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Abstract

In this paper, we study the Hamiltonicity of graphs with large mini-
mum degree. Firstly, we present some conditions for a simple graph to be
Hamilton-connected and traceable from every vertex in terms of the spectral
radius of the graph or its complement, respectively. Secondly, we give the
conditions for a nearly balanced bipartite graph to be traceable in terms of
spectral radius, signless Laplacian spectral radius of the graph or its quasi-
complement, respectively.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph of order n with vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G). Denote by e(G) = |E(G)| the number of
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edges of the graph G. Let NG(v) be the set of vertices which are adjacent to
v in G. The degree of v is denoted by dG(v) = |NG(v)| (or simply d(v)), the
minimum degree of G is denoted by δ(G). Let X ⊆ V (G), G − X is the graph
obtained from G by deleting all vertices in X. G is called k-connected (for k ∈ N)
if |V (G)| > k and G − X is connected for every set X ⊆ V (G) with |X| < k.
We note that if G is k-connected, then δ(G) ≥ k. A regular graph is one graph
whose all vertices have the same degrees, and a bipartite semi-regular graph is a
bipartite graph for which the vertices in the same part have the same degrees. The
complement of G is denoted by G = (V (G)E(G)), where V (G) = V (G), E(G) =
{xy : x, y ∈ V (G), xy 6∈ E(G)}. Let G = (X,Y ;E) be a bipartite graph with
two partite sets X,Y . If |X| = |Y |, G = (X,Y ;E) is called a balanced bipartite

graph. If |X| = |Y | − 1, G = (X,Y ;E) is called a nearly balanced bipartite graph.
The quasi-complement of G = (X,Y ;E) is denoted by Ĝ := (X,Y ;E′), where
E′ = {xy : x ∈ X, y ∈ Y, xy 6∈ E}. For two disjoint graphs G1 and G2, the union
of G1 and G2, denoted by G1+G2, is defined as V (G1+G2) = V (G1)∪V (G2) and
E(G1+G2) = E(G1)∪E(G2), and the join of G1 and G2, denoted by G1∨G2, is
defined as V (G1 ∨G2) = V (G1)∪ V (G2), and E(G1 ∨G2) = E(G1 +G2)∪ {xy :
x ∈ V (G1), y ∈ V (G2)}. Denote Kn the complete graph on n vertices, On = Kn

the empty graph on n vertices (without edges), Kn,m = On ∨ Om the complete
bipartite graph with two parts having n,m vertices, G− v (v ∈ V (G)) the graph
obtained from G by deleting v, respectively.

The adjacency matrix of G is defined to be a matrix A(G) = [aij ] of order n,
where aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. The degree matrix of
G is denoted by D(G) = diag (dG(v1), dG(v2), . . . , dG(vn)). The matrix Q(G) =
D(G) + A(G) is the signless Laplacian matrix (or Q-matrix) of G. Obviously,
A(G) and Q(G) are real symmetric matrix. So their eigenvalues are real number
and can be ordered. The largest eigenvalue of A(G), denoted by µ(G), and
the corresponding eigenvectors (whose all components are positive number) are
called the spectral radius and the Perron vector of G, respectively. The largest
eigenvalue of Q(G), denoted by q(G), is called the signless Laplacian spectral

radius of G.

A Hamiltonian cycle of the graph G is a cycle of order n contained in G, and
a Hamiltonian path of G is a path of order n contained in G, where |V (G)| = n.
The graph G is said to be Hamiltonian if it contains a Hamiltonian cycle, and
is said to be traceable if it contains a Hamiltonian path. If every two vertices of
G are connected by a Hamiltonian path, it is said to be Hamilton-connected. A
graph G is traceable from a vertex x if it has a Hamiltonian x-path. The problem
of deciding whether a graph is Hamiltonian is one of the most difficult classical
problems in graph theory. Indeed, determining whether a graph is Hamiltonian
is NP-complete.

Recently, the spectral theory of graphs has been applied to this problem. Up
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to now, there are some references on the spectral conditions for a graph to be
traceable, Hamiltonian, Hamilton-connected or traceable from every vertex. We
refer readers to see [4, 5, 7, 10, 12–17, 19, 21–25]. Particularly, Li and Ning [4, 5]
and Nikiforov [19] study spectral sufficient conditions of graphs with large min-
imum degree. Li and Ning [4] present some (signless Laplacian) spectral radius
conditions for a simple graph and a balanced bipartite graph to be traceable and
Hamiltonian, respectively. Li and Ning [5] present some spectral radius condi-
tions for a balanced bipartite graph and a nearly balanced bipartite graph to
be traceable, respectively. Nikiforov [19] gives some spectral radius conditions
for a simple graph to be traceable and Hamiltonian, respectively. Motivated by
those papers, in this paper, we also study the graphs with large minimum degree.
We will respectively present some conditions for a simple graph to be Hamilton-
connected and traceable from every vertex in terms of the spectral radius of the
graph or its complement in Section 2, and respectively give the conditions for a
nearly balanced bipartite graph to be traceable in terms of spectral radius, sign-
less Laplacian spectral radius of the graph or its quasi-complement in Section 3.

2. Spectral Radius Conditions for a Graph to Be
Hamilton-Connected, and Traceable from Every Vertex

For an integer k ≥ 0, the k-closure of a graph G, denoted by Ck(G), is the
graph obtained from G by successively joining pairs of nonadjacent vertices whose
degree sum is at least k until no such pair remains, see [2]. The k-closure of the
graph G is unique, independent of the order in which edges are added. Note that
dCk(G)(u) + dCk(G)(v) ≤ k − 1 for any pair of nonadjacent vertices u and v of
Ck(G).

Lemma 1 (Ore [20], Bondy and Chvátal [1]).

(i) If G is a 2-connected graph of order n and dG(u) + dG(v) ≥ n + 1 for any

two distant nonadjacent vertices u and v, then G is Hamilton-connected.

(ii) A 2-connected graph G is Hamilton-connected if and only if Cn+1(G) is so.

Lemma 2 (Yu, Ye, Cai and Cao [22]). Let G be a simple graph, with degree

sequence (dG(v1), dG(v2), . . . , dG(vn)), where dG(v1) ≤ dG(v2) ≤ · · · ≤ dG(vn)
and n ≥ 3. Suppose that there is no integer 2 ≤ k ≤ n

2 such that dG(vk−1) ≤ k,
and dG(vn−k) ≤ n− k, then G is Hamilton-connected.

Lemma 3 (Hong, Shu and Fang [11], Nikiforov [18]). If G is a graph of order n,
with m edges and minimum degree δ, then

µ(G) ≤ δ − 1

2
+

√
2m− nδ +

(δ + 1)2

4
.
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Lemma 4 (Hong, Shu and Fang [11], Nikiforov [18]). If 2m ≤ n(n − 1), then
the function

f(x) =
x− 1

2
+

√
2m− nx+

(x+ 1)2

4

is decreasing in x for x ≤ n− 1.

Lemma 5 (Bondy and Murty [2]). Let G be a graph. Then G is traceable from

every vertex if and only if G ∨K1 is Hamilton-connected.

Given a graph G of order n, a vector x ∈ R
n is called to be defined on G, if

there is a 1-1 map ϕ from V (G) to the entries of x; simply written xu = ϕ(u) for
each u ∈ V (G). If x is an eigenvector of A(G), then x is defined on G naturally,
xu is the entry of x corresponding to the vertex u. One can find that

xTA(G)x = 2
∑

uv∈E(G)

xuxv,(1)

when µ is an eigenvalue of G corresponding to the eigenvector x if and only if
x 6= 0,

µxv =
∑

u∈NG(v)

xu,(2)

for each vertex v ∈ V (G). Equation (2) is called the eigenvalue-equation for the
graph G. In addition, for an arbitrary unit vector x ∈ R

n,

µ(G) ≥ xTA(G)x,(3)

with equality holds if and only if x is an eigenvector of A(G) according to µ(G).

Lemma 6 (Li and Ning [4]). Let G be a graph with non-empty edge set. Then

µ(G) ≥ min
{√

d(u)d(v) : uv ∈ E(G)
}
.(4)

Moreover, if G is connected, then equality holds if and only if G is regular or

bipartite semi-regular graph.

Lemma 7. Let G be a graph of order n. Then

µ(G ∨K1) >
n− 1

n
µ(G) + 2

√
n− 1

n
.

Proof. Let x ∈ R
n be a unit Perron vector of G. Then by (1) and (3),

µ(G) = xTA(G)x = 2
∑

uv∈E(G)

xuxv.
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Let w ∈ V (K1), H = G ∨ K1, and let x
′ ∈ R

n+1, x
′

u =
√

n−1
n xu, for every u ∈

V (G), x
′

w = 1√
n
. Since

∑
u∈V (G) x

2
u = 1, xu > 0, we have

∑

u∈V (H)

x′u
2
=

∑

u∈V (G)

x′u
2
+ x′w

2
=

n− 1

n

∑

u∈V (G)

x2u +
1

n
= 1,

and
∑

u∈V (G) xu >
∑

u∈V (G) x
2
u = 1. Then by (1) and (3)

µ(G ∨K1) = µ(H) ≥ x
′T
A(H)x

′

= 2
∑

uv∈E(G)

x
′

ux
′

v + 2x
′

w

∑

u∈V (G)

x
′

u

= 2
n− 1

n

∑

uv∈E(G)

xuxv + 2
1√
n

√
n− 1

n

∑

u∈V (G)

xu

>
n− 1

n
µ(G) + 2

√
n− 1

n
.

So the result follows.

Lemma 8 (Tomescu [3]). Every t-regular graph on 2t (t ≥ 3) vertices not iso-

morphic to Kt,t, or of order 2t+ 1 for even t ≥ 4, is Hamilton-connected.

Lemma 9. Let k ≥ 2, n ≥ 2k2 + 1, and G be a graph of order n. If G is a

subgraph of K2 ∨ (Kn−k−1 +Kk−1), with minimum degree δ(G) ≥ k, then µ(G)
< n− k, unless G = K2 ∨ (Kn−k−1 +Kk−1).

Proof. Set for short µ := µ(G), and let x = (xv1 , . . . , xvn)
T be a unit Perron

vector of G. By (3), we have that

µ = xTA(G)x.

Assume that G is a proper subgraph of K2 ∨ (Kn−k−1 +Kk−1). By Perron-
Frobenius theorem, we can assume that G is obtained by omitting just one edge
uv of K2 ∨ (Kn−k−1 +Kk−1).

Write X for the set of vertices of K2∨ (Kn−k−1+Kk−1) of degree k, let Y be
the set of their neighbors not in the set X, and let Z be the set of the remaining
n− k − 1 vertices of K2 ∨ (Kn−k−1 +Kk−1).

Since δ(G) ≥ k, we can see that G must contain all the edges between X
and Y . Therefore, {u, v} ⊂ Y ∪ Z, with three possible cases: (a) {u, v} ⊂ Y ;
(b) u ∈ Y, v ∈ Z; (c) {u, v} ⊂ Z. We shall show that case (c) yields a graph of
no smaller spectral radius than case (b), and that case (b) yields a graph of no
smaller spectral radius than case (a).
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Indeed, by (2), we have xi = xj for any i, j ∈ X; likewise, xi = xj for any
i, j ∈ Y \{u, v} and for any i, j ∈ Z\{u, v}. Thus, let

x := xi, i ∈ X,

y := xi, i ∈ Y \{u, v},
z := xi, i ∈ Z\{u, v}.

Suppose that case (a) holds, that is, {u, v} ⊂ Y . Choose a vertex w ∈ Z,
remove the edge vw and add the edge uv. Then the obtained graph G′ is covered
by case (b).

If xw ≤ xu, we have

xTA(G′)x− xTA(G)x = 2xv(xu − xw) ≥ 0.

If xw > xu, swap the entries xu and xw, write x
′ for the resulting vector. We

note that x′ is also a unit vector, and have that

x′TA(G′)x′ − xTA(G)x = 2(xw − xu)
∑

i∈X

xi ≥ 0.

Then by (3), µ(G′) ≥ µ(G), as claimed.
Essentially the same argument proves that case (c) yields a graph of no

smaller spectral radius than case (b). Therefore, we may assume that {u, v} ⊂ Z.
Since the vertices u and v are symmetric, so xu = xv. Set t := xu and note that
the n eigenvalue-equations of G are reduced to four equations involving just the
unknowns x, y, z, and t.

µx = (k − 2)x+ 2y,

µy = (k − 1)x+ y + (n− k − 3)z + 2t,

µz = 2y + (n− k − 4)z + 2t,

µt = 2y + (n− k − 3)z.

We find that

x =
2y

µ− k + 2
,

z =

(
1− 2(k − 1)

(µ+ 1)(µ− k + 2)

)
y,

t =
µ+ 1

µ+ 2

(
1− 2(k − 1)

(µ+ 1)(µ− k + 2)

)
y.

Furtherly, note that if we delete all edges incident to vertices in X, and
add the edge uv to G, we obtain the graph Kn−k+1 +Kk−1. Letting x′′ be the
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restriction of x to Kn−k+1, we find that

x′′TA(Kn−k+1)x
′′ = xTA(G)x+ 2t2 − 4(k − 1)xy − (k − 1)(k − 2)x2

= µ+ 2t2 − 4(k − 1)xy − (k − 1)(k − 2)x2.

But since ‖x′′‖2 = 1− (k − 1)x2, we see that

µ+ 2t2 − 4(k − 1)xy − (k − 1)(k − 2)x2

= x′′TA(Kn−k+1)x
′′ ≤ µ(Kn−k+1)‖x′′‖2

= (n− k)
(
1− (k − 1)x2

)
.

Assume for a contradiction that µ ≥ n− k. This assumption, together with
above inequality, yields

µ+ 2t2 − 4(k − 1)xy − (k − 1)(k − 2)x2 ≤ µ
(
1− (k − 1)x2

)
,

and therefore

2(k − 1)xy − (µ− k + 2)(k − 1)x2

2
≥ t2.

Now, first combining above equality about x, then combining equality about t,
we have

2(k − 1)y2

µ− k + 2
≥
(
µ+ 1

µ+ 2

)2(
1− 2(k − 1)

(µ+ 1)(µ− k + 2)

)2

y2.

Cancelling y2 and applying Bernoulli’s inequality to the right side, we get

2(k − 1) ≥ (µ− k + 2)

(
1− 1

µ+ 2

)2(
1− 2(k − 1)

(µ+ 1)(µ− k + 2)

)2

> (µ− k + 2)

(
1− 2

µ+ 2
− 4(k − 1)

(µ+ 1)(µ− k + 2)

)

= µ− k + 2− 2µ− 2k + 4

µ+ 2
− 4(k − 1)

µ+ 1
> µ− k + 2− 2µ+ 2k

µ+ 1
.

Using the inequalities µ ≥ n− k ≥ 2k2 − k + 1, we easily find that

2 <
2µ+ 2k

µ+ 1
< 3,

and so,

2(k − 1) > 2k2 − k + 1− k + 2− 3 = 2k2 − 2k,

a contradiction, completing the proof.
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Theorem 10. Let k ≥ 2, n ≥ 2k2 + 1 and let G be a graph of order n with

minimum degree δ(G) ≥ k. If

µ(G) ≥ n− k,

then G is Hamilton-connected, unless G = K2 ∨
(
Kn−k−1 +Kk−1

)
.

Proof. Assume that µ(G) ≥ n− k, but G is not Hamilton-connected. Let H =
Cn+1(G). Then H is not Hamilton-connected by Lemma 1, δ(H) ≥ δ(G) ≥ k,
and µ(H) ≥ µ(G) ≥ n− k by Perron-Frobenius theorem. Note that H is (n+1)-
closure of G, thus every two nonadjacent vertices u, v have degree sum at most
n, i.e.,

(5) dH(u) + dH(v) ≤ n.

Since H is not Hamilton-connected, by Lemma 2, there is an integer 2 ≤ s ≤ n
2

such that dH(vs−1) ≤ s and dH(vn−s) ≤ n − s, obviously, s ≥ δ(H) ≥ k. Write
m for the number of edges of H, set δ(H) := δ, then we can get

2m =
s−1∑

i=1

dH(vi) +
n−s∑

i=s

dH(vi) +
n∑

i=n−s+1

dH(vi)(6)

≤ s(s− 1) + (n− 2s+ 1)(n− s) + s(n− 1)(7)

= 3s2 + n2 − 2ns+ n− 3s.(8)

On the other hand, combining Lemmas 3 and 4, we have

n− k ≤ µ(H) ≤ k − 1

2
+

√
2m− nk +

(k + 1)2

4
,

which, after some algebra operations, gives

(9) 2m ≥ n2 − 2kn+ 2k2 + n− 2k.

Next, we will prove that s = k. Suppose k + 1 ≤ s ≤ n
2 . Let f(x) = 3x2 + n2 −

2nx+n−3x. We note f(x) is convex in x, then f(s) ≤ f(k+1) or f(s) ≤ f
(
n
2

)
.

Combining (8) and (9), we get

n2 − 2kn+ 2k2 + n− 2k ≤ 2m ≤ f(s) ≤ f(k + 1)

= 3(k + 1)2 + n2 − 2n(k + 1) + n− 3(k + 1)

or

n2 − 2kn+ 2k2 + n− 2k ≤ 2m ≤ f(s) ≤ f
(n
2

)
=

3

4
n2 − n

2
.
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Then n ≤ k2+5k
2 or n2+(6−8k)n+8k(k−1) ≤ 0, each of these inequalities leads

to a contradiction. So we have s = k, and thus δ(H) = k, then,

dH(v1) = dH(v2) = · · · = dH(vk−1) = k.

Our next goal is to show that dH(vk) ≥ n− k2. Indeed, suppose that

dH(vk) < n− k2.

Also using Lemma 2, we get

2m =
k−1∑

i=1

dH(vi) + dH(vk) +
n−k∑

i=k+1

dH(vi) +
n∑

i=n−k+1

dH(vi)

< (k − 1)k + n− k2 + (n− 2k)(n− k) + k(n− 1)

= n2 − 2kn+ 2k2 + n− 2k,

contradicting (9). Hence dH(vi) ≥ n− k2 for every i ∈ {k, k + 1, . . . , n}.
Next, we shall show that the vertices vk, vk+1, . . . , vn induce a complete graph

in H. Indeed, let vi, vj ∈ {vk, vk+1, . . . , vn} be two distinct vertices of H. If they
are nonadjacent, then

dH(vi) + dH(vj) ≥ 2n− 2k2 ≥ n+ 2k2 + 1− 2k2 = n+ 1,

contradicting (5).
Write X for the vertex set {v1, v2, . . . , vk−1}. Write Y for the set of vertices in

{vk, vk+1, . . . , vn} having neighbors in X. Let Z be the set of remaining vertices
of V (G).

Since |X| = k−1, and dH(v1) = dH(v2) = · · · = dH(vk−1) = k, we get Y 6= ∅,
and any vertex in X must have at least two neighbors in {vk, vk+1, . . . , vn}.

In fact, every vertex from Y is adjacent to every vertex in X. Indeed, suppose
that this is not the case, and let w ∈ {vk, vk+1, . . . , vn}, u ∈ X, v ∈ X, such that
w is adjacent to u, but not to v. We see that

dH(w) + dH(v) ≥ n− k + 1 + k = n+ 1,

contradicting (5).
Next, let l = |Y | and note that 2 ≤ l ≤ k.
If l = 2, then H = K2 ∨ (Kn−k−1 +Kk−1). Since G ⊆ H, by Lemma 9, if G

is a proper subgraph of H, µ(G) < n − k, then G = K2 ∨ (Kn−k−1 + Kk−1), a
contradiction.

If 3 ≤ l ≤ k − 1, we can get H is Hamilton-connected, which contradicts the
assumptions of H.
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Indeed, let I be the graph induced by X ∪ Y \{u}, where u ∈ Y . Since
Kl−1 ∨Kk−1 ⊂ I, and l ≥ 3, we see that I is 2-connected. Furtherly, if x and y
are distinct nonadjacent vertices of I,

dI(x) + dI(y) ≥ 2k − 2 ≥ k + l − 1,

then I is Hamilton-connected by Lemma 1.
Then for any two distinct vertices x, y of H, we can get a Hamilton path of

H with x, y as endpoint. So, H is Hamilton-connected. For example, for any
x, y ∈ X. Let xP1u1vP2y be a Hamilton path of I, where v ∈ Y . Let M be a
subgraph of H, which is induced by V (H)\V (I). We note that M is a complete
graph, then M is Hamiltonian. So, there is a Hamilton cycle C : uP3v1u of M .
Now we delete the edges u1v, uv1, and add the edges u1u, vv1, then we get a path
xP1u1uP3v1vP2y be a Hamilton path of H. Similar methods prove the other
cases.

If l = k, we also can find that H is Hamilton-connected, which contradicts
the assumptions of H. For example, for any x ∈ X, y ∈ Z. Because every vertex
in Y is adjacent to every vertex in X, there is a path xP4v, which contains all
vertices of X ∪ Y , where v ∈ Y . Let N be a subgraph of H, which is induced by
Z ∪ {v}. We note that N is a complete graph, then N is Hamilton-connected.
So, there is a Hamilton path vP5w of N . Now, we get a path xP4vP5w being a
Hamilton path of H. Similar methods prove the other cases.

So, the result follows.

Theorem 11. Let k ≥ 1, n ≥ 2(k + 1)2, and let G be a graph of order n with

minimum degree δ(G) ≥ k. If

µ(G) ≥ n2

n− 1
− nk

n− 1
− 2√

n− 2
,

then G is traceable from every vertex, unless G = K1 ∨ (Kn−k−1 +Kk).

Proof. Let H = G ∨ K1. Then H be a graph of order n + 1, with minimum
degree δ(H) ≥ k + 1. By Lemma 7 and the assumption, we have

µ(H) >
n− 1

n
µ(G) + 2

√
n− 1

n

≥ n− 1

n

(
n2

n− 1
− nk

n− 1
− 2√

n− 1

)
+ 2

√
n− 1

n

= (n+ 1)− (k + 1).

Then by Theorem 10, we get H is Hamilton-connected, unless H = K2∨(Kn−k−1

+Kk).
So, according to Lemma 5, G is traceable from every vertex, unless G =

K1 ∨ (Kn−k−1 +Kk).
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Let ESn be the set of following graphs of even order n:

(i) Kn

2
,n
2

;

(ii) G1 ∨ G2, where G1 is a regular graph of order n − r with degree n
2 − r, G2

has r vertices, 1 ≤ r ≤ n
2 .

Let EWn be the set of following graphs of odd order n:

G1 ∨G2, where G1 is a regular graph of order n+ 1− r with degree n+1
2 − r, G2

has r − 1 vertices, 1 ≤ r ≤ n+1
2 .

Theorem 12. Let G be a graph of order n ≥ 2k, where k ≥ 2. If δ(G) ≥ k and

µ(G) ≤
√
(k − 1)(n− k − 1),

then G is Hamilton-connected, unless G = Kk−1,n−k−1∨K2 or G = Kk−1,n−k−1∨
O2 or G ∈ ESn and n = 2k.

Proof. LetH = Cn+1(G). IfH is Hamilton-connected, then so is G by Lemma 1.
Now we assume that H is not Hamilton-connected. Note that H is (n+1)-closure
of G, thus every two nonadjacent vertices u, v of H have degree sum at most n,
i.e.,

dH(u) + dH(v) ≥ n− 2, for any edge uv ∈ E(H).(10)

Since dG(u) ≥ k and dG(v) ≥ k, we have dH(u) ≤ n − k − 1 and dH(v) ≤
n−k−1. Then combining (10), k−1 ≤ dH(u) ≤ n−k−1, k−1 ≤ dH(v) ≤ n−k−1,
this implies that

dH(u)dH(v) ≥ dH(u)(n− 2− dH(u)) ≥ (k − 1)(n− k − 1),

with equality if and only if (up to symmetry), dH(u) = k−1 and dH(v) = n−k−1.
By Lemma 6, Perron-Frobenius theorem, and the assumption,

√
(k − 1)(n− k − 1) ≥ µ(G) ≥ µ(H) ≥ min

uv∈E(H)

√
dH(u)dH(v)

≥
√
(k − 1)(n− k − 1).

Therefore, µ(G) = µ(H) =
√
(k − 1)(n− k − 1), and dH(u) + dH(v) = n− 2

for any edge uv ∈ E(H), and dH(u) = k − 1, dH(v) = n − k − 1. Note that
every nontrivial component of H has a vertex of degree at least n

2 − 1 and hence
of order at least n

2 . This implies that H = Kn

2

+Kn

2

for n = 2k, or H contains
exactly one nontrivial component F which is either regular or semi-regular, and
n
2 ≤ |V (F )| ≤ n.
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Noting that µ(G) = µ(H), G ⊇ H, if H = Kn

2

+ Kn

2

and n = 2k, then

G = H by the Perron-Frobenius theorem. So G = Kn

2
,n
2

∈ ESn and n = 2k,

a contradiction. Therefore we assume that H contains exactly one nontrivial
component F .

First suppose F is a bipartite semi-regular graph. By the condition of the
degree sum of two adjacent vertices, we have F contains at least n−2 vertices. If
F contains n−2 vertices, then H = Kk−1,n−k−1+O2. Noting that µ(G) = µ(H),
G ⊇ H, then G = H or Kk−1,n−k−1 + K2 by the Perron-Frobenius theorem.
So G = (Kk−1 +Kn−k−1) ∨ K2 or (Kk−1 +Kn−k−1) ∨ O2, a contradiction. If
F contains n − 1 vertices, then the graph F with two partite sets X,Y has
|X| = k− 1, |Y | = n− k or |X| = k, |Y | = n− k− 1. Thus according to the edge
number of F , we have (n− k)(k− 1) = (k− 1)(n− k− 1) or (n− k− 1)(k− 1) =
k(n − k − 1), a contradiction. If F contains n vertices, then the graph F with
two partite sets X,Y has |X| = k, |Y | = n − k or |X| = k + 1, |Y | = n − k − 1
or |X| = k − 1, |Y | = n − k + 1. If |X| = k, |Y | = n − k, then according to the
edge number of F , we have (n − k − 1)k = (k − 1)(n − k), n = 2k, and then
H = F is Hamilton-connected, a contradiction. If |X| = k+1, |Y | = n−k− 1 or
|X| = k − 1, |Y | = n − k + 1, then according to the edge number of F , we have
(n− k− 1)(k+1) = (k− 1)(n− k− 1) or (n− k− 1)(k− 1) = (k− 1)(n− k+1),
a contradiction.

Next we assume F is a regular graph. Then for every v ∈ V (F ), dF (v) =
n
2 −

1, and n = 2k. If F = H, by a similar discussion as the above, G = H, and hence
G = H is regular of degree n

2 . By Lemma 8, G = Kn

2
,n
2

∈ ESn, or G is Hamilton-

connected, a contradiction. Otherwise, H = F ∪ Or, where r = n − |V (F )|
and 1 ≤ r ≤ n

2 . Noting that µ(G) = µ(H), we have G = F ∪ F1, where F1

is obtained from Or possibly adding some edges. Hence G = F ∨ F1 ∈ ESn, a
contradiction.

Theorem 13. Let G be a graph of order n ≥ 2k + 1, where k ≥ 2. If δ(G) ≥ k
and

µ(G) ≤
√
k(n− k − 1),

then G is traceable from every vertex, unless G = Kk,n−k−1 ∨ K1 or G ∈ EWn

and n = 2k + 1.

Proof. Let G′ = G ∨ K1. We note that |V (G′)| = n + 1, µ(G′) = µ(G) ≤√
k(n− k − 1), δ(G′) ≥ k+1. By Theorem 12, we get G′ is Hamilton-connected,

unless G′ = Kk,n−k−1∨K2 or G′ = Kk,n−k−1∨O2 or G′ ∈ ESn+1 and n = 2k+1.
By Lemma 5 and the construction of G′, we have G is traceable from every vertex,
unless G = Kk,n−k−1 ∨K1 or G ∈ EWn and n = 2k + 1.
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3. (Sigless Laplacian) Spectral Radius Conditions for a Nearly
Balanced Bipartite Graph to be Traceable

We note that if a bipartite graph G = (X,Y ;E) is traceable, G is a balanced
bipartite graph or a nearly balanced bipartite graph. Li and Ning [4] have pre-
sented some (signless Laplacian) spectral radius conditions for a balanced bipar-
tite graph to be Hamiltonian. If G = (X,Y ;E) is a nearly balanced bipartite
graph with |X| = |Y | − 1, we can obtained G′ from G by adding a vertex which
is adjacent to every vertex in Y , then G′ is a balanced partite graph. Note that
G is traceable if and only if G′ is Hamiltonian. Inspired by this, in this section,
we will study the conditions for a nearly balanced bipartite graph to be traceable
in terms of spectral radius, signless Laplacian spectral radius of the graph or its
quasi-complement.

Let G be balanced bipartite graph of order 2n. The bipartite closure of G,
denoted by clB(G), is the graph obtained from G by recursively joining pairs of
nonadjacent vertices in different partite sets whose degree sum is at least n + 1
until no such pair remains. Note that dclB(G)(u) + dclB(G)(v) ≤ n for any pair of
nonadjacent vertices u and v in the distant partite sets of clB(G).

Lemma 14 (Bondy and Chvátal [1]). A balanced bipartite graph G is Hamilto-

nian if and only if clB(G) is Hamiltonian.

Before introducing our results, we need some notations. In order to facilitate
understanding, in this paper, when we mention a bipartite graph, we always fix
its partite sets, e.g., On,m and Om,n are considered as different bipartite graphs,
unless m = n.

Let G1, G2 be two bipartite graphs, with the bipartition {X1, Y1} and {X2,
Y2}, respectively. We use G1 ⊔ G2 to denote the graph obtained from G1 + G2

by adding all possible edges between X1 and Y2 and all possible edges between
Y1 and X2. We define some classes of graphs as follows.

Bk
n = Ok,n−k ⊔Kn−k,k (1 ≤ k ≤ n/2),

Ck
n = Ok,n−k ⊔Kn−k−1,k (1 ≤ k ≤ n/2).

Note that e(Bk
n) = n(n − k) + k2, e(Ck

n) = n(n − k − 1) + k2, µ(B̂k
n) = µ(Ĉk

n)
= µ(Kk,n−k) =

√
k(n− k), and Bk

n is not Hamiltonian, Ck
n is not traceable.

By Perron-Frobenius theorem, µ(Bk
n) > µ(Kn,n−k) =

√
n(n− k), µ(Ck

n) >
µ(Kn,n−k−1) =

√
n(n− k − 1).

Let G = (X,Y ) be a bipartite graph with two partite sets X, Y . Denote by
Bk
n(1 ≤ k ≤ n/2) the family of graphs {Ok,n−k ⊔ G(X,Y ), where |X| = n − k,

|Y | = k}. Denote by Ck
n(1 ≤ k ≤ n/2) the family of graphs {Ok,n−k ⊔ G(X,Y ),

where |X| = n− k − 1, |Y | = k}.
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2

6
B

2

6
C

Figure 1. Graphs B2

6
and C2

6
.

Lemma 15 (Li and Ning [4]). Let G be a balanced bipartite graph of order 2n.
If δ(G) ≥ k ≥ 1, n ≥ 2k + 1 and

e(G) > n(n− k − 1) + (k + 1)2,

then G is Hamiltonian unless G ⊆ Bk
n.

Lemma 16. Let G = (X,Y ) be a nearly balanced bipartite graph of order 2n−1.
If δ(G) ≥ k ≥ 1, n ≥ 2k + 1, and

e(G) > n(n− k − 2) + (k + 1)2,

then G is traceable unless G ⊆ Ck
n.

Proof. Let |X| = n − 1, |Y | = n, and let G′ be obtained from G by adding a
vertex which is adjacent to every vertex in Y . Then G′ be a balanced bipartite
graph. Note that G is traceable if and only if G′ is Hamiltonian. We have
|V (G′)| = 2n, δ(G′) ≥ δ(G) ≥ k ≥ 1, n ≥ 2k + 1, and

e(G′) = e(G) + n > n(n− k − 2) + (k + 1)2 + n = n(n− k − 1) + (k + 1)2.

By Lemma 15, G′ is Hamiltonian unless G′ ⊆ Bk
n. Thus G is traceable unless

G ⊆ Ck
n.

Lemma 17 (Bhattacharya, Friedland and Peled [6]). Let G be a bipartite graph.

Then

µ(G) ≤
√
e(G).

Lemma 18 (Ferrara, Jacobson and Powell [9]). Let G be a non-Hamiltonian

balanced bipartite graph of order 2n. If d(u)+d(v) ≥ n for every two nonadjacent

vertices u, v in distinct partite sets, then either G ∈ ⋃n/2
k=1 Bk

n, or G = Γ1 or Γ2

for n = 4.
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1
Γ

2
Γ

Figure 2. Graphs Γ1 and Γ2.

Lemma 19 (Feng and Yu [8], Yu and Fan [21]). Let G be a graph with non-empty

edge set. Then

q(G) ≤ max




d(u) +

∑
v∈N(u)

d(v)

d(u)
: u ∈ V (G)





.

Lemma 20. Let G be a bipartite graph with two partite sets X, Y , and max{|X|,
|Y |} = n. Then

q(G) ≤ e(G)

n
+ n.

Proof. If G is an edgeless graph, then q(G) = 0, and the result is trivially true.
Now assume G contains at lest one edge. Let x ∈ V (G), and

d(x) +

∑
v∈N(x)

d(v)

d(x)
= max




d(u) +

∑
v∈N(u)

d(v)

d(u)
: u ∈ V (G)





.

By Lemma 19, for every v ∈ V (G), dG(v) ≤ max{|X|, |Y |} = n, we get

e(G)

n
+ n− q(G) ≥




∑
v∈N(x)

d(v)

n
+ n


−


d(x) +

∑
v∈N(x)

d(v)

d(x)




= (n− d(x))


1−

∑
v∈N(x)

d(v)

nd(x)


 ≥ 0.

The result follows.

Lemma 21. Let k ≥ 1, n ≥ k3

2 +k+2. If G is a subgraph of Ck
n, δ(G) ≥ k, then

µ(G) <
√
n(n− k − 1), unless G = Ck

n.
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Proof. The proof is similar to the proof of Lemma 9. Set for short µ := µ(G),
and let x = (xv1 , . . . , xv2n−1

)T be a unit Perron vector of G. By (3), we have

µ = xTA(G)x.

Assume that G is a proper subgraph of Ck
n. By Perron-Frobenius theorem,

we may assume that G is obtained by omitting just one edge uv of Ck
n.

Write X for the set of vertices of Ck
n of degree k, let Y be the set of vertices

of Ck
n of degree n, write Z for the set of vertices of Ck

n of degree n− k− 1, let H
be the set of the remaining k vertices of Ck

n of degree n− 1.
Since δ(G) ≥ k, we can see that G must contain all the edges between X and

H. Therefore {u, v} ⊂ Y ∪ H or {u, v} ⊂ Y ∪ Z, with two possible cases: (a)
u ∈ Y, v ∈ H; (b) u ∈ Y, v ∈ Z. We shall show that case (b) yields a graph of no
smaller spectral radius than case (a).

Indeed, by (2), we have xi = xj for any i, j ∈ X; likewise xi = xj for any
i, j ∈ Y \{u}, for any i, j ∈ Z\{v} and for any i, j ∈ H\{v}. Thus, let

x := xi, i ∈ X,

y := yi, i ∈ Y \{u},
z := zi, i ∈ Z\{v},
h := hi, i ∈ H\{v}.

Suppose that case (a) holds, that is, u ∈ Y, v ∈ H. Choose a vertex w ∈ Z,
remove the edge uw, and add the edge uv. Then the obtained graph G′ is covered
by case (b).

If xw ≤ xv, we have

xTA(G′)x− xTA(G)x = 2xu(xv − xw) ≥ 0.

If xw > xv, swap the entries xv and xw, write x′ for the resulting vector. We
note that x′ is also a unit vector, and have that

x′TA(G′)x′ − xTA(G)x = 2(xw − xv)
∑

i∈X

xi ≥ 0.

Then by (3), µ(G′) ≥ µ(G), as claimed.
Therefore, we may assume that u ∈ Y, v ∈ Z, and set t := xu, s := xv. Note

that the 2n− 1 eigenvalue-equations of G are reduced to six equations involving
just the unknowns x, y, z, h, t, and s.

µx = kh,

µy = (n− k − 1)z + kh+ s,

µz = (n− k − 2)y + t,
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µh = kx+ (n− k − 2)y + t,

µt = (n− k − 1)z + kh,

µs = (n− k − 2)y.

We find that

x =
k

µ
h,

t =
(n− k − 1)

(
µ2 − k2

)
+ kµ2

µ3
h,

s =

(
µ2 − (n− k − 1)

) (
µ2 − k2

)
− kµ2

µ4
h.

Furtherly, note that if we remove all edges between X and H, and add the
edge uv to G, we obtain the graph Kn,n−k−1 +Kk. Letting x′′ be the restriction
of x to Kn,n−k−1, we find that

x′′TA(Kn,n−k−1)x
′′ = xTA(G)x+ 2st− 2k2xh = µ+ 2st− 2k2xh.

But since ‖x′′‖2 = 1− kx2, we see that

µ+ 2st− 2k2xh = x′′TA(Kn,n−k−1)x
′′ ≤ µ(Kn,n−k−1)‖x′′‖2

=
√
n(n− k − 1)(1− kx2).

Assume for a contradiction that µ ≥
√
n(n− k − 1). This assumption to-

gether with the above inequality yields

µ+ 2st− 2k2xh ≤ µ
(
1− kx2

)
,

and therefore

2st− 2k2xh ≤ −kx2µ.

Now, first combining above equality about x, then combining above equalities
about t and s, we have

k3 ≥ 2µ

h2
st ≥ 2(n− k − 1)

(
µ2 − (n− k − 1)

) (
µ2 − k2

)2

µ6

− 2k(n− k − 1)
(
µ2 − k2

)

µ4
.
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Applying Bernoulli’s inequality to the right side, we get

k3 ≥ 2(n− k − 1)

(
µ2 − (n− k − 1)

µ2

)(
µ+ k

µ

)2(µ− k

µ

)2

− 2k(n− k − 1)

µ2

(
1− k2

µ2

)

= 2(n− k − 1)

(
1− n− k − 1

µ2

)(
1 +

k

µ

)2(
1− k

µ

)2

− 2k(n− k − 1)

µ2
+

2k3(n− k − 1)

µ4

> 2(n− k − 1)

(
1− n− k − 1

µ2

)
− 2k(n− k − 1)

µ2
.

Using the inequality µ ≥
√
n(n− k − 1), we easily find that

k3 > 2(n− k − 1)− 2(n− 1)

n
> 2(n− k − 2),

and then n < k3

2 + k + 2, a contradiction.

Theorem 22. Let G be a nearly balanced bipartite graph of order 2n − 1(
n ≥ max

{
k3

2 + k + 2, (k + 1)2
})

, where k ≥ 1. If δ(G) ≥ k and

µ(G) >
√
n(n− k − 1),

then G is traceable, unless G = Ck
n.

Proof. By the assumption and Lemma 17,
√
n(n− k − 1) < µ(G) ≤

√
e(G).

Thus, we obtain

e(G) > n(n− k − 1) ≥ n(n− k − 2) + (k + 1)2,

when n ≥ max
{
k3

2 + k + 2, (k + 1)2
}
> 2k + 1, by Lemma 16, G is traceable or

G ⊆ Ck
n. But if G ⊆ Ck

n, then µ(G) <
√
n(n− k − 1), unless G = Ck

n by Lemma
21, a contradiction.

Theorem 23. Let G = (X,Y ) be a nearly balanced bipartite graph of order 2n−1
(n ≥ 2k), where k ≥ 1. If δ(G) ≥ k, and

µ(Ĝ) ≤
√
k(n− k),

then G is traceable, unless G ∈ ⋃n/2
k=1 Ck

n or Γ2 − v, where dΓ2
(v) = 4.
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Proof. Let |X| = n − 1, |Y | = n, G′ be obtained from G by adding a vertex
which is adjacent to every vertex in Y . Then G′ is a balanced partite graph.
Note that G is traceable if and only if G′ is Hamiltonian. Let H = clB(G

′). If
H is Hamiltonian, then so is G′ by Lemma 14. Now we assume that H is not
Hamiltonian. Note that H is bipartite closure of G, thus every two nonadjacent
vertices u, v in distant partite sets of H have degree sum at most n, i.e.,

(11) d
Ĥ
(u) + d

Ĥ
(v) = n− dH(u) + n− dH(v) ≥ n,

for any edge uv ∈ E(Ĥ).
This implies that Ĥ contains only one component or Ĥ = Ks,n−s +Kt,n−t,

s, t ≥ 1. If Ĥ = Ks,n−s + Kt,n−t, s, t ≥ 1, it contradicts the structure of Ĥ (it

must contain an isolated vertex). So, Ĥ contains only one component.
Since δ(H) ≥ δ(G

′

) ≥ δ(G) ≥ k, we can see that d
Ĥ
(u) ≤ n − k and

d
Ĥ
(v) ≤ n − k. Thus by (11), we have k ≤ d

Ĥ
(u) ≤ n − k, k ≤ d

Ĥ
(v) ≤ n − k,

which implies that

d
Ĥ
(u)d

Ĥ
(v) ≥ d

Ĥ
(u)(n− d

Ĥ
(u)) ≥ k(n− k),

with equality if and only if (up to symmetry) d
Ĥ
(u) = k, d

Ĥ
(v) = n − k. By

Lemma 6,
√

k(n− k) ≥ µ(Ĝ) = µ(Ĝ′) ≥ µ(Ĥ) ≥ min
uv∈E(Ĥ)

√
d
Ĥ
(u)d

Ĥ
(v) ≥

√
k(n− k),

which implies that µ(Ĥ) =
√
k(n− k) and there is an edge uv ∈ E(Ĥ) such

that d
Ĥ
(u) = k, d

Ĥ
(v) = n − k. Let F be the component of Ĥ which contains

uv. By Lemma 6, F is a bipartite semi-regular graph with partite sets X ′ ⊆ X,
and Y ′ ⊆ Y , and for any vertex x ∈ X ′, dF (x) = k, and any vertex y ∈ Y ′,
dF (y) = n− k. Then dH(u) + dH(v) = n for every two nonadjacent vertices u, v

in distinct partite sets of H. By Lemma 18, H ∈ ⋃n/2
k=1 Bk

n or H = Γ1 or Γ2 for

n = 4 and k = 2. Then G
′ ⊆ Bk

n (1 ≤ k ≤ n/2) or G
′ ⊆ Γ1 or Γ2 for n = 4

and k = 2. By Perron-Frobenius theorem, every (spanning) subgraph of Γ1, Γ2

or Bk
n, 1 ≤ k ≤ n/2, if it is not Γ1 or Γ2 or a graph in B

k
n, 1 ≤ k ≤ n/2, then

it has the quasi-complement with spectral radius greater than
√
k(n− k). Thus

G
′ ∈ ⋃n/2

k=1 Bk
n or Γ1 or Γ2 for n = 4 and k = 2. By the construction of G

′

, we get

G ∈ ⋃n/2
k=1 Ck

n or Γ2 − v, where dΓ2
(v) = 4, a contradiction.

Theorem 24. Let G be a nearly balanced bipartite graph of order 2n − 1
(
n ≥

(k + 1)2
)
, where k ≥ 1. If δ(G) ≥ k and

q(G) >
n(2n− k − 2) + (k + 1)2

n
,

then G is traceable, unless G ⊆ Ck
n.
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Proof. By the assumption and Lemma 20,

n(2n− k − 2) + (k + 1)2

n
< q(G) ≤ e(G)

n
+ n.

Thus, we obtain

e(G) > n(n− k − 1) ≥ n(n− k − 2) + (k + 1)2,

when n ≥ (k + 1)2, by Lemma 16, G is traceable or G ⊆ Ck
n.

Remark 25. In Theorem 24, we cannot change G ⊆ Ck
n to G = Ck

n like in The-
orem 22. In fact, we can find a subgraph G ⊂ Ck

n, which satisfies the conditions

of Theorem 24, such that q(G) > 2n− k − 1 ≥ n(2n−k−2)+(k+1)2

n .

Proof. Assume that G is a proper subgraph of Ck
n, n ≥ (k+1)2, k ≥ 1, δ(G) ≥ k,

and has the maximum signless Laplacian spectral. By Perron-Frobenius theorem,
G is obtained by omitting just one edge uv of Ck

n. Set for short q := q(G), and
let x = (xv1 , . . . , xv2n−1

)T be a positive unit eigenvector to q. We have

q = xTQ(G)x = 2
∑

uv∈E(G)

(xu + xv)
2,(12)

and

(q − dG(v))xv =
∑

u∈NG(v)

xu,(13)

for each vertex v ∈ V (G). Equation (13) is called the signless Laplacian eigen-
value-equation for the graph G. In addition, for an arbitrary unit vector x ∈ R

n,

q ≥ xTQ(G)x,(14)

with equality holds if and only if x is an eigenvector of Q(G) according to q.
Write X for the set of vertices of Ck

n of degree k, let Y be the set of vertices
of Ck

n of degree n, write Z for the set of vertices of Ck
n of degree n− k− 1, let H

be the set of the remaining k vertices of Ck
n of degree n− 1.

Since δ(G) ≥ k, we see that G must contain all the edges between X and
H. Therefore {u, v} ⊂ Y ∪ H or {u, v} ⊂ Y ∪ Z, with two possible cases: (a)
u ∈ Y, v ∈ H; (b) u ∈ Y, v ∈ Z. We shall show that case (b) yields a graph of no
smaller signless Laplacian spectral radius than case (a).

Indeed, by (13), we have xi = xj for any i, j ∈ X; likewise xi = xj for any
i, j ∈ Y \{u}, for any i, j ∈ Z\{v} and for any i, j ∈ H\{v}. Thus, let

x := xi, i ∈ X,

y := yi, i ∈ Y \{u},
z := zi, i ∈ Z\{v},
h := hi, i ∈ H\{v}.
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Suppose that case (a) holds, that is, u ∈ Y, v ∈ H. Choose a vertex w ∈ Z,
remove the edge uw, and add the edge uv. Then the obtained graph G′ is covered
by case (b).

If xw ≤ xv, we have

xTQ(G′)x− xTQ(G)x = 2(xv + xu)
2 − 2(xw + xu)

2 ≥ 0.

If xw > xv, swap the entries xv and xw, write x′ for the resulting vector. We
note that x′ is a unit vector, and have that

x′TQ(G′)x′ − xTQ(G)x = 2

(
xw +

∑

i∈X

xi

)2

− 2

(
xv +

∑

i∈X

xi

)2

≥ 0.

Then by (14), q(G′) ≥ q(G).
Therefore, G is obtained by omitting just one edge uv of Ck

n, where u ∈
Y, v ∈ Z. Now set t := xu, s := xv. Note that the 2n − 1 signless Lapla-
cian eigenvalue-equations of G are reduced to six equations involving just the
unknowns x, y, z, h, t, and s. By Equation (13), we have

(q − k)x = kh,

(q − n)y = (n− k − 1)z + kh+ s,

(q − (n− k − 1))z = (n− k − 2)y + t,

(q − (n− 1))h = kx+ (n− k − 2)y + t,

(q − (n− 1))t = (n− k − 1)z + kh,

(q − (n− k − 2))s = (n− k − 2)y.

Transform the above equations into a matrix equation (B − qI)x = 0, where
x = (x, y, z, h, t, s)T ,

B =




k 0 0 k 0 0
0 n n− k − 1 k 0 1
0 n− k − 2 n− k − 1 0 1 0
k n− k − 2 0 n− 1 1 0
0 0 n− k − 1 k n− 1 0
0 n− k − 2 0 0 0 n− k − 2




.

Let

f(x) = det(B − xI) = −x(n− 1− x)(x4 + (−4n+ k + 4)x3

+ (−nk + 6 + 5n2 − 2k2 − 11n+ k)x2

+ (7n2 + 5nk + 2 + 6nk2 − 2n2k − 7n− 2n3 − 6k2 − 2k3 − 3k)x

+ 2nk3 − k3 − 2k − 3k2 + 8nk2 + 7nk + 2n3k − 4n2k2 − 7n2k).
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Thus, q is the largest root of f(x) = 0, and when x > q, f(x) is monotonically
increasing.

But when k ≥ 1, n ≥ (k + 1)2, we have

f(2n− k − 1) = (k + 1− 2n)(k − n)
((
4− k2

)
n2

+
(
− 6k + k3 − 4

)
n+ 1 + 3k2 + 3k + k3

)
< 0,

which implies that q > 2n− k − 1, and the result follows.
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