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Abstract

A graph G is locally-connected if the neighbourhood NG(v) induces a
connected subgraph for each vertex v in G. For a graph G, the deficiency of
G is the number of vertices unsaturated by a maximum matching, denoted
by def(G). In fact, the deficiency of a graph measures how far a maximum
matching is from being perfect matching. Saito and Xiong have studied
subgraphs, the absence of which forces a connected and locally-connected
graph G of sufficiently large order to satisfy def(G) ≤ 1. In this paper,
we extend this result to the condition of def(G) ≤ k, where k is a positive
integer. Let β0 =

⌈

1

2
(3 +

√
8k + 17)

⌉

−1, we show that K1,2,K1,3, . . . ,K1,β0
,

K3 or K2∨2K1 is the required forbidden subgraph. Furthermore, we obtain
some similar results about 3-connected, locally-connected graphs.

Keywords: deficiency, locally-connected graph, matching, forbidden sub-
graph.
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1. Introduction

All graphs considered in this paper are finite undirected graphs without loops and
multiple edges. Let V (G) and E(G) denote the vertex set and edge set of a graph
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G, respectively. For a vertex v ∈ V (G), the setNG(v) =
{

u ∈ V (G) : uv ∈ E(G)
}

is called the neighborhood of v in G; the closed neighborhood of v is the set
NG[v] = NG(v)∪{v}. For S ⊆ V (G), G[S] denotes the subgraph induced by S in
G. A vertex v in a graphG is said to be locally-connected ifG[NG(v)] is connected.
If every vertex v of G is locally-connected, we say that G is locally-connected.

For a graph G, we use α(G) to denote the independence number of G, and
use nG to denote the union of n disjoint copies of G. For graphs G1 and G2,
we denote the join of G1 and G2 by G1 ∨ G2, and the union of G1 and G2 by
G1 ∪ G2. For any real number x0, we use ⌈x0⌉ to denote the smallest integer
that is greater than or equal to x0, and ⌊x0⌋ to denote the greatest integer that
is less than or equal to x0. For a given graph H, a graph G is called H-free

if G has no induced subgraph isomorphic to H. We say that H is forbidden in
G if G is H-free. The bipartite graph K1,n is called a star, and the star K1,3

is commonly called a claw. The claw-free graphs have a striking effect in the
study of local connectivity and Hamiltonian properties. Oberly and Sumner [9]
proved that every connected and locally-connected claw-free graph of order at
least three is Hamiltonian. For additional remarks on claw-free graphs and their
properties, we refer the readers to see the survey [6]. Brause et al. [3] studied cycle
extendability of connected, locally-connected graphs defined by several classes of
forbidden subgraphs. Let G be a connected, locally-connected graph of order at
least three. If G is

(

K1∨ (K2 ∪K3)
)

-free, then G is weakly pancyclic, i.e., G has
a cycle of order t for every integer t between the girth and circumference of G. If
G is

{

K1 ∨K1 ∨K3,K1 ∨P4

}

-free or
{

K1 ∨K1 ∨K3,K1 ∨ (K1 ∪ P3)
}

-free, then
G is fully cycle extendable, i.e., every vertex of G lies on a triangle, and every
cycle in G of order less than

∣

∣V (G)
∣

∣ is extendable.

A subset M of E(G) is called a matching in G if its elements are edges and
no two are adjacent in G. A matching M saturates a vertex v, and v is said to be
M-saturated, if some edge of M is incident with v; otherwise, v is M-unsaturated.
M is called a maximum matching if G has no matching M ′ with |M ′| > |M |.
If every vertex of G is M -saturated, the matching M is called perfect matching.
Now we introduce a parameter which measures how far a maximum matching is
from being perfect matching. For a graph G, the deficiency of G is the number
of vertices unsaturated by a maximum matching, denoted by def(G). It means
def(G) = n − 2m(G), where n =

∣

∣V (G)
∣

∣ and m(G) is the size of any maximum
matching in G. Thus, G has a perfect matching if and only if def(G) = 0. If
def(G) = 1, we say that G has a near-perfect matching. For a graph G and
S ⊆ V (G), we denote by wo(G−S) the number of the odd components of G−S,
and Berge’s Formula says def(G) = maxS⊆V (G)

(

wo (G− S)− |S|
)

. Las Vergnas
[8] in 1975 and Sumner [13] in 1976 independently proved the first well-known
result about deficiency in claw-free graphs of even order. In 1985, Jünger et al.

[7] proved the parallel result for odd graphs. We obtain the following theorem by
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combining these two results.

Theorem 1 [7, 8, 13]. Every connected claw-free graph G of even (respectively,
odd) order contains a perfect (respectively, near-perfect) matching, i.e., satisfying

def(G) = 0 (respectively, def(G) = 1).

In 2005, Plummer and Saito [10] proved that the forbidden subgraph which
forces a connected graph G of sufficiently large order to satisfy def(G) ≤ 1 is K1,2

or K1,3. And they proved the following theorem.

Theorem 2 [10]. Let k be a positive integer, and let H be a connected graph of

order at least 3. Suppose there exist real constants α, β with 0 ≤ α < 1 and a

positive integer p0 such that every k-connected H-free graph G of order greater

than p0 satisfies def(G) ≤ α|V (G)|+ β. Then,

(1) if k ≥ 2, then H = K1,n for some n, where 2 ≤ n ≤ 1 +
(

1+α
1−α

)

k, and

(2) if k = 1, then H = K1,n for some n, where 2 ≤ n ≤ 3−α
1−α

.

In 2016, Saito and Xiong [12] considered what forbidden subgraph forces a
connected, locally-connected graphG of sufficiently large order to satisfy def(G)≤
1, and proved that K1,2, K1,3, K3 or K2 ∨ 2K1 does.

Theorem 3 [12]. Let H be a connected graph of order at least 3. If there exists a

positive integer p0 such that every connected and locally-connected H-free graph

G of order at least p0 satisfies def(G) ≤ 1, then H is isomorphic to K1,2, K1,3,

K3 or K2 ∨ 2K1.

A natural question is whether we can change the value of the deficiency
in Theorem 3 and get some results about the forbidden subgraph H. We first
consider the same problem with def(G) ≤ 4 and prove that H is isomorphic to
K1,2, K1,3, K1,4, K3 or K2∨2K1. In fact, when def(G) ≤ 2 or 3, we also can show
that H is isomorphic to K1,2, K1,3, K1,4, K3 or K2 ∨ 2K1. Then we generalize
the result and prove Theorem 5. Theorems 3 and 4 will follow as corollaries.

Theorem 4. Let H be a connected graph of order at least 3. If there exists a

positive integer p0 such that every connected and locally-connected H-free graph

G of order at least p0 satisfies def(G) ≤ 4, then H is isomorphic to K1,2, K1,3,

K1,4, K3 or K2 ∨ 2K1.

Theorem 5. Let H be a connected graph of order at least 3. If there exists a

positive integer p0 and k such that every connected, locally-connected H-free graph

G of order at least p0 satisfies def(G) ≤ k, then H is isomorphic to K1,2, K1,3,

. . . , K1,β0
, K3 or K2 ∨ 2K1, where β0 =

⌈

1
2

(

3 +
√
8k + 17

)⌉

− 1.
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Note that every 2-connected, locally-connected graph obviously is a con-
nected, locally-connected graph, and every connected, locally-connected graph
is 2-connected. Hence, the results remain true if we change the condition of
connected, locally-connected graph G to 2-connected, locally-connected graph in
Theorems 4 and 5. Our other result is about 3-connected, locally-connected
graphs. Namely, we prove the following. If every 3-connected and locally-
connected H-free graph G of sufficiently large order satisfies def(G) ≤ 4, then
we have H ∈

{

K1,2,K1,3,K1,4,K1,5,K1,6,K3,K2 ∨ 2K1,K2 ∨ 3K1

}

. Let a be an
integer with a > 4, such that k = 1

6

(

a3 − 3a2 − 4a− 6
)

is a positive integer. If
every 3-connected and locally-connected H-free graph G of sufficiently large or-
der satisfies def(G) ≤ k, then we get H ∈

{

K1,2,K1,3, . . . ,K1, 1
2
(a2−3a+2),K3,K2∨

2K1, . . . ,K2 ∨ (a− 2)K1

}

.
We use [2] for terminology and notation not defined here. In Section 2, we

prove Theorems 4 and 5, and then we will discuss the trivial and nontrivial cases
of the forbidden subgraphs in Theorem 5. In Section 3, we study the relation-
ship between the forbidden subgraphs and deficiency in the class of 3-connected,
locally-connected graphs. In Section 4, we close this paper by mentioning some
related problems.

2. Proofs of Theorems 4 and 5

Proof of Theorem 4. Using the integer p0 in the statement of theorem, we
set n = max

{

2p0 + 1, 7
}

. Note that n is an odd number. Let G1 be a graph
isomorphic to K2 ∨ nK1. Then G1 is a connected and locally-connected graph
of order greater than p0. On the other hand, since n ≥ 7, def(G1) = n − 2 ≥
5. Therefore, G1 is not H-free and it contains an induced subgraph which is
isomorphic to H. Since H is a connected graph of order at least three, H ∼= K1,m

or H ∼= K2 ∨mK1 for some positive integer m (see Figure 1).

u u w

1 2 1
G K nK= ∨

2 1
K mK∨

1,m
K

na2
a

1
a mv mv1

v
1
v

2
v

2
v

2
b

1
b

Figure 1. Graphs G1, K1,m and K2 ∨mK1.

For an integer t with t ≥ 2, let A1, A2, A3 and A4 be 4 disjoint copies of
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Kt+1. Then choose one vertex ai in Ai, 1 ≤ i ≤ 4, and add edges a1a2, a1a3, a1a4,
a2a3, a2a4 and a3a4. Let A(t + 1) be the resulting graph (see Figure 2). Note
that A(t+ 1) is a connected graph with independence number α

(

A(t+ 1)
)

= 4.

1
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Figure 2. Graph A(t+ 1) in the proof of Theorem 4.

Let B0 be a copy of K5 with V (B0) = {v1, v2, . . . , v5}. For each i, j with
1 ≤ i < j ≤ 5, we introduce a new graph Bi,j which is a copy of Kn. Then add
edges

{

vix, vjx : 1 ≤ i < j ≤ 5, x ∈ V (Bi,j)
}

. Let B be the resulting graph. Note
that B is a connected graph of order greater than p0.

For v ∈ V (B), let Bv be the subgraph of B induced by NB(v). If v ∈ V
(

Bi,j

)

for some i, j with 1 ≤ i < j ≤ 5, then Bv
∼= Kn+1. If v = vi for some

i with 1 ≤ i ≤ 5, then NB(vi) =
⋃

j∈J V
(

Bi,j

)

∪
{

vj : j ∈ J
}

, where J =
{1, 2, 3, 4, 5}\{i}, and Bv

∼= A(n+1). Therefore, B is a locally-connected graph.
Since B−

{

v1, v2, v3, v4, v5
}

has 10 odd components, def(B) ≥ 5. Therefore, B is
not H-free and it contains an induced subgraph H which is isomorphic to K1,m

or K2 ∨mK1 for some positive integer m. Since α(Bv) ≤ 4 for every v ∈ V (B),
we have m ≤ 4. Therefore, H is one of K1,2, K1,3, K1,4, K3, K2 ∨ 2K1, K2 ∨ 3K1

and K2 ∨ 4K1.

AssumeH ∼= K2∨3K1. ThenH contains three independent vertices u1, u2, u3
which have two common neighbors w1 and w2. Since NB(w1) and NB(w2) have
three independent vertices, {w1, w2} ⊂ {v1, v2, . . . , v5}. By symmetry, we may
assume w1 = v1, w2 = v2. However, NB(v1) ∩ NB(v2) = {v3, v4, v5} ∪ V (B1,2),
which does not contain three independent vertices. This is a contradiction and
henceH is not isomorphic toK2∨3K1. Similarly,H is not isomorphic toK2∨4K1.

In the following, we give an example of Theorem 4. Let G′ be a copy of com-
plete graph K4 with vertices v1, v2, v3 and v4. For each i, j with 1 ≤ i < j ≤ 4, let

Gi,j be a copy of complete graphK2p0+1 with V
(

Gi,j

)

=
{

v
(i,j)
1 , v

(i,j)
2 , . . . , v

(i,j)
2p0+1

}

.

Then add edges
{

viv
(i,j)
t , vjv

(i,j)
t : 1 ≤ t ≤ 2p0 + 1, 1 ≤ i < j ≤ 4

}

. Let G∗ be the

resulting graph (see Figure 3). Note that G∗ is a connected, locally-connected
graph of order greater than p0. On the one hand, since G∗ −{v1, v2, v3, v4} has 6
odd components, we get def(G∗) ≥ 6− 4 = 2 by Berge’s Formula. On the other
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hand, we can find a matching in G∗.

M =
{

v
(1,2)
1 v

(1,2)
2 , v

(1,2)
3 v

(1,2)
4 , . . . , v

(1,2)
2p0−1v

(1,2)
2p0

,

v
(1,3)
1 v

(1,3)
2 , v

(1,3)
3 v

(1,3)
4 , . . . , v

(1,3)
2p0−1v

(1,3)
2p0

,

· · · · · ·
v
(3,4)
1 v

(3,4)
2 , v

(3,4)
3 v

(3,4)
4 , . . . , v

(3,4)
2p0−1v

(3,4)
2p0

,

v
(1,2)
2p0+1v1, v

(1,3)
2p0+1v3, v

(1,4)
2p0+1v4, v

(2,3)
2p0+1v2

}

1
v

2
v

3
v

4
v

1,2
G

1,4
G

1,3
G

2,3
G

2,4
G

3,4
G

Figure 3. The graph G∗ when p0 = 1.

Note that the vertices unsaturated byM are v
(2,4)
2p0+1 and v

(3,4)
2p0+1, hence def(G

∗)
≤ 2. Therefore, we have def(G∗) = 2 ≤ 4. It is easy to see that G∗ is K1,4-free,
and G∗ is not K1,2-free, K1,3-free, K3-free and

(

K2 ∨ 2K1

)

-free. Therefore, G∗

is a connected, locally-connected H-free graph of order greater than p0 satisfies
def(G) ≤ 4, where H is isomorphic to K1,4.

Proof of Theorem 5. Case 1. k is an odd number. We set n = max
{

2p0, k +
3
}

. Note that n is an even number. Let G1 be a graph isomorphic to K2 ∨ nK1.
Then G1 is a connected, locally-connected graph of order greater than p0. On
the other hand, since n ≥ k + 3, def(G1) = n − 2 ≥ k + 1. Therefore, G1 is not
H-free and hence H is an induced subgraph of K2 ∨ nK1. Since

∣

∣V (H)
∣

∣ ≥ 3,
H ∼= K1,m or H ∼= K2 ∨mK1 for some positive integer m.

For an integer t with t ≥ 2, let A1, A2, A3, . . . , Aβ0
be β0 disjoint copies

of Kt, where β0 =
⌈

1
2

(

3 +
√
8k + 17

) ⌉

− 1. Then choose one vertex ai in Ai,
1 ≤ i ≤ β0, and add edges aiaj , 1 ≤ i < j ≤ β0. Let A(t) be the resulting graph.
Note that A(t) is a connected graph with independence number α

(

A(t)
)

= β0.
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Let B0 be a copy of Kβ0+1 with V (B0) =
{

v1, v2, . . . , vβ0+1

}

. For each i, j
with 1 ≤ i < j ≤ β0 + 1, we introduce a new graph Bi,j that is a copy of Kn+1.
Then add edges

{

vix, vjx : 1 ≤ i < j ≤ β0 + 1, x ∈ V (Bi,j)
}

. Let B be the
resulting graph. Note that B is a connected graph of order greater than p0.

For v ∈ V (B), let Bv be the subgraph of B induced by NB(v). If v ∈ V (Bi,j)
for some i, j with 1 ≤ i < j ≤ β0 + 1, then Bv

∼= Kn+2. If v = vi for some
i with 1 ≤ i ≤ β0 + 1, then NB

(

vi
)

=
⋃

j∈J V
(

Bi,j

)

∪
{

vj : j ∈ J
}

, where
J = {1, 2, 3, . . . , β0 + 1} \ {i}, and Bv

∼= A(n + 2). Therefore, B is a locally-
connected graph. Since B −

{

v1, v2, v3, . . . , vβ0+1

}

has
(

β0+1
2

)

odd components,
by Berge’s Formula we have

def(B) ≥
(

β0 + 1

2

)

− (β0 + 1) =

(
⌈

1
2

(

3 +
√
8k + 17

)⌉

2

)

−
⌈

1

2

(

3 +
√
8k + 17

)

⌉

=

⌈

3+
√
8k+17
2

⌉(⌈

3+
√
8k+17
2

⌉

− 1
)

2
−
⌈

3 +
√
8k + 17

2

⌉

=

⌈

3+
√
8k+17
2

⌉(⌈

3+
√
8k+17
2

⌉

− 3
)

2
≥

3+
√
8k+17
2

(

3+
√
8k+17
2 − 3

)

2

=

(

3 +
√
8k + 17

)(√
8k + 17− 3

)

8
= k + 1.

Therefore, B is not H-free and it contains an induced subgraph isomorphic to H.
Since α(Bv) ≤ β0 for every v ∈ V (B), we have m ≤ β0.

If H ∼= K2 ∨mK1, we claim that α(H) ≤ 2. Otherwise, assume that α(H) ≥
3, then H should contain K2 ∨ 3K1 as an induced subgraph. Recall that H is an
induced subgraph of B, B also contains K2 ∨ 3K1, say w1w2 ∨ {u1, u2, u3}, as an
induced subgraph. Then {w1, w2} ⊂ {v1, v2, . . . , vβ0+1}. By symmetry, we may
assume that w1 = v1, w2 = v2. Then u1, u2, u3 ∈ NB(v1) ∩ NB(v2). However,
NB(v1) ∩ NB(v2) =

{

v3, v4, . . . , vβ0+1

}

∪ V (B1,2), which does not contain three
independent vertices, a contradiction. Therefore, H is isomorphic to K1,2, K1,3,
. . . , K1,β0

, K3 or K2 ∨ 2K1.

Case 2. k is an even number. We set n = max
{

2p0 + 1, k + 3
}

. Note that
n is an odd number. Let G1 be a graph isomorphic to K2 ∨ nK1. By a similar
argument to the proof of Case 1, we have H ∼= K1,m or H ∼= K2 ∨mK1 for some
positive integer m. For an integer t with t ≥ 2 , let A1, A2, A3, . . . , Aβ0

be β0
disjoint copies of Kt+1. Then choose one vertex ai in Ai, 1 ≤ i ≤ β0, and add
edges aiaj , 1 ≤ i < j ≤ β0. Let A(t + 1) be the resulting graph. Note that
A(t+ 1) is a connected graph with independence number α

(

A(t+ 1)
)

= β0.
Let B0 be a copy of Kβ0+1 with V (B0) =

{

v1, v2, . . . , vβ0+1

}

. For each i, j
with 1 ≤ i < j ≤ β0+1, we introduce a new graph Bi,j that is a copy of Kn. Then
add edges

{

vix, vjx : 1 ≤ i < j ≤ β0 + 1, x ∈ V (Bi,j)
}

. Let B be the resulting



202 X.H. Li and L.G. Wang

graph. Note that B is a connected graph of order greater than p0. For v ∈ V (B),
let Bv be the subgraph of B induced by NB(v). If v ∈ V

(

Bi,j

)

for some i, j with
1 ≤ i < j ≤ β0 + 1, then Bv

∼= Kn+1. If v = vi for some i with 1 ≤ i ≤ β0 + 1,
then NB(vi) =

⋃

j∈J V
(

Bi,j

)

∪
{

vj : j ∈ J
}

, where J = {1, 2, 3, . . . , β0 + 1} \ {i},
and Bv

∼= A(n + 1). Therefore, B is a locally-connected graph. Similarly as
above, we have that m ≤ β0. If H ∼= K2 ∨mK1, we can also get that α(H) ≤ 2.
Therefore, H is isomorphic to K1,2, K1,3, . . . , K1,β0

, K3 or K2 ∨ 2K1.

Theorem 5 provides us with
⌈

1
2(3 +

√
8k + 17)

⌉

candidates for a forbidden
subgraph H which guarantees that every connected, locally-connected H-free
graph G of order at least p0 satisfies def(G) ≤ k. In the following, we will
show that K1,2, K3 and K2 ∨ 2K1 are trivial cases in Theorem 5. First, we
consider K1,2-free graphs. It is easy to see that every connected K1,2-free graph
is a complete graph. Thus, every connected, locally-connected K1,2-free graph G
satisfies def(G) ≤ 1 ≤ k. Therefore, in such case the problem is trivial. Next,
we consider K3-free graphs. Let G be a connected, locally-connected K3-free
graph. Since G is locally-connected and has no triangle as an induced subgraph,
every vertex has degree 0 or 1 in G. Since G is connected, G is isomorphic to
K1 or K2. Therefore, the problem is trivial when H ∼= K3. Finally, we consider
(

K2 ∨ 2K1

)

-free graphs. Saito et al. [12] proved the following theorem. We give
a proof here for completeness.

Theorem 6 [12]. A connected and locally-connected
(

K2 ∨ 2K1

)

-free graph is a

complete graph.

Proof. Let G be a connected and locally-connected
(

K2∨2K1

)

-free graph. Then
NG(v) induces a connected K1,2-free graph for every v ∈ V (G). Since every
connected K1,2-free graph is complete, NG(v) induces a complete graph for every
v ∈ V (G). Since G is a connected graph, we have that G is a complete graph.

Therefore, the connected and locally-connected
(

K2 ∨ 2K1

)

-free graph G of
order at least p0 satisfies def(G) ≤ k, trivially.

Hence, onlyK1,3,K1,4, . . . ,K1,⌈ 1

2
(3+

√
8k+17)⌉−1 are the possible forbidden sub-

graphs which force a connected, locally-connected graph G to satisfy def(G) ≤ k
in a nontrivial manner.

In particular, from the above discussion, we know that if H is isomorphic to
K1,2, K3 or K2 ∨ 2K1, then every connected, locally-connected H-free graph G
satisfies def(G) ≤ 1. On the other hand, since every connected, locally-connected
K1,3-free graph G of order at least three is Hamiltonian, we have def(G) ≤ 1.
Hence, we can rewrite Theorem 3 into a necessary and sufficient form.

Theorem 7. Let H be a connected graph of order at least 3. There exists a

positive integer p0 such that every connected and locally-connected H-free graph
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G of order at least p0 satisfies def(G) ≤ 1, if and only if H is isomorphic to K1,2,

K1,3, K3 or K2 ∨ 2K1.

Now we consider Theorem 4. If the following conjecture is true, then the
result of Theorem 4 would be a necessary and sufficient condition.

Conjecture 8. There exists a positive integer p0, such that if a connected and

locally-connected K1,4-free graph G has order at least p0, then def(G) ≤ 4.

3. Some Results About 3-Connected, Locally-Connected Graphs

We begin with the following simple proposition, which is a special case of a result
by Chartrand and Pippert [4], and we give a proof here for completeness.

Proposition 9 [4]. A graph G is connected and locally-connected, if and only if

G is 2-connected and locally-connected.

Proof. Since a 2-connected and locally-connected graph is obviously connected
and locally-connected, we only need to prove that every connected and locally-
connected graph is 2-connected.

Let G′′ be a connected, locally-connected graph. Suppose that G′′ is not
2-connected, then there is a cut vertex v in G′′. The deletion of v disconnects G′′

into several components G1, G2, . . . , Gs, as shown in Figure 4. Then vertex v is
not a locally-connected vertex, which is a contradiction. Hence every connected
and locally-connected graph G is 2-connected. Obviously, G is 2-connected and
locally-connected.

v

2
G

1
G

sG

Figure 4. Graph G′′.

By Proposition 9, we can change the condition from connected and locally-
connected graph into 2-connected and locally-connected graph in Theorems 4
and 5. In the following, we will give some similar results about 3-connected and
locally-connected graphs.
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Theorem 10. Let H be a connected graph of order at least 3. If there exists

a positive integer p0 such that every 3-connected and locally-connected H-free

graph G of order at least p0 satisfies def(G) ≤ k where k ∈ {1, 2, 3, 4}, then

H ∈
{

K1,2,K1,3,K1,4,K1,5,K1,6,K3,K2 ∨ 2K1,K2 ∨ 3K1

}

.

Proof. Using the integer p0 in the statement of theorem, we set n = max
{

2p0, 8
}

.
Note that n is an even number. Let G1 be a graph isomorphic to P3∨nK1. Then
G1 is a 3-connected and locally-connected graph of order greater than p0. Since
n ≥ 8, we have def

(

G1

)

= n− 3 ≥ 5. Therefore, G1 is not H-free and it contains
an induced subgraph which is isomorphic to H. Since H is a connected graph
of order at least three, H ∈ H1 =

{

K1,m,K2 ∨mK1,K2,m, P3 ∨mK1

}

for some
positive integer m. Let G2 be a graph isomorphic to K3 ∨ nK1. Similar to G1,
G2 is a 3-connected and locally-connected graph of order greater than p0, and
def

(

G2

)

= n − 3 ≥ 5. Therefore, G2 is not H-free and it contains an induced
subgraph which is isomorphic to H. Since H is a connected graph of order at
least three, H ∈ H2 =

{

K1,m,K2 ∨ mK1,K3 ∨ mK1

}

for some positive integer
m. Hence, H ∈ H1 ∩H2 =

{

K1,m,K2 ∨mK1

}

, for some positive integer m.

na2
a

1
a na2

a
1
a

2
b

1
b

3
b 1

b

2
b

3
b

1 3 1
G P nK= ∨

2 3 1
G K nK= ∨

Figure 5. Graphs G1 and G2 in the proof of Theorem 10.

Let A0 be a copy of K5 with V (A0) = {v1, v2, . . . , v5}. For each i, j, k with
1 ≤ i < j < k ≤ 5, we introduce a new graph Ai,j,k which is a copy of Kn+1.
Then add edges

{

vix, vjx, vkx : 1 ≤ i < j < k ≤ 5, x ∈ V
(

Ai,j,k

)}

. Let A be
the resulting graph. Note that A is a 3-connected graph of order greater than
p0. Let B0 be a copy of K4 with V (B0) =

{

u1, u2, u3, u4
}

. For each i, j with
1 ≤ i < j ≤ 4, we introduce a new graph Bi,j which is a copy of Kn+1. Then
add edges

{

uix, ujx : 1 ≤ i < j ≤ 4, x ∈ V
(

Bi,j

)}

. Let B be the resulting graph.
Note that B is a connected graph with independence number 6.

For v ∈ V (A), let Av = A
[

NA(v)
]

. If v ∈ V
(

Ai,j,k

)

for some i, j, k with
1 ≤ i < j < k ≤ 5, then Av

∼= Kn+3. If v = vi for some i with 1 ≤ i ≤ 5, then
Av

∼= B. Therefore, A is a locally-connected graph. Since A−
{

v1, v2, v3, v4, v5
}

has 10 odd components, def(A) ≥ 10 − 5 = 5. Therefore, A is not H-free and
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there is an induced subgraph H of A which is isomorphic to K1,m or K2 ∨mK1

for some positive integer m. Since α(Av) ≤ 6 for every v ∈ V (A), we have m ≤ 6.
Therefore, H ∈

{

K1,2,K1,3, . . . ,K1,6,K3,K2 ∨ 2K1,K2 ∨ 3K1, . . . ,K2 ∨ 6K1

}

.

Assume H ∼= K2 ∨ 4K1. Then H contains four independent vertices x1, x2,
x3, x4 which have two common neighbors w1 and w2. Since NA(w1) and NA(w2)
have independence number greater than one,

{

w1, w2

}

⊂
{

v1, v2, . . . , v5
}

. By
symmetry, we may assume w1 = v1, w2 = v2. However, NA(v1) ∩ NA(v2) =
{

v3, v4, v5
}

∪ V
(

A1,2,3

)

∪ V
(

A1,2,4

)

∪ V
(

A1,2,5

)

, which does not contain four in-
dependent vertices. This is a contradiction and hence H is not isomorphic to
K2 ∨ 4K1. Similarly, H is not isomorphic to K2 ∨ 5K1 or K2 ∨ 6K1. Therefore,
H ∈

{

K1,2,K1,3,K1,4,K1,5,K1,6,K3,K2 ∨ 2K1,K2 ∨ 3K1

}

.

Theorem 11. Let H be a connected graph of order at least 3. If there exists a

positive integer p0 such that every 3-connected and locally-connected H-free graph

G of order at least p0 satisfies def(G) ≤ k, where k =
⌊

1
6(a

3 − 3a2 − 4a− 6)
⌋

,

and a is an integer with a > 4, then H ∈
{

K1,2,K1,3, . . . ,K1, 1
2
(a2−3a+2),K3,K2∨

2K1, . . . ,K2 ∨ (a− 2)K1

}

.

Proof. Case 1. k is an odd number. We set n = max
{

2p0+1, k+4
}

. Note that
n is an odd number. Let G1

∼= P3 ∨ nK1 and G2
∼= K3 ∨ nK1. Analogous to the

proof of Theorem 10, H ∈
{

K1,m,K2 ∨mK1

}

for some positive integer m.

Let A0 be a copy of Ka with V (A0) =
{

v1, v2, . . . , va
}

. For each i, j, l with
1 ≤ i < j < l ≤ a, we introduce a new graph Ai,j,l which is a copy of Kn.
Then add edges

{

vix, vjx, vlx : 1 ≤ i < j < l ≤ a, x ∈ V
(

Ai,j,l

)}

. Let A be
the resulting graph. Note that A is a 3-connected graph of order greater than
p0. Let B0 be a copy of Ka−1 with V (B0) =

{

u1, u2, . . . , ua−1

}

. For each i, j
with 1 ≤ i < j ≤ a − 1, we introduce a new graph Bi,j which is a copy of Kn.
Then add edges

{

uix, ujx : 1 ≤ i < j ≤ a − 1, x ∈ V
(

Bi,j

)}

. Let B be the
resulting graph. Note that B is a connected graph with independence number
α(B) =

(

a−1
2

)

= 1
2(a− 1)(a− 2) = 1

2(a
2 − 3a+ 2).

For v ∈ V (A), let Av = A
[

NA(v)
]

. If v ∈ V
(

Ai,j,l

)

for some i, j, l with
1 ≤ i < j < l ≤ a, then Av

∼= Kn+2. If v = vi for some i with 1 ≤ i ≤ a, then
Av

∼= B. Therefore, A is a locally-connected graph. Note that A−
{

v1, v2, . . . , va
}

has
(

a
3

)

odd components. When a > 4, we have

def(A) ≥
(

a

3

)

− a =
1

6
a(a− 1)(a− 2)− a =

1

6

(

a3 − 3a2 − 4a
)

=
1

6

(

a3 − 3a2 − 4a− 6
)

+ 1 ≥
⌊

1

6

(

a3 − 3a2 − 4a− 6
)

⌋

+ 1 = k + 1.

Therefore, A is not H-free and it contains an induced subgraph isomorphic to H.
Since α(Av) ≤ 1

2

(

a2 − 3a+ 2
)

for every v ∈ V (A), we have m ≤ 1
2

(

a2 − 3a+ 2
)

.
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Therefore, H ∈
{

K1,2,K1,3, . . . ,K1, 1
2
(a2−3a+2),K3,K2 ∨ 2K1,K2 ∨ 3K1, . . . ,K2 ∨

(12(a
2 − 3a+ 2))K1

}

.

Assume H ∼= K2 ∨ (a − 1)K1. Then H contains a − 1 independent vertices
x1, x2, . . . , xa−1 which have two common neighbors w1 and w2. Since NA(w1)
and NA(w2) have a − 1 independent vertices,

{

w1, w2

}

⊂
{

v1, v2, . . . , va
}

. By
symmetry, we may assume w1 = v1, w2 = v2. However, NA(v1) ∩ NA(v2) =
{

v3, v4, . . . , va
}

∪ V
(

A1,2,3

)

∪ V
(

A1,2,4

)

∪ · · · ∪ V
(

A1,2,a

)

, which does not contain
a−1 independent vertices. This is a contradiction and hence H is not isomorphic
to K2 ∨ (a− 1)K1. Similarly, H /∈

{

K2 ∨ aK1,K2 ∨ (a+ 1)K1, . . . ,K2 ∨
(

1
2(a

2 −
3a+ 2)

)

K1

}

.

Case 2. k is an even number. We set n = max
{

2p0, k + 4
}

. Note that
n is an even number. Let G1

∼= P3 ∨ nK1 and G2
∼= K3 ∨ nK1. Similarly,

H ∈
{

K1,m,K2 ∨mK1

}

for some positive integer m.

Let A0 be a copy of Ka with V (A0) =
{

v1, v2, . . . , va
}

. For each i, j, l with
1 ≤ i < j < l ≤ a, we introduce a new graph Ai,j,l which is a copy of Kn+1.
Then add edges

{

vix, vjx, vlx : 1 ≤ i < j < l ≤ a, x ∈ V
(

Ai,j,l

)}

. Let A be
the resulting graph. Note that A is a 3-connected graph of order greater than
p0. Let B0 be a copy of Ka−1 with V (B0) =

{

u1, u2, . . . , ua−1

}

. For each i, j
with 1 ≤ i < j ≤ a − 1, we introduce a new graph Bi,j which is a copy of
Kn+1. Then add edges

{

uix, ujx : 1 ≤ i < j ≤ a − 1, x ∈ V (Bi,j)
}

. Let B be
the resulting graph. Then B is a connected graph with independence number
α(B) =

(

a−1
2

)

= 1
2

(

a2 − 3a+ 2
)

.

For v ∈ V (A), let Av = A
[

NA(v)
]

. If v ∈ V (Ai,j,l) for some i, j, l with 1 ≤
i < j < l ≤ a, then Av

∼= Kn+3. If v = vi for some i with 1 ≤ i ≤ a, then Av
∼= B.

Therefore, A is a locally-connected graph. Similarly, def(A) ≥
(

a
3

)

− a ≥ k + 1.
Therefore, A is not H-free and it contains an induced subgraph isomorphic to H.
Since α(Av) ≤ 1

2

(

a2 − 3a+ 2
)

for every v ∈ V (A), we have m ≤ 1
2(a

2 − 3a+ 2).
Therefore, H ∈

{

K1,2,K1,3, . . . ,K1, 1
2
(a2−3a+2),K3,K2 ∨ 2K1,K2 ∨ 3K1, . . . ,K2 ∨

(

1
2(a

2 − 3a+ 2)
)

K1

}

.

Similar to Case 1,H /∈
{

K2∨(a−1)K1,K2∨aK1, . . . ,K2∨
(

1
2(a

2− 3a+2)
)

K1

}

.
Therefore, H ∈

{

K1,2,K1,3, . . . ,K1, 1
2
(a2−3a+2),K3,K2∨2K1, . . . ,K2∨(a−2)K1

}

.

4. Concluding Remarks

In Theorem 11 we prove some results about forbidden subgraphs in 3-connected,
locally-connected graphs satisfying def(G) ≤ k. For any positive integer l, the
situation of l-connected and locally-connected graphs is more complicated. We
were not able to resolve this question and leave it as an open problem. For more
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problems about locally highly connected graphs, we refer the readers to [1] and
[4].

For a graph G, let B(G) denote the set of vertices of G which are not locally-
connected. If B(G) is an independent set and for any v ∈ B(G), there exists a
vertex u in V (G) \ {v} such that NG(v) ∪ {u} induces a connected subgraph of
G, then G is called almost locally connected. Another natural question is whether
we can get a counterpart of our results for connected, almost locally connected
graphs. For more discussion and other related problems about almost locally
connected graphs, we refer the readers to [5] and [11].
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[12] A. Saito and L.M. Xiong, The Ryjáček closure and a forbidden subgraph, Discuss.
Math. Graph Theory 36 (2016) 621–628.
doi:10.7151/dmgt.1876

[13] D.P. Sumner, 1-factors and antifactor sets , J. Lond. Math. Soc. 2 (13) (1976) 351–
359.
doi:10.1112/jlms/s2-13.2.351

Received 8 September 2017
Revised 26 February 2018

Accepted 26 February 2018

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1002/jgt.20087
http://dx.doi.org/10.1007/978-3-540-70666-3_17
http://dx.doi.org/10.7151/dmgt.1876
http://dx.doi.org/10.1112/jlms/s2-13.2.351
http://www.tcpdf.org

