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Abstract

We provide a short proof of a conjecture of Davila and Kenter concern-
ing a lower bound on the zero forcing number Z(G) of a graph G. More
specifically, we show that Z(G) > (g — 2)(6 — 2) + 2 for every graph G of
girth g at least 3 and minimum degree § at least 2.
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1. INTRODUCTION

We consider finite, simple, and undirected graphs and use standard terminology.

For an integer n, let [n] denote the set of positive integers at most n. For
a graph G, a set Z of vertices of G is a zero forcing set of G if the elements of
V(G)\ Z have a linear order uy, ..., uy such that, for every i in [k], there is some
vertex v; in ZU{u; : j € [i — 1]} such that u; is the only neighbor of v; outside of
Z U{uj 1 j € [i —1]}; in particular, Ng[v;] \ (Z U Ng[v1]U---U Nglvi—1]) = {w;}
for i € [k]. The zero forcing number Z(G) of G, defined as the minimum order
of a zero forcing set of G, was proposed by the AIM Minimum Rank - Special
Graphs Work Group [1] as an upper bound on the nullity of matrices associated
with a given graph. The same parameter was also considered in connection with
quantum physics [5, 7, 14] and logic circuits [6].
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In [11] Davila and Kenter conjectured that
(1) Z2(G) = (g-2)(0 -2) +2

for every graph G of girth g at least 3 and minimum degree § at least 2. They
observe that, for ¢ > 6 and sufficiently large § in terms of g, the conjectured
bound follows by combining results from [3] and [8]. For g < 6, it was shown in
[12, 13], Davila and Henning [9] showed it for 7 < ¢g < 10, and, eventually, Davila,
Kalinowski, and Stephen [10] completed the proof. The proof in [10] is rather
short itself but relies on [12, 13, 9]. While the cases g < 6 have rather short
proofs, the proof in [9] for 7 < g < 10 extends over more than eleven pages and
requires a detailed case analysis. Therefore, the complete proof of (1) obtained
by combining [9, 10, 12, 13] is rather long.

In the present note we propose a considerably shorter and simpler proof. Our
approach only requires a special treatment for the triangle-free case g = 4 [12],

involves a new lower bound on the zero forcing number, and an application of
the Moore bound [2].

2. Proor oF (1)

Our first result is a natural generalization of the well known fact Z(G) > 6(G)
[4], where §(G) is the minimum degree of a graph G. For a set X of vertices of a
graph G of order n, let Ng(X) = (Uyex Na(w)) \ X, Ng[X] = X UNg(X), and
0p(G) = min {|Ng(X)| : X C V(G) and |X| = p} for p € [n]. Note that 6;(G)
equals 0(G).

Lemma 1. If G is a graph of order n, then Z(G) > 6,(G) for every p € [n].

Proof. Let Z be a zero forcing set of minimum order. Let ui,...,u; and
v1,...,V; be as in the introduction. Since, by definition, 6,(G) < n — p, the
result is trivial for p > k = n — |Z|, and we may assume that p < k. As noted
above, we have Ng[v;| \ (Z U Ng[vi1] U --- U Ng[vi—1]) = {w;} for i € [k], which

implies that X = {vy,...,v,} is a set of p distinct vertices of G. Furthermore, it
implies that |[N¢[X]| < |Z]|+p, and, hence, 6,(G) < |Ng(X)| = |Ng[X]|—p < |Z]
as required. [

For later reference, we recall the Moore bound for irregular graphs.

Theorem 2 (Alon, Hoory and Linial [2]). If G is a graph of order n, girth at
r—1 )

least 2r for some integer r, and average degree d at least 2, thenn > 2y (d—1)".
i=0

We also need the following numerical fact.
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Lemma 3. For positive integers p and q withp > 5 and 2p —1 < ¢q < (g),

_ o\ 51+
<1+2(qq+}f)) >q—p+1.

Proof. For p > 17, it follows from ¢ > 2p — 1 that 1 + % > 1.64, and, since
1.64(%1'H > (‘g) — p+ 1, the desired inequality follows for these values of p. For
the finitely many pairs (p,q) with 5 <p <16 and 2p — 1 < ¢ < (72:'), we verified
it using a computer. [

We proceed to the proof of (1).

Theorem 4. If G is a graph of girth g at least 3 and minimum degree 0 at least
2, then Z(G) > (g —2)(6 — 2) + 2.

Proof. For g = 3, the inequality simplifies to the known fact Z(G) > §(G),
and, for ¢ = 4, it has been shown in [12]. Now, let ¢ > 5. Let X be a set of
g — 2 vertices of G with |Ng(X)| = d;—2(G), and, let N = Ng(X). By the girth
condition, the components of G[X] are trees, and no vertex in N has more than
one neighbor in any component of G[X].

Let K, ..., K, be the vertex sets of the components of G[X].

If p > 3 and there are two vertices in N that both have neighbors in the
same two distinct components of G[X], then G contains a cycle of order at most
24+ |K;| + |Kj] <24 (9—2)— (p—2) < g which is a contradiction. Thus,
0 < |Ng(K;) N Ng (Kj)| <1forl<i<j<n. Similarly, if p = 2, and there
are three vertices u, v, and w in NV that all three have neighbors in K; and Ko,
then let u;, v;, and w; denote the corresponding neighbors in K; for ¢ € {1,2},
respectively. If any of uj, vy, and w; are distinct, then G[K;] contains a path
between two of the vertices u1, v1, and wi avoiding the third, and G contains a
cycle of order at most 2+ (|K1| — 1) + |K2| = g — 1, which is a contradiction. By
symmetry, this implies u; = v1 = wy and us = vy = ws, and G contains the cycle
ujuugvuy of order 4, which is a contradiction. Thus, 0 < |[Ng(K1)NNg(K2)| < 2.

Combining these observations, we obtain

(), for p > 3, and

(2) Z |NG(K1) ﬂNG(KJN < { 2p—2, forpe {1,2}-

1<i<j<p

Let the bipartite graph H arise from G[X U N] by contracting the component K;
of G[X] to a single vertex u; for every i € [p], and removing all edges of G[N].
Note that Zie[p] dr(u;) =Y yen dr(v) = 0 in the bipartite graph H with partite
sets {u1,...,up} and N. By the girth condition, no vertex in N has two neighbors
in K;, and K; induces a tree, which implies dpy (u;) = ), c ¢, da(v) —2(| K| —1) >
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0| K;| — 2(|K;| — 1) for every i € [p]. Let ¢ =} n(dr(v) —1). Now, Lemma 1
implies

Z(G) > 0g-2(G) = N[ = > 1+ | Y du(w)— > du(v)
veEN i€[p] vEN
=" di(u) — g Z(6|K|f2|f<|f1>)
=

=(9g-2)0-2)+2+((2p—2) —q).

If ¢ < 2p — 2, then this implies (1). Hence, we may assume g > 2p — 1.
Note that

gp_lngDdH(v)—l)gz(dHQ(”))z S ING(K) 0 NG (K;))

veN veN 1<i<j<p

where the last equality follows, because every vertex v in N contributes exactly
(dH2(”)) to the right hand side. Now, (2) implies p > 5.

Let H' arise by removing all vertices of degree 1 from H. Since, for every
i € [p], we have dg(u;) > §|K;| — 2(|K;| — 1) > 2, the graph H’ contains all p

vertices u1, ..., u,. Let H' contain r vertices of N. Since H' has order p + r and
size
Y duw)=r+> (dgl)—1)=r+q,
vENNV (H') vEN
its average degree is at least %, which is at least 2, because ¢ > 2p —1 > p.

If H' contains a cycle of order 2/, then G contains a cycle that alternates
between X and N, contains £ vertices from N, and avoids p— £ of the components
of G[X], which implies that this cycle has order at most ¢ + (| X| — (p — ¥)) =
{4 (9—2)— (p—¥). By the girth condition, this implies that the bipartite graph
H' has girth at least p + 2, if p is even, and p + 3, if p is odd.

Using Theorem 2 and ¢ > r, we obtain

[gw r ’ r _ [%Lrl
p+r 2(q—p) (%1"‘1
Z%50—p) (”W> -1,

ya +1
which implies (1+ ‘qu))[ 4 <g—p+1. Since ¢ > 2 — 1, and, by (2),

q < (g), this contradicts Lemma 3, which completes the proof. [
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