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Abstract

A path in a vertex-colored graph is called conflict-free if there is a color
used on exactly one of its vertices. A vertex-colored graph is said to be
conflict-free vertex-connected if any two vertices of the graph are connected
by a conflict-free path. This paper investigates the question: for a connected
graph G, what is the smallest number of colors needed in a vertex-coloring of
G in order to make G conflict-free vertex-connected. As a result, we get that
the answer is easy for 2-connected graphs, and very difficult for connected
graphs with more cut-vertices, including trees.
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1. Introduction

In this paper, all graphs considered are simple, finite and undirected. We refer
to a book [1] for undefined notation and terminology in graph theory. A path
in an edge-colored graph is a rainbow path if its edges have different colors. An
edge-colored graph is rainbow connected if any two vertices of the graph are
connected by a rainbow path of the graph. For a connected graph G, the rainbow
connection number of G, denoted by rc(G), is defined as the smallest number of
colors required to make G rainbow connected. This concept was first introduced
by Chartrand et al. in [4,5]. Since then, a lot of results on the rainbow connection
have been obtained; see [14, 15].

As a natural counterpart of the concept of rainbow connection, the concept of
rainbow vertex connection was first introduced by Krivelevich and Yuster in [10].
A path in a vertex-colored graph is a vertex-rainbow path if its internal vertices
have different colors. A vertex-colored graph is rainbow vertex-connected if any
two vertices of the graph are connected by a vertex-rainbow path of the graph.
For a connected graph G, the rainbow vertex-connection number of G, denoted by
rvc(G), is defined as the smallest number of colors required to make G rainbow
vertex-connected. There are many results on this topic, we refer to [6,11–13,17].

In [7], Czap et al. introduced the concept of conflict-free connection. A path
in an edge-colored graph is called conflict-free if there is a color used on exactly
one of its edges. An edge-colored graph is said to be conflict-free connected if any
two vertices of the graph are connected by a conflict-free path. The conflict-free

connection number of a connected graph G, denoted by cfc(G), is defined as the
smallest number of colors required to make G conflict-free connected. Note that
for a nontrivial connected graph G with order n, we have

1 ≤ cfc(G) ≤ rc(G) ≤ n− 1.

Moreover, cfc(G) = 1 if and only if G is a complete graph, and cfc(G) = n− 1
if and only if G is a star. For more results, we refer to [2, 3, 7, 8].

Motivated by the above mentioned concepts, as a natural counterpart of
conflict-free connection number, in this paper we introduce the concept of conflict-
free vertex-connection number. A path in a vertex-colored graph is called conflict-

free if there is a color used on exactly one of its vertices. A vertex-colored graph
is said to be conflict-free vertex-connected if any two vertices of the graph are
connected by a conflict-free path. The conflict-free vertex-connection number of
a connected graph G, denoted by vcfc(G), is defined as the smallest number
of colors required to make G conflict-free vertex-connected. Note that for a
nontrivial connected graph G with order n, we can easily observe that

2 ≤ vcfc(G) ≤ n.
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The lower bound is trivial since there is a path of order at least two between any
two vertices in G, while the upper bound is also trivial since one may color all
the vertices of G with distinct colors. The main problem studied in this paper is
the following.

Problem 1.1. For a given graph G, determine its conflict-free vertex-connection
number.

The rest of this paper is organized as follows. In Section 2, we prove some
preliminary results. In Section 3, we study the structure of graphs having conflict-
free vertex-connection number two and three respectively. In Section 4, we obtain
some sharp bounds of the conflict-free vertex-connection number for trees.

2. Preliminaries

The following observation is immediate.

Observation 1. If G is a nontrivial connected graph and H is a connected

spanning subgraph of G, then vcfc(G) ≤ vcfc(H). In particular, vcfc(G) ≤
vcfc(T ) for every spanning tree T of G.

Lemma 2.1. Let G be a 2-connected graph and w be a vertex of G. Then for

any two vertices u and v in G, there is a u-v path containing the vertex w.

Proof. It is clearly true for the case that w ∈ {u, v} since G is 2-connected.
Now suppose that w ∈ V (G)\{u, v}. Let P1 and P2 be two internally vertex
disjoint paths from u to w in G. If there is a v-w path P such that P and P1

are vertex-disjoint except for the vertex w, then the path uP1wPv is the desired
path. Otherwise, let x be the first common vertex of P and P1 when going along
P from v. Then the path uP2wP1xPv is the desired path.

For a path, we have the following result.

Theorem 2.1. Let Pn be a path of order n. Then vcfc(Pn) = ⌈log2(n+ 1)⌉.

Proof. The proof goes similarly to that of Theorem 3 in [7]. Let Pn = v1v2 · · · vn.
First we show that vcfc(Pn) ≤ ⌈log2(n + 1)⌉. Define a vertex-coloring of Pn by
coloring the vertex vi with color x + 1, where i ∈ [n] and 2x is the largest
power of 2 that divides i. Clearly, the largest number in such a coloring is
⌈log2(n+ 1)⌉. Moreover, it is easy to check that the maximum color of the
vertices on each subpath Q of Pn appears only once on Q. Then Pn is conflict-
free vertex-connected, and so vcfc(Pn) ≤ ⌈log2(n+ 1)⌉.

Next we just need to prove that vcfc(Pn) ≥ ⌈log2(n + 1)⌉. To show it,
it suffices to show that any path with conflict-free vertex-connection number
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k has at most 2k − 1 vertices. We apply induction on k. The statement is
evidently true for k = 2. Give the path Pn with vcfc(Pn) = k a conflict-free
vertex-connection k-coloring. Then there is a vertex, say vi, in Pn with a unique
color. Delete the vertex vi from Pn. The resulting paths are Pi−1 = v1v2 · · · vi−1

and Pn−i = vi+1vi+2 · · · vn with vcfc(Pi−1) ≤ k − 1 and vcfc(Pn−i) ≤ k − 1.
By the induction hypothesis, Pi−1 and Pn−i have at most 2k−1 − 1 vertices,
respectively. Thus Pn has at most 2

(

2k−1 − 1
)

+ 1 = 2k − 1 vertices, and so
vcfc(Pn) ≥ ⌈log2(n+ 1)⌉.

Therefore, vcfc(Pn) = ⌈log2(n+ 1)⌉.

Remark 1. From Theorem 2.1 and [7, Theorem 3], we have that vcfc(Pn) ≥
cfc(Pn). However, vcfc(G) ≤ cfc(G) if G is a star of order at least 3. Thus, one
of vcfc(G) and cfc(G) cannot be bounded in terms of the other.

3. Graphs with Conflict-Free Vertex-Connection Number Two

or Three

A block of a graphG is a maximal connected subgraph ofG that has no cut-vertex.
Then the block is either a cut-edge, say trivial block, or a maximal 2-connected
subgraph, say nontrivial block. Let B1, B2, . . . , Bk be the blocks of G. The block

graph of G, denoted by B(G), has vertex-set {B1, B2, . . . , Bk} and BiBj is an
edge if and only if the blocks Bi and Bj have a cut-vertex in common, where
1 ≤ i, j ≤ k.

The following lemma is a preparation of Theorem 3.1.

Lemma 3.1. Let G be a 2-connected graph. Then vcfc(G) = 2.

Proof. Since vcfc(G) ≥ 2, we just need to show that vcfc(G) ≤ 2. Let w be a
vertex of G. Define a 2-coloring c of the vertices of G by coloring the vertex w
with color 2 and all the other vertices of G with color 1. By Lemma 2.1, for any
two vertices u and v in G, there is a u-v path containing the vertex w. According
to the coloring c of G, this u-v path is a conflict-free path. Thus vcfc(G) ≤ 2,
and the proof is complete.

From Theorem 2.1 and Lemma 3.1, we have the following result.

Corollary 3.1. For the complete graph Kn with n ≥ 2, vcfc(Kn) = 2.

After the above preparation, graphs with vcfc(G) = 2 can be characterized.

Theorem 3.1. Let G be a connected graph of order at least 3. Then vcfc(G) = 2
if and only if G is 2-connected or G has only one cut-vertex.
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Proof. Firstly, we prove its sufficiency. If G is 2-connected, then it follows from
Lemma 3.1 that vcfc(G) = 2. Now suppose that G has exactly one cut-vertex,
say w. Since vcfc(G) ≥ 2, we just need to show that vcfc(G) ≤ 2. Define a
2-coloring c of the vertices of G by coloring the vertex w with color 2 and all
the other vertices with color 1. Since G has only one cut-vertex, it follows that
G consists of some blocks which have the common vertex w. Next it remains to
check that for any two vertices u and v in G, there is a conflict-free path between
them. It is clearly true for the case that w ∈ {u, v}. Thus we may assume
that w ∈ V (G)\{u, v}. If u and v are in the same block, then the block must
be nontrivial. From Lemma 2.1 and the coloring c of G, we get that there is a
conflict-free path from u to v in the block. If u and v are in two different blocks,
then there is a u-w path P1 and a v-w path P2 in the two blocks, respectively.
Clearly, the path uP1wP2v is the desired path.

Now, we show its necessity. Let vcfc(G) = 2. By Lemma 3.1, it remains
to show that if G is not 2-connected, then G has only one cut-vertex. Suppose
that G has at least two cut-vertices. Let B1 and B2 be two blocks in G each
of which contains only one cut-vertex, respectively. Moreover, denote by v1 and
v2 the cut-vertices in B1 and B2, respectively. Note that for any two vertices in
the same block, all paths connecting them are in the block. Thus, each block
needs two colors. Let u1 be the vertex whose color is different from v1 in B1

and u2 be the vertex whose color is different from v2 in B2. Clearly, all paths
from u1 to u2 in G must pass through the vertices v1 and v2. However, the four
vertices u1, v1, u2, v2 use each of two colors twice. Thus there does not exist a
conflict-free path between u1 and u2 in G, a contradiction. Hence G has only one
cut-vertex.

The following corollary is immediate from Theorem 3.1.

Corollary 3.2. Let G be a connected graph. Then vcfc(G) ≥ 3 if and only if G
has at least two cut-vertices.

Next we give two sufficient conditions for a graph G to have vcfc(G) = 3.

Theorem 3.2. Let G be a connected graph of order n with maximum degree

∆(G). If G has at least two cut-vertices and n − 4 ≤ ∆(G) ≤ n − 2, then

vcfc(G) = 3.

Proof. Since G has at least two cut-vertices, it follows that vcfc(G) ≥ 3 by
Corollary 3.2, and so we only need to show that vcfc(G) ≤ 3. We distinguish
the following three cases to show this theorem.

Case 1. ∆(G) = n− 2. In this case, G must have a spanning tree T1 shown
in Figure 1. Moreover, a 3-coloring of the vertices of T1 is shown in Figure 1 to
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Figure 1. The eleven graphs in Theorem 3.

make T1 conflict-free vertex-connected. Thus vcfc(T1) ≤ 3. From Observation 1,
we have vcfc(G) ≤ vcfc(T1), and hence vcfc(G) ≤ 3.

Case 2. ∆(G) = n − 3. Since ∆(G) = n − 3, it follows that G must have a
spanning tree depicted as one of Tis (2 ≤ i ≤ 4) shown in Figure 1. For 2 ≤ i ≤ 4,
a 3-coloring of the vertices of Ti is shown in Figure 1 to make Ti conflict-free
vertex-connected. From Observation 1, we have vcfc(G) ≤ vcfc(Ti) ≤ 3.

Case 3. ∆(G) = n − 4. Since ∆(G) = n − 4, it follows that G must have a
spanning tree depicted as one of Tis (5 ≤ i ≤ 11) shown in Figure 1. For 5 ≤ i ≤
11, a 3-coloring of the vertices of Ti is shown in Figure 1 to make Ti conflict-free
vertex-connected. From Observation 1, we have vcfc(G) ≤ vcfc(Ti) ≤ 3.

From the above argument, we conclude that vcfc(G) = 3.

Remark 2. The condition on the maximum degree above cannot be improved,
since if G is T ′ shown in Figure 2, then ∆(G) = n−5 and vcfc(G) = 4. Note that
there is only one path between any two vertices in a tree. Then any two adjacent
vertices in T ′ need two different colors. Considering this, we can check that
three colors cannot make T ′ conflict-free vertex-connected and so vcfc(T ′) ≥ 4.
Moreover, a 4-coloring of the vertices of T ′ is shown in Figure 2 to make T ′

conflict-free vertex-connected. Hence vcfc(T ′) = 4.

Let C(G) denote the subgraph of G induced by the set of cut-edges of G.

Theorem 3.3. Let G be a connected graph with at least two cut-vertices. If

C(G) is a star and each nontrivial block has a common vertex with C(G), then
vcfc(G) = 3.

Proof. By Corollary 3.2, it suffices to show that vcfc(G) ≤ 3, since G has at
least two cut-vertices. Let V (C(G)) = {v0, v1, . . . , vt}, where t ≥ 1 and v0 is the
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center of the star C(G). Define a 3-coloring c of the vertices of G by coloring
the vertex v0 with color 1, the pendant vertices {v1, . . . , vt} of C(G) with color
2 and all the other vertices with color 3. Next, it remains to check that for
any two vertices u and v in G, there is a conflict-free path between them. If
u, v ∈ V (C(G)), then the desired path is the unique path from u to v in C(G).
If u and v belong to the same nontrivial block, then by Lemma 2.1, there is a
u-v path in the block containing the vertex which is also in C(G). Clearly, this
path is the desired path. Now we may assume that u and v are in two different
nontrivial blocks B and B′. If B and B′ do not have a common vertex, then a
shortest u-v path in G must go through the center v0 which has the unique color
1 and so it is the desired path. Otherwise, B and B′ have a unique common
vertex vi (0 ≤ i ≤ t) which has the unique color c(vi) on the u-v path. Thus,
vcfc(G) ≤ 3, and the proof is complete.

The t-corona of a graph H, denoted by Cort(H), is a graph obtained from
H by adding t pendant edges to each vertex of H.

Proposition 3.4. Let Cn be a cycle and G be its t-corona, where t ≥ 1. Then

vcfc(G) = 3.

Proof. Since G has at least three cut-vertices, we have vcfc(G) ≥ 3 by Theorem
3.1, and so it remains to show that vcfc(G) ≤ 3. Define a 3-coloring c of the
vertices of G by coloring all the pendant vertices with color 1, one of the vertices of
Cn with color 2 and the other vertices with color 3. It is easy to check that for any
two vertices of G, there is a conflict-free path between them. Then vcfc(G) ≤ 3,
and we complete the proof.

It seems that it is not easy to characterize graphs G with vcfc(G) = 3. But,
below we study a family of graphs with conflict-free vertex-connection number
three. Before it, we provide the concept of a segment: Let G be a connected
graph whose block graph is a path. Let B1, B2, . . . , Bk be the blocks of G such
that |V (Bi) ∩ V (Bi+1)| = 1 and E(Bi) ∩ E(Bi+1) = ∅ (1 ≤ i ≤ k − 1). We call
Fp,q (1 ≤ p ≤ q ≤ k) a segment of G if Fp,q =

⋃q
i=pBi.
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Theorem 3.5. Let G be a connected graph with at least two cut-vertices, and its

block graph B(G) is a path. Then vcfc(G) = 3 if and only if G is a segment of

one type of the thirteen graphs listed below.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · · · · · · · ·

· · ·· · ·

G1 G2 G3

G5G4

G7G6

G9G8

G10 G11

G12 G13

: a nontrivial block

Figure 3. The thirteen types of graphs.

Proof. First we show its sufficiency. Let G be a segment of one type of the
thirteen graphs listed in Figure 3. SinceG has at least two cut-vertices, vcfc(G) ≥
3 according to Corollary 3.2 and so we just need to show that vcfc(G) ≤ 3,
Namely, we should give a 3-coloring of the vertices in G such that G is conflict-
free vertex-connected. Since G is a segment of one type of the thirteen graphs
listed in Figure 3, we only consider the cases when G = Gi (1 ≤ i ≤ 13).

If G = G1, we assign the color sequence 1, 2, 1, 3, 1, 2, 1 to the vertices from
left to right. If G = G2, we assign the color sequence 1, 2, 1, 3, 1, 2 to the six
cut-vertices from left to right and the remaining vertices are assigned to the color
1. If G = G3, we assign the color sequence 2, 1, 3, 1, 2 to the five cut-vertices from
left to right and the remaining vertices are assigned to the color 1.

Assume G = G6. Let B,B1, B2, . . . , Bt, B
′ be the nontrivial blocks from

left to right. Assign the color sequence 2, 1, 3 to the left three cut-vertices. If
t is odd, assign the rightmost cut-vertex with color 3; otherwise, assign it with
color 2. Pick a vertex avoiding the cut-vertex from each Bi (1 ≤ i ≤ t). Assign
the color 2 to all these vertices if i is odd and assign the color 3 otherwise. All
remaining vertices are assigned to the color 1. For the case G = G4, we only
need to view the leftmost vertex in G4 as the vertices colored 1 of B in G6 and
the other vertices in G4 are colored as those in G6. Similarly we can give a 3-
coloring for G = G5 and G = G7. Namely view the leftmost vertex and rightmost
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vertex in G5 as the vertices colored 1 of B and B′ in G6 respectively, and view
the rightmost vertex in G7 as the vertices colored 1 of B′ in G6. Following this
structural law, we only give the 3-coloring of G when G = G9 for G = G9, G10 or
G12, and give the 3-coloring of G when G = G13 for G = G8, G11 or G13 in the
following.

Assume G = G9. Denote by B0, B11, B12, . . . , B1s (s ≥ 1), B21, B22, . . . , B2t

(t ≥ 1), B′

0 the nontrivial blocks and v0, v1, v2, . . . , vs+1, v, v
′

1, v
′

2, . . . , v
′

t+1, v
′

0 the
cut-vertices from left to right, respectively. First consider the case that s is odd.
Pick a vertex avoiding the cut-vertex from each of B1i and B2j when i and j are
even. Assign the color 2 to all these vertices and v0, v. Moreover, pick a vertex
avoiding the cut-vertex from each of B1i and B2j when i and j are odd. Give all
these vertices the color 3. For v′0, if t is odd, color it with color 2; otherwise, color
it with color 3. All remaining vertices are assigned to the color 1. Then consider
the case that s is even. Pick a vertex avoiding the cut-vertex from each B1i when
i is even and a vertex from each B2j when j is odd. Assign the color 2 to all these
vertices and v0. Moreover, pick a vertex avoiding the cut-vertex from each B1i

and B2j when i is odd and a vertex from each B2j when j is even. Give all these
vertices and v the color 3. For v′0, if t is odd, color it with color 3; otherwise,
color it with color 2. All remaining vertices are assigned to the color 1.

Assume G = G13. Denote by B0, B11, B12, . . . , B1s (s ≥ 1), B21, B22, . . . , B2t

(t ≥ 1), B′

0 the nontrivial blocks and v0, v1, v2, . . . , vs+1, v
′

1, v
′

2, . . . , v
′

t+1, v
′

0 the
cut-vertices from left to right, respectively. First consider the case that s is odd.
Pick a vertex avoiding the cut-vertex from each B1i when i is even and a vertex
from each B2j when j is odd and 3 ≤ j ≤ t. Assign the color 2 to all these vertices
and v0, v

′

1. Moreover, pick a vertex avoiding the cut-vertex from each B1i when
i is odd and a vertex from each B2j when j is even. Give all these vertices the
color 3. For v′0, if t is odd, color it with color 3; otherwise, color it with color 2.
All remaining vertices are assigned to the color 1. Then consider the case that
s is even. Pick a vertex avoiding the cut-vertex from each B1i and B2j when i
and j are even. Assign the color 2 to all these vertices and v0. Moreover, pick a
vertex avoiding the cut-vertex from each B1i and B2j when i and j are odd and
3 ≤ j ≤ t. Give all these vertices and v′1 the color 3. For v′0, if t is odd, color it
with color 2; otherwise, color it with color 3. All remaining vertices are assigned
to the color 1.

Using Lemma 2.1, it can be easily checked that the conflict-free paths can be
found between the vertices of the same block. For other pairs of vertices, we can
also find conflict-free paths between them under the above colorings for G = Gi

(1 ≤ i ≤ 13). Thus vcfc(G) = 3.

Next we show its necessity. Let B1, . . . , Bn be blocks of G such that |V (Bi)∩
V (Bi+1)| = 1 and vi ∈ V (Bi) ∩ V (Bi+1) be the cut-vertex of G, where 1 ≤ i ≤
n− 1. Let F be the family of graphs listed in Theorem 3.5. From the sufficient
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part of the proof we know that for G ∈ F there is vcfc(G) = 3. Suppose there is
another graph G with vcfc(G) = 3 but G /∈ F . Let φ be a conflict-free vertex-
connection coloring of G with colors from {a, b, c} and c be a color with the least
number of appearances on cut-vertices of G. Then the following two claims are
evident.

Claim 1. Any three consecutive blocks Bi−1, Bi, Bi+1 contain on their vertices

all three colors.

Claim 2. Color c appears at most once on the cut-vertices of G.

Claim 3. G does not contain a segment of seven consecutive blocks Bi−1, . . . , Bi+5

such that all three blocks Bi+1, Bi+2, Bi+3 are trivial.

Proof. If such a segment exists, without loss of generality let φ(vi+1) = φ(vi+3) =
a, φ(vi) = b and φ(vi+2) = c. From Claims 1 and 2, there are vertices x ∈
V (Bi−1) ∪ V (Bi) with φ(x) = c and y ∈ V (Bi+4) ∪ V (Bi+5) with φ(y) = b, and
any x-y path is a conflict one. �

Consider the following segment S of blocks of the graph G:

S = Bi−1, Bi, Bi+1, . . . , Bj , Bj+1, . . . , Bk, Bk+1, Bk+2, Bk+3,

where Bi+1 and Bk+1 are trivial, Bj+1 is trivial only if C(G) has at least three
components, and the three blocks Bi−1, Bj , Bk are always nontrivial; the remain-
ing blocks may be, in dependence on the components of C(G), either trivial or
nontrivial. We suppose, without loss of generality, that blocks Bi+1, Bj+1 and
Bk+1 belong to three different consecutive components of C(G) (if exist).

Claim 4. Both Bi−1 and Bk+3 are not present simultaneously in G.

Proof. If both are present, then, because of Claims 1 and 2, there exist two
vertices x ∈ V (Bi−1) ∪ V (Bi) with {φ(x), φ(vi), φ(vi+1)} = {a, b, c} and y ∈
V (Bk+2) ∪ V (Bk+3) with {φ(y), φ(vk), φ(vk+1)} = {a, b, c}, such that every x-y
path is conflict. �

Let C(G) contain a path on at least four vertices as a component. Then, by
Claim 4, we can put i = 1 and suppose that the block B0 is not present in S.
If C(G) contains P7 or P6 as a component, then either G contains a graph from
{G1, G2} as a proper segment and so we have a contradiction with Claim 3 or G
is contained by G1 or G2 which is also a contradiction. If C(G) contains P5 as a
component and G contains G3 as a proper segment, we have a contradiction with
Claim 3. Thus we can suppose that either C(G) contains P5 as a component and
G does not contain G3 as a proper segment or C(G) contains P4 as a component.
If, in S, the blocks B2, B3, B4 are all trivial (B1 is also trivial if G contains P5),
and no other block is trivial in it, then S and hence G, is in F . If there is another
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trivial block Bj+1 in G, let vj be its first cut-vertex incident with this block.
Because of Claim 2, {φ(vj), φ(vj+1)} = {a, b}, then j = k. Otherwise there are
two more blocks Bj+2 and Bj+3 containing a vertex y with φ(y) = c, and there
is a vertex x ∈ V (B1) \ {v1} such that every x-y path is conflict. The existence
of the block Bj+3 in the case j = k yields a contradiction analogously as above.
If the block Bj+3 is not in S, then G is in F , again a contradiction.

Let C(G) do not contain a path on at least four vertices. By the set F we can
suppose that C(G) has at least two components. Observe that S contains at least
two components of C(G) and, by the definition of S, at most three components
of C(G). By Claim 4, at most one of Bi−1 and Bk+3 is present in G.

Then, without loss of generality we can suppose that the last block of S is
Bk+2 and that there is the block Bi−1. If there are only two components for
C(G), then surely S and hence G, is in F , a contradiction. When C(G) has three
components, which allows i+ 2 < k − 1. We discuss this case as follows.

Case 1. There is m ∈ {i + 2, . . . , k − 1} such that φ(vm) = c. Then there is
a vertex x ∈ V (Bi−1) ∪ V (Bi) with φ(x) = c and every x-vk+1 path is conflict, a
contradiction.

Case 2. There is no m ∈ {i+ 2, . . . , k − 1} such that φ(vm) = c.

Case 2.1. Let c ∈ {φ(vi), φ(vi+1)}. Then there is a vertex x ∈ V (Bi−1) ∪
V (Bi) such that {φ(x), φ(vi), φ(vi+1)} = {a, b, c} and a vertex y ∈ V (Bk−1) ∪
V (Bk)∪V (Bk+1) with φ(y) = c. Then every x-y path is conflict, a contradiction.

Case 2.2. Let c /∈ {φ(vi), φ(vi+1)}. Then there is a vertex x ∈ V (Bi−1) ∪
V (Bi) such that φ(x) = c and a vertex y ∈ V (Bj+2)∪ V (Bj+3) such that {φ(vj),
φ(vj+1), φ(y)} = {a, b, c}. As a result, every x-y path is conflict, a contradiction.

If both Bi−1 and Bk+3 are not present, then S and hence G, is in F , a
contradiction except for the case that Bi+2 is trivial, Bi is nontrivial and there
exists a trivial block Bj+1. But in this case, we can find a vertex x ∈ Bi with
{φ(x), φ(vi+1), φ(vi+2)} = {a, b, c} and a vertex y ∈ Bj+2 ∪ Bj+3 with {φ(y),
φ(vj), φ(vj+1)} = {a, b, c}, which also leads to the contradiction that there is no
conflict-free path between x and y.

This finishes the proof of the necessary part of Theorem 5.

The proof is complete.

At the end of this section, we pose the following problem.

Problem 3.1. Characterize all the graphs G with vcfc(G) = 3.
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4. Trees

A k-ranking of a connected graph G is a labeling of its vertices with labels
1, 2, 3, . . . , k such that every path between any two vertices with the same la-
bel i in G contains at least one vertex with label j > i. A graph G is said to
be k-rankable if it has a k-ranking. The minimum k for which G is k-rankable is
denoted by r(G).

Iyer [9] obtained the following result.

Lemma 4.1 [9]. Let T be a tree of order n ≥ 3. Then r(T ) ≤ log 3

2

n.

The next two lemmas are preparations for Theorem 4.1.

Lemma 4.2. Let G be a connected graph. Then vcfc(G) ≤ r(G).

Proof. Consider a ranking of the vertices of G. For any two vertices u and v of
G, let P be a path between them and k be the maximum label of the vertices
of P . If there is only one vertex with label k in P , then the proof is done. So
we assume that P contains at least two vertices with label k. According to the
definition of ranking, there must exist one vertex with label j > k on P , which
is a contradiction. Hence P contains only one vertex with label k. View the
r(G)-ranking of G as its vertex-coloring with r(G) colors. Then the path P is a
conflict-free path between u and v in G. Thus vcfc(G) ≤ r(G).

Lemma 4.3. Let T be a nontrivial tree. Then vcfc(T ) ≥ χ(T ), where χ(T ) is

the chromatic number of T and the bound is sharp.

Proof. Define a vertex-coloring of T with vcfc(T ) colors such that T is conflict-
free vertex-connected. Since there is only one path between any two vertices in
T , it follows that any two adjacent vertices must have different colors, and hence
vcfc(T ) ≥ χ(T ). To show the sharpness of the bound, we let T be a star of
order at least two. Clearly, χ(T ) = 2. By Theorem 3.1, we have vcfc(T ) = 2
(= χ(T )).

Combining the lemmas above, we can have the following bounds for vcfc(T )
of a tree T .

Theorem 4.1. Let T be a tree of order n ≥ 3 and d(T ) be its diameter. Then

max
{

χ(T ), ⌈log2(d(T ) + 2)⌉
}

≤ vcfc(T ) ≤ log 3

2

n.

Proof. The lower bound is an immediate result from Lemma 4.3 and Theorem
2.1, while the upper bound can be deduced from Lemmas 4.1 and 4.2.
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Let G be a connected graph. The eccentricity ǫG(v) of a vertex v in G is the
maximum value among the distances between v and the other vertices in G. The
radius rad(G) of G is the minimum eccentricity among all the vertices of G. A
central vertex of radius rad(G) is one whose eccentricity is rad(G). Remind that
dG(u, v) is the shortest distance between the two vertices u and v in G.

Theorem 4.2. Let T be a tree with radius rad(T ). Then vcfc(T ) ≤ rad(T )+ 1.
Moreover, the bound is sharp.

Proof. Let v be a central vertex of radius rad(T ) in T . Let Vi = {u ∈ V (T ) :
dT (u, v) = i}, where 0 ≤ i ≤ rad(T ). Hence V0 = {v}. Define a vertex-coloring
c of T with rad(T ) + 1 colors by coloring the vertices of Vi with color i + 1,
where 0 ≤ i ≤ rad(T ). It is easy to check that for any two vertices of T , there
is a conflict-free path between them, and hence vcfc(T ) ≤ rad(T ) + 1. To show
the sharpness of the bound, we let T be a star of order at least two. Clearly,
rad(T ) = 1. By Theorem 3.1, we have vcfc(T ) = 2 (= rad(T ) + 1).

For each connected graph G, we can always find a spanning tree T of G such
that rad(T ) = rad(G). From Observation 1 and Theorem 4.2, we can get the
following result.

Corollary 4.1. Let G be a connected graph. Then vcfc(G) ≤ rad(G) + 1.

For trees, we can give an upper bound of its conflict-free vertex-connection
number in term of its order.

Proposition 4.3. Let T be a tree with order n ≥ 5. Then vcfc(T ) ≤
⌈

n
2

⌉

.

Moreover, the bound is sharp.

Proof. If T is a path, then it follows from Theorem 2.1 that vcfc(T ) =
⌈

log2
(n+1)

⌉

≤
⌈

n
2

⌉

. From now on, we suppose that T is not a path. Then the longest
path in T has at most n − 1 vertices. So we have rad(T ) ≤ n−1

2
if n is odd and

rad(T ) ≤ n−2

2
if n is even. By Theorem 4.2, we have vcfc(T ) ≤ rad(T ) + 1, and

hence vcfc(T ) ≤
⌈

n
2

⌉

. To show the sharpness of the bound, we set T = P5. Then
vcfc(T ) = 3 by Theorem 2.1 and

⌈

n
2

⌉

= 3.

Let G be a nontrivial connected graph of order n. For vcfc(G), it can be
easily seen that the trivial lower bound is 2. Based on Observation 1, the upper
bound can be attained when G is a tree. Note that the path Pn is a tree of order
n. After experiments on the graphs with small order, we believe that Pn might
be the one attaining the upper bound among trees. Recently, Li and Wu [16]
have confirmed this as vcfc(G) ≤ vcfc(Pn).
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