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Abstract

We provide a short proof of a conjecture of Davila and Kenter concern-
ing a lower bound on the zero forcing number Z(G) of a graph G. More
specifically, we show that Z(G) ≥ (g − 2)(δ − 2) + 2 for every graph G of
girth g at least 3 and minimum degree δ at least 2.
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1. Introduction

We consider finite, simple, and undirected graphs and use standard terminology.
For an integer n, let [n] denote the set of positive integers at most n. For

a graph G, a set Z of vertices of G is a zero forcing set of G if the elements of
V (G) \Z have a linear order u1, . . . , uk such that, for every i in [k], there is some
vertex vi in Z ∪{uj : j ∈ [i− 1]} such that ui is the only neighbor of vi outside of
Z ∪ {uj : j ∈ [i− 1]}; in particular, NG[vi] \ (Z ∪NG[v1] ∪ · · · ∪NG[vi−1]) = {ui}
for i ∈ [k]. The zero forcing number Z(G) of G, defined as the minimum order
of a zero forcing set of G, was proposed by the AIM Minimum Rank - Special
Graphs Work Group [1] as an upper bound on the nullity of matrices associated
with a given graph. The same parameter was also considered in connection with
quantum physics [5, 7, 14] and logic circuits [6].
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In [11] Davila and Kenter conjectured that

Z(G) ≥ (g − 2)(δ − 2) + 2(1)

for every graph G of girth g at least 3 and minimum degree δ at least 2. They
observe that, for g > 6 and sufficiently large δ in terms of g, the conjectured
bound follows by combining results from [3] and [8]. For g ≤ 6, it was shown in
[12, 13], Davila and Henning [9] showed it for 7 ≤ g ≤ 10, and, eventually, Davila,
Kalinowski, and Stephen [10] completed the proof. The proof in [10] is rather
short itself but relies on [12, 13, 9]. While the cases g ≤ 6 have rather short
proofs, the proof in [9] for 7 ≤ g ≤ 10 extends over more than eleven pages and
requires a detailed case analysis. Therefore, the complete proof of (1) obtained
by combining [9, 10, 12, 13] is rather long.

In the present note we propose a considerably shorter and simpler proof. Our
approach only requires a special treatment for the triangle-free case g = 4 [12],
involves a new lower bound on the zero forcing number, and an application of
the Moore bound [2].

2. Proof of (1)

Our first result is a natural generalization of the well known fact Z(G) ≥ δ(G)
[4], where δ(G) is the minimum degree of a graph G. For a set X of vertices of a
graph G of order n, let NG(X) =

(
⋃

u∈X NG(u)
)

\X, NG[X] = X ∪NG(X), and
δp(G) = min {|NG(X)| : X ⊆ V (G) and |X| = p} for p ∈ [n]. Note that δ1(G)
equals δ(G).

Lemma 1. If G is a graph of order n, then Z(G) ≥ δp(G) for every p ∈ [n].

Proof. Let Z be a zero forcing set of minimum order. Let u1, . . . , uk and
v1, . . . , vk be as in the introduction. Since, by definition, δp(G) ≤ n − p, the
result is trivial for p ≥ k = n − |Z|, and we may assume that p < k. As noted
above, we have NG[vi] \ (Z ∪ NG[v1] ∪ · · · ∪ NG[vi−1]) = {ui} for i ∈ [k], which
implies that X = {v1, . . . , vp} is a set of p distinct vertices of G. Furthermore, it
implies that |NG[X]| ≤ |Z|+p, and, hence, δp(G) ≤ |NG(X)| = |NG[X]|−p ≤ |Z|
as required.

For later reference, we recall the Moore bound for irregular graphs.

Theorem 2 (Alon, Hoory and Linial [2]). If G is a graph of order n, girth at

least 2r for some integer r, and average degree d at least 2, then n ≥ 2
r−1
∑

i=0
(d−1)i.

We also need the following numerical fact.
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Lemma 3. For positive integers p and q with p ≥ 5 and 2p− 1 ≤ q ≤
(

p
2

)

,

(

1 +
2(q − p)

q + p

)⌈ p

2
⌉+1

> q − p+ 1.

Proof. For p ≥ 17, it follows from q ≥ 2p− 1 that 1 + 2(q−p)
q+p

≥ 1.64, and, since

1.64⌈
p

2
⌉+1 >

(

p
2

)

− p+ 1, the desired inequality follows for these values of p. For
the finitely many pairs (p, q) with 5 ≤ p ≤ 16 and 2p − 1 ≤ q ≤

(

p
2

)

, we verified
it using a computer.

We proceed to the proof of (1).

Theorem 4. If G is a graph of girth g at least 3 and minimum degree δ at least

2, then Z(G) ≥ (g − 2)(δ − 2) + 2.

Proof. For g = 3, the inequality simplifies to the known fact Z(G) ≥ δ(G),
and, for g = 4, it has been shown in [12]. Now, let g ≥ 5. Let X be a set of
g − 2 vertices of G with |NG(X)| = δg−2(G), and, let N = NG(X). By the girth
condition, the components of G[X] are trees, and no vertex in N has more than
one neighbor in any component of G[X].

Let K1, . . . ,Kp be the vertex sets of the components of G[X].
If p ≥ 3 and there are two vertices in N that both have neighbors in the

same two distinct components of G[X], then G contains a cycle of order at most
2 + |Ki| + |Kj | ≤ 2 + (g − 2) − (p − 2) < g which is a contradiction. Thus,
0 ≤ |NG (Ki) ∩ NG (Kj) | ≤ 1 for 1 ≤ i < j ≤ n. Similarly, if p = 2, and there
are three vertices u, v, and w in N that all three have neighbors in K1 and K2,
then let ui, vi, and wi denote the corresponding neighbors in Ki for i ∈ {1, 2},
respectively. If any of u1, v1, and w1 are distinct, then G[K1] contains a path
between two of the vertices u1, v1, and w1 avoiding the third, and G contains a
cycle of order at most 2+ (|K1| − 1)+ |K2| = g− 1, which is a contradiction. By
symmetry, this implies u1 = v1 = w1 and u2 = v2 = w2, and G contains the cycle
u1uu2vu1 of order 4, which is a contradiction. Thus, 0 ≤ |NG(K1)∩NG(K2)| ≤ 2.

Combining these observations, we obtain

∑

1≤i<j≤p

|NG(Ki) ∩NG(Kj)| ≤

{ (

p
2

)

, for p ≥ 3, and

2p− 2, for p ∈ {1, 2}.
(2)

Let the bipartite graph H arise from G[X ∪N ] by contracting the component Ki

of G[X] to a single vertex ui for every i ∈ [p], and removing all edges of G[N ].
Note that

∑

i∈[p] dH(ui)−
∑

v∈N dH(v) = 0 in the bipartite graph H with partite

sets {u1, . . . , up} and N . By the girth condition, no vertex in N has two neighbors
in Ki, and Ki induces a tree, which implies dH(ui) =

∑

v∈Ki
dG(v)−2(|Ki|−1) ≥
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δ|Ki| − 2(|Ki| − 1) for every i ∈ [p]. Let q =
∑

v∈N (dH(v) − 1). Now, Lemma 1
implies

Z(G) ≥ δg−2(G) = |N | =
∑

v∈N

1 +





∑

i∈[p]

dH(ui)−
∑

v∈N

dH(v)





=
∑

i∈[p]

dH(ui)− q ≥

p
∑

i=1

(

δ|Ki| − 2(|Ki| − 1)
)

− q

= (g − 2)(δ − 2) + 2 + ((2p− 2)− q).

If q ≤ 2p− 2, then this implies (1). Hence, we may assume q ≥ 2p− 1.
Note that

2p− 1 ≤ q =
∑

v∈N

(dH(v)− 1) ≤
∑

v∈N

(

dH(v)

2

)

=
∑

1≤i<j≤p

|NG(Ki) ∩NG(Kj)|,

where the last equality follows, because every vertex v in N contributes exactly
(

dH(v)
2

)

to the right hand side. Now, (2) implies p ≥ 5.
Let H ′ arise by removing all vertices of degree 1 from H. Since, for every

i ∈ [p], we have dH(ui) ≥ δ|Ki| − 2(|Ki| − 1) ≥ 2, the graph H ′ contains all p
vertices u1, . . . , up. Let H

′ contain r vertices of N . Since H ′ has order p+ r and
size

∑

v∈N∩V (H′)

dH(v) = r +
∑

v∈N

(dH(v)− 1) = r + q,

its average degree is at least 2(r+q)
p+r

, which is at least 2, because q ≥ 2p− 1 ≥ p.

If H ′ contains a cycle of order 2ℓ, then G contains a cycle that alternates
between X and N , contains ℓ vertices from N , and avoids p−ℓ of the components
of G[X], which implies that this cycle has order at most ℓ + (|X| − (p − ℓ)) =
ℓ+(g− 2)− (p− ℓ). By the girth condition, this implies that the bipartite graph
H ′ has girth at least p+ 2, if p is even, and p+ 3, if p is odd.

Using Theorem 2 and q ≥ r, we obtain

p+ r ≥ 2

⌈ p

2
⌉

∑

i=0

(

2(r + q)

p+ r
− 1

)i

= 2
p+ r

2(q − p)





(

1 +
2(q − p)

p+ r

)⌈ p

2
⌉+1

− 1





≥ 2
p+ r

2(q − p)





(

1 +
2(q − p)

p+ q

)⌈ p

2
⌉+1

− 1



 ,

which implies
(

1 + 2(q−p)
q+p

)⌈ p

2
⌉+1

≤ q − p + 1. Since q ≥ 2p − 1, and, by (2),

q ≤
(

p
2

)

, this contradicts Lemma 3, which completes the proof.
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