.
(8) Each 3 -face in G is a $\left(2,6^{+}, 6^{+}\right)$-face, a $\left(3,5^{+}, 5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 5^{+}\right)$face.
Claim 3. Each 4 -face in G is a $\left(2,6^{+}, 3^{+}, 6^{+}\right)$-face, a $\left(3,6^{+}, 3,6^{+}\right)$-face, a $\left(3,5^{+}, 4^{+}, 5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face.

Proof. Let $T=v_{1} v_{2} v_{3} v_{4} v_{1}$ be a 4 -face of G, and assume that $d_{G}\left(v_{1}\right) \leq d_{G}\left(v_{i}\right)$, where $i=2,3,4$. If $d_{G}\left(v_{1}\right)=2$, by Claim $2(1), d_{G}\left(v_{2}\right) \geq 6, d_{G}\left(v_{4}\right) \geq 6$. By Claim 1, F_{1} is reducible, thus T is a $\left(2,6^{+}, 3^{+}, 6^{+}\right)$-face. If $d_{G}\left(v_{1}\right)=d_{G}\left(v_{3}\right)=$ 3, by Claim 2(1) and Claim 2(3), $d_{G}\left(v_{2}\right) \geq 6$ and $d_{G}\left(v_{4}\right) \geq 6$, thus T is a $\left(3,6^{+}, 3,6^{+}\right)$-face. If $d_{G}\left(v_{1}\right)=3$ and $d_{G}\left(v_{3}\right) \geq 4$, by Claim $2(1), d_{G}\left(v_{2}\right) \geq 5$ and $d_{G}\left(v_{4}\right) \geq 5$, thus T is a $\left(3,5^{+}, 4^{+}, 5^{+}\right)$-face. If $d_{G}\left(v_{1}\right) \geq 4$ and $d_{G}\left(v_{3}\right) \geq 4$, by Claim 2(1), $d_{G}\left(v_{2}\right) \geq 4$ and $d_{G}\left(v_{4}\right) \geq 4$, thus T is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face.

Let H be the graph obtained from G by removing all 1-vertices. By Claims $1-3$, we have the following facts.
Fact 1. For the graph H, we have $\delta(H) \geq 2 ; d_{H}(v)=d_{G}(v)$, for $2 \leq d_{G}(v) \leq 5$. If $d_{G}(v) \geq 6$, then $d_{H}(v) \geq 5$.

Fact 2.

(1) In the graph H, each 3^{-}-vertex is not adjacent to any 4^{-}-vertex.
(2) If $d_{H}(v)=5$, then $d_{H}^{2}(v)=0$ and $d_{H}^{3}(v) \leq 1$.
(3) If $d_{H}(v)=6$, then $d_{H}^{2}(v) \leq 1$; furthermore, if $d_{H}^{2}(v)=1$, then $d_{H}^{3}(v)=0$; if $d_{H}^{2}(v)=0$, then $d_{H}^{3}(v) \leq 2$.
(4) If $d_{H}(v)=7$, then $d_{H}^{2}(v) \leq 2$; furthermore, if $d_{H}^{2}(v)=2$, then $d_{H}^{3}(v)=0$; if $d_{H}^{2}(v)=1$, then $d_{H}^{3}(v) \leq 1$.
(5) If $d_{H}(v)=l(l \geq 8)$, then $d_{H}^{2}(v) \leq l-1$.

Fact 3.

(1) Each 3 -face in H is a $\left(2,6^{+}, 6^{+}\right)$-face, a $\left(3,5^{+}, 5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 5^{+}\right)$-face.
(2) Each 4 -face in H is a $\left(2,6^{+}, 3^{+}, 6^{+}\right)$-face, a $\left(3,6^{+}, 3,6^{+}\right)$-face, a $\left(3,5^{+}, 4^{+}\right.$, $\left.5^{+}\right)$-face or a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face.
A $\left(2,6^{+}, 6^{+}\right)$-face or a $\left(3,5^{+}, 5^{+}\right)$-face is called a bad 3 -face. A $\left(4^{+}, 5^{+}, 5^{+}\right)$face is called a normal 3 -face. A $\left(2,6^{+}, 3,6^{+}\right)$-face or a $\left(3,6^{+}, 3,6^{+}\right)$-face is called a bad 4-face, and other 4-face is a normal 4-face. We use $n_{i}^{\prime}(v), n_{i}^{\prime \prime}(v)$ to denote the number of bad i-faces and the number of normal i-faces incident with v in H, respectively, $i=3,4$.

Since G has no 5 -cycles, we have the following fact.
Fact 4. These configurations are reducible to H :
(1) a 5-face,
(2) a 3 -face adjacent to two 3 -faces,
(3) a 3 -face adjacent to a 4 -face, and they are sharing only one edge.

By Fact 4, we have the following fact.
Fact 5. If $d_{H}(v)=l$ and $n_{H}^{3}(v)>0$, then $n_{H}^{3}(v)+n_{H}^{4}(v) \leq l-2$.
By Euler's formula, we have

$$
\sum_{v \in V(H)}\left(2 d_{H}(v)-6\right)+\sum_{f \in F(H)}\left(d_{H}(f)-6\right)=-12
$$

We will use the discharging method to obtain a contradiction. First, we give an initial charge function: $w(v)=2 d_{H}(v)-6$ for each $v \in V(H) ; w(f)=d_{H}(f)-6$ for each $f \in F(H)$. Next, we will design some discharging rules. Let w^{\prime} be the new charge after the discharging process. It suffices to show that $w^{\prime}(x) \geq 0$ for each $x \in V(H) \cup F(H)$, which leads to a contradiction.

In the following, a k-face means a k-face in H, the discharging rules are defined as follows.

R1 Every 2-vertex v in H takes 1 from each neighbor.
R2 Every 4-vertex v in H gives 1 to each incident 3-face, gives $\frac{1}{2}$ to each incident 4-face.

R3 Every 5^{+}-vertex v in H gives $\frac{3}{2}$ to each incident bad 3-face, gives 1 to each incident normal 3-face.

R4 Every 5^{+}-vertex v in H gives 1 to each incident bad 4 -face, gives $\frac{3}{4}$ to each incident normal 4 -face.

We will verify the new charge of each $x \in V(H) \cup F(H)$. In the following, we use $d(v), d_{i}(v), n_{i}(v)$ and $d(f)$ to denote $d_{H}(v), d_{H}^{i}(v), n_{H}^{i}(v)$ and $d_{H}(f)$, respectively. We first consider the new charge of each $f \in F(H)$.

- $d(f)=3$. If f is a bad 3 -face, by R3, $w^{\prime}(f)=3-6+\frac{3}{2} \cdot 2=0$; otherwise, by R2 and R3, $w^{\prime}(f)=3-6+1 \cdot 3=0$.
- $d(f)=4$. If f is a bad 4-face, by R4, $w^{\prime}(f)=4-6+1 \cdot 2=0$. If f is a $\left(2,6^{+}, 4^{+}, 6^{+}\right)$-face or a $\left(3,5^{+}, 4^{+}, 5^{+}\right)$-face, by R2 and R4, $w^{\prime}(f) \geq 4-6+\frac{3}{4} \cdot 2+$ $\frac{1}{2}=0$. If f is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face, by R2 and R4, $w^{\prime}(f) \geq 4-6+\frac{1}{2} \cdot 4=0$.
- $d(f)=t(t \geq 6) . w^{\prime}(f)=w(f)=t-6 \geq 0$.

Next we will consider the new charge of each $v \in V(H)$.

- $d(v)=2$. By R1, $w^{\prime}(v)=2 \cdot 2-6+1 \cdot 2=0$.
- $d(v)=3$. No rule applies to $v, w^{\prime}(v)=2 \cdot 3-6=0$.
- $d(v)=4$. By Fact $2(1), d_{2}(v)=d_{3}(v)=0$. If $n_{3}(v)=0$, by R2, $w^{\prime}(v)=$ $2 \cdot 4-6-\frac{1}{2} \cdot n_{4}(v) \geq 2-\frac{1}{2} \cdot 4=0$. If $n_{3}(v)>0$, by Fact $5, n_{3}(v)+n_{4}(v) \leq 2$. By R2, $w^{\prime}(v)=2 \cdot 4-6-1 \cdot n_{3}(v)-\frac{1}{2} \cdot n_{4}(v) \geq 2-1 \cdot 2=0$.
- $d(v)=5$. By Fact $2(2), d_{2}(v)=0, d_{3}(v) \leq 1$, so we have $n_{3}^{\prime}(v) \leq 2$ and $n_{4}^{\prime}(v)=0$. If $n_{3}(v)=0$, by R4, $w^{\prime}(v)=2 \cdot 5-6-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 4-\frac{3}{4} \cdot 5=\frac{1}{4}>0$. If $n_{3}(v)>0$, by Fact $5, n_{3}(v)+n_{4}^{\prime \prime}(v) \leq 3$. By R3 and R4, $w^{\prime}(v)=2 \cdot 5-6-\frac{3}{2}$. $n_{3}^{\prime}(v)-1 \cdot n_{3}^{\prime \prime}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 4-\frac{3}{2} \cdot 2-1=0$.
- $d(v)=6$. By Fact $2(3), d_{2}(v) \leq 1$.
(a) $d_{2}(v)=1$. By Fact $2(3), d_{3}(v)=0$, so we have $n_{3}^{\prime}(v) \leq 1$ and $n_{4}^{\prime}(v)=0$. If $n_{3}(v)=0$, by R1 and R4, $w^{\prime}(v)=2 \cdot 6-6-d_{2}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 6-1-\frac{3}{4} \cdot 6=$ $\frac{1}{2}>0$. If $n_{3}(v)>0$, by Fact $5, n_{3}(v)+n_{4}^{\prime \prime}(v) \leq 4$. By R1, R3 and R4, $w^{\prime}(v)=2 \cdot 6-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}^{\prime}(v)-1 \cdot n_{3}^{\prime \prime}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 6-1-\frac{3}{2} \cdot 1-1 \cdot 3=\frac{1}{2}>0$.
(b) $d_{2}(v)=0$. If $n_{3}(v)=0$, by R4, $w^{\prime}(v) \geq 2 \cdot 6-6-1 \cdot n_{4}(v) \geq 6-1 \cdot 6=0$. If $n_{3}(v)>0$, by Fact 5, $n_{3}(v)+n_{4}(v) \leq 4$. By R3 and R4, $w^{\prime}(v) \geq 2 \cdot 6-6-\frac{3}{2}$. $n_{3}(v)-1 \cdot n_{4}(v) \geq 6-\frac{3}{2} \cdot 4=0$.
- $d(v)=7$. By Fact $2(4), d_{2}(v) \leq 2$.
(a) $d_{2}(v)=2$. By Fact $2(4), d_{3}(v)=0$. By Claim $1, F_{1}$ and F_{2} are reducible, so we have $n_{3}^{\prime}(v)=n_{4}^{\prime}(v)=0$. If $n_{3}(v)=0$, by R1 and R4, $w^{\prime}(v)=2$. $7-6-d_{2}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 8-2-\frac{3}{4} \cdot 7=\frac{3}{4}>0$. If $n_{3}(v)>0$, by Fact $5, n_{3}(v)+n_{4}(v) \leq 5$. Noting that $n_{3}^{\prime}(v)=n_{4}^{\prime}(v)=0$, By R1, R3 and R4, $w^{\prime}(v)=2 \cdot 7-6-d_{2}(v)-1 \cdot n_{3}^{\prime \prime}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 8-2-1 \cdot 5>0$.
(b) $d_{2}(v) \leq 1$. If $n_{3}(v)=0$, by R1 and R4, $w^{\prime}(v) \geq 2 \cdot 7-6-d_{2}(v)-1 \cdot n_{4}(v) \geq$ $8-1-1 \cdot 7=0$. If $n_{3}(v)>0$, by Fact 4 and Fact 5, $n_{3}(v) \leq 4$ and $n_{3}(v)+n_{4}(v) \leq 5$. By R1, R3 and R4, $w^{\prime}(v) \geq 2 \cdot 7-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-1 \cdot n_{4}(v) \geq 8-1-\frac{3}{2} \cdot 4-1=0$.
- $d(v)=l(l \geq 8)$, by Fact $2(5), d_{2}(v) \leq l-1$.
(a) $d_{2}(v)=l-1$. By Claim $1, F_{1}$ and F_{2} are reducible, so we have $n_{3}(v)=0$ and $n_{4}(v) \leq 2$. By R1 and $\mathrm{R} 4, w^{\prime}(v) \geq 2 l-6-d_{2}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-$ 1) $-1 \cdot 2=l-7>0$.
(b) $d_{2}(v)=l-2$.
(b1) $n_{3}(v)=0$. By Claim 1, F_{1} is reducible, so we have $n_{4}(v) \leq 4$. By R1 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-2)-4=l-8 \geq 0$.
(b2) $n_{3}(v)>0$. By Claim $1, F_{1}$ and F_{2} are reducible, and by Fact 4 , we have $n_{3}(v)=1$ and $n_{4}(v)=0$. By R1 and R3, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v) \geq$ $2 l-6-(l-2)-\frac{3}{2}=l-\frac{11}{2}>0$.
(c) $d_{2}(v)=l-3$.
(c1) $n_{3}(v)=0$. By Claim 1, F_{1} is reducible, so we have $n_{4}(v) \leq 6$.
If $n_{4}(v)=6$, by Claim $1, F_{3}$ is reducible, so we have $n_{4}^{\prime}(v)=0$. By R1 and $\mathrm{R} 4, w^{\prime}(v)=2 l-6-d_{2}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v)=2 l-6-(l-3)-\frac{3}{4} \cdot 6=l-\frac{15}{2}>0$.

If $n_{4}(v) \leq 5$, by R1 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-$ $3)-1 \cdot 5=l-8 \geq 0$.
(c2) $n_{3}(v)>0$. By Claim 1, F_{2} is reducible, so we have $n_{3}(v) \leq 2$. By Claim $1, F_{1}$ is reducible, and by Fact 4 , we have $n_{4}(v) \leq 2$. By R1, R3 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-3)-\frac{3}{2} \cdot 2-2=l-8 \geq 0$.
(d) $d_{2}(v)=l-4$.
$(\mathrm{d} 1) n_{3}(v)=0$. By Claim $1, F_{1}$ is reducible, so we have $n_{4}(v) \leq 8$.
$n_{4}(v)=i(i=7,8)$. By Claim 1, F_{3} is reducible, so we have $n_{4}^{\prime}(v) \leq 8-i$. By R1 and R4, $w^{\prime}(v)=2 l-6-d_{2}(v)-1 \cdot n_{4}^{\prime}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 2 l-6-(l-4)-$ $1 \cdot(8-i)-\frac{3}{4} \cdot(i-(8-i))=l-4-\frac{i}{2} \geq 0$.
$n_{4}(v) \leq 6$. By R1 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-$ 4) $-1 \cdot 6=l-8 \geq 0$.
$(\mathrm{d} 2) n_{3}(v)>0$. By Claim $1, F_{2}$ is reducible, so each 2-neighbor of v is not incident with a 3 -face. And note that each 3 -face is not adjacent to two 3 -faces, so we have $n_{3}(v) \leq 2$.
$n_{3}(v)=i(i=1,2)$. By Claim $1, F_{1}$ and F_{2} are reducible, and note that each 3 -face is not adjacent to a 4 -face, we have $n_{4}(v) \leq 6-2 i$. By R1, R3 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-4)-\frac{3}{2} \cdot i-1 \cdot(6-2 i)=$ $l-8+\frac{i}{2}>0$.
(e) $d_{2}(v)=l-5$.
(e1) $n_{3}(v)=0$. If $n_{4}(v) \leq l-1$, by R1 and $\mathrm{R} 4, w^{\prime}(v) \geq 2 l-6-d_{2}(v)-1$. $n_{4}(v) \geq 2 l-6-(l-5)-1 \cdot(l-1)=0$. Now suppose that $n_{4}(v)=l$. By Claim $1, F_{1}$ is reducible, so we have $d_{2}(v) \leq\left\lfloor\frac{l}{2}\right\rfloor$. Noting that $d_{2}(v)=l-5$, we have $8 \leq l \leq 10$. By Claim $1, F_{1}, F_{3}$ and F_{4} are reducible, so we have $n_{4}^{\prime}(v) \leq 4$. By R1 and R $4, w^{\prime}(v)=2 l-6-d_{2}(v)-1 \cdot n_{4}^{\prime}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq 2 l-6-(l-5)-1 \cdot 4-\frac{3}{4} \cdot(l-4)=$ $\frac{l}{4}-2 \geq 0$.
$(\mathrm{e} 2) n_{3}(v)>0$. By Claim $1, F_{2}$ is reducible, and by Fact 4 , we have $n_{3}(v) \leq 3$
$n_{3}(v)=3$. By Claim 1, F_{1} is reducible, and by Fact 4, we have $n_{4}(v)=0$. By R 1 and $\mathrm{R} 3, w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v) \geq 2 l-6-(l-5)-\frac{3}{2} \cdot 3=l-\frac{11}{2}>0$. $n_{3}(v)=i(i=1,2)$. By Claim 1, F_{1} is reducible, and by Fact 4, we have $n_{4}(v) \leq 8-2 i$. By Claim 1, F_{3} is reducible. So if $n_{4}(v)=8-2 i$, we have $n_{4}^{\prime}(v)=0$. By R1, R3 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-\frac{3}{4} \cdot n_{4}^{\prime \prime}(v) \geq$ $2 l-6-(l-5)-\frac{3}{2} \cdot i-\frac{3}{4} \cdot(8-2 i)=l-7>0$. If $n_{4}(v) \leq 7-2 i$, by R1, R 3 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-1 \cdot n_{4}(v) \geq 2 l-6-(l-5)-\frac{3}{2} \cdot i-1 \cdot(7-2 i)=$ $l+\frac{i}{2}-8>0$.
(f) $d_{2}(v) \leq l-6$. Set $t=\left\lceil\frac{2\left(l-d_{2}(v)-1\right)}{3}\right\rceil$. By Claim $1, F_{2}$ is reducible, and by Fact 4, we have $n_{3}(v) \leq t, n_{4}(v) \leq l$ and if $n_{3}(v)>0$, then $n_{3}(v)+n_{4}(v) \leq l-2$.
(f1) $n_{3}(v)=0$, by R1 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-l \geq 2 l-6-(l-6)-l=0$.
$(f 2) n_{3}(v)>0$, by R1, R3 and R4, $w^{\prime}(v) \geq 2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-n_{4}(v) \geq$ $2 l-6-d_{2}(v)-\frac{3}{2} \cdot n_{3}(v)-\left(l-2-n_{3}(v)\right) \geq l-4-d_{2}(v)-\frac{1}{2} \cdot t=l-4-d_{2}(v)-$ $\frac{1}{2}\left\lceil\frac{2\left(l-d_{2}(v)-1\right)}{3}\right\rceil \geq 0$.

Now we get that for each $x \in V(H) \cup F(H), w^{\prime}(x) \geq 0$, which is a contradiction. This completes the proof of Theorem 3.

3. The Proof of Theorem 4

The proof of Theorem 4 is almost the same as the proof of Theorem 3 except for some details. Let G be a minimum counterexample to Theorem 4 which is embedded in the plane. Set $k=\max \{\Delta(G)+1,10\}$. By the choice of G, any planar graph G^{\prime} without 5 -cycles and without adjacent $\Delta(G)$-vertices which is smaller than G has a k-tnsd-coloring ϕ^{\prime}. Similarly, we will choose some G^{\prime} and extend the coloring ϕ^{\prime} of G^{\prime} to a desired coloring ϕ of G to get a contradiction. It is easy to see that all the claims in the proof of Theorem 3 except for Claim 2(6) and Claim 2(7) also hold here. The proof of Claim 2(6) and Claim 2(7) can be seen in [5]. The rest of the proof including the discharging method is the same as the proof of Theorem 3.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, NewYork-Amsterdam-Oxford, 1982).
[2] X. Cheng, D. Huang, G. Wang and J. Wu, Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ, Discrete Appl. Math. 190-191 (2015) 34-41. doi:10.1016/j.dam.2015.03.013
[3] A. Dong and G. Wang, Neighbor sum distinguising total colorings of graphs with bounded maximum average degree, Acta Math. Sin. (Engl. Ser.) 30 (2014) 703-709. doi:10.1007/s10114-014-2454-7
[4] L. Ding, G. Wang and G. Yan, Neighbor sum distinguising total colorings via the Combinatorial Nullstellensatz, Sci. China Math. 57 (2014) 1875-1882. doi:10.1007/s11425-014-4796-0
[5] S. Ge, J. Li and C. Xu, Neighbor sum distinguishing total chromatic number of planar graphs without 4-cycles, Util. Math. 105 (2017) 259-265.
[6] S. Ge, J. Li and C. Xu, Neighbor sum distinguishing total coloring of planar graphs without 5-cycles, Theoret. Comput. Sci. 689 (2017) 169-175. doi:10.1016/j.tcs.2017.05.037
[7] H. Li, L. Ding, B. Liu and G. Wang, Neighbor sum distinguishing total colorings of planar graphs, J. Comb. Optim. 30 (2015) 675-688. doi:10.1007/s10878-013-9660-6
[8] J. Li, S. Ge and C. Xu, Neighbor sum distinguishing total colorings of planar graphs with girth at least 5, Util. Math. 104 (2017) 115-121.
[9] H. Li, B. Liu and G. Wang, Neighbor sum distinguishing total colorings of K_{4}-minor free graphs, Front. Math. China 8 (2013) 1351-1366. doi:10.1007/s11464-013-0322-x
[10] Q. Ma, J. Wang and H. Zhao, Neighbor sum distinguishing total colorings of planar graphs without short cycles, Util. Math. 98 (2015) 349-359.
[11] M. Pilśniak and M. Woźniak, On the total-neighbor-distinguishing index by sums, Graphs Combin. 31 (2015) 771-782.
doi:10.1007/s00373-013-1399-4
[12] C. Qu, G. Wang, J. Wu and X. Yu, On the neighbor sum distinguishing total coloring of planar graphs, Theoret. Comput. Sci. 609 (2016) 162-170. doi:10.1016/j.tcs.2015.09.017
[13] C. Qu, G. Wang, G. Yan and X. Yu, Neighbor sum distinguishing total choosability of planar graphs, J. Comb. Optim. 32 (2016) 906-916. doi:10.1007/s10878-015-9911-9
[14] H. Song, W. Pan, X. Gong and C. Xu, A note on the neighbor sum distinguishing total coloring of planar graphs, Theoret. Comput. Sci. 640 (2016) 125-129. doi:10.1016/j.tcs.2016.06.007
[15] H. Song and C. Xu, Neighbor sum distinguishing total chromatic number of $K_{4}-$ minor free graph, Front. Math. China 12 (2017) 937-947. doi:10.1007/s11464-017-0649-9
[16] H. Song and C. Xu, Neighbor sum distinguishing total coloring of planar graphs without 4-cycles, J. Comb. Optim. 34 (2017) 1147-1158. doi:10.1007/s10878-017-0137-x
[17] J. Wang, J. Cai and Q. Ma, Neighbor sum distinguishing total choosability of planar graphs without 4-cycles, Discrete Appl. Math. 206 (2016) 215-219.
doi:10.1016/j.dam.2016.02.003
[18] J. Wang, J. Cai and B. Qiu, Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles, Theoret. Comput. Sci. 661 (2017) 1-7. doi:10.1016/j.tcs.2016.11.003
[19] J. Wang, Q. Ma and X. Han, Neighbor sum distinguishing total colorings of triangle free planar graphs, Acta Math. Sin. (Engl. Ser.) 31 (2015) 216-224. doi:10.1007/s10114-015-4114-y
[20] D. Yang, X. Yu, L. Sun, J. Wu and S. Zhou, Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10, Appl. Math. Comput. 314 (2017) 456-468. doi:10.1016/j.amc.2017.06.002
[21] J. Yao, X. Yu, G. Wang and C. Xu, Neighbor sum distinguishing total coloring of 2-degenerate graphs, J. Comb. Optim. 34 (2017) 64-70.
doi:10.1007/s10878-016-0053-5
[22] J. Yao, X. Yu, G. Wang and C. Xu, Neighbor sum (set) distinguishing total choosability of d-degenerate graphs, Graphs Combin. 32 (2016) 1611-1620.
doi:10.1007/s00373-015-1646-y

[^0]: ${ }^{1}$ This work was supported by NSFC (No.11671232), HNSF(No.A2015202301) and HU STP (No.ZD2015106, QN2017044).
 ${ }^{2}$ Corresponding author.

