
Discussiones Mathematicae
Graph Theory 40 (2020) 107–125
doi:10.7151/dmgt.2115

THE PROPER DIAMETER OF A GRAPH

Vincent Coll

Lehigh University, Department of Mathematics

Bethlehem, PA 18015, USA

e-mail: vec208@lehigh.edu

Jonelle Hook

Mount St. Mary’s University

Department of Mathematics and Computer Science

Emmitsburg, MD 21727, USA

e-mail: jhook@msmary.edu

Colton Magnant

Georgia Southern University

Department of Mathematical Sciences

Statesboro, GA 30460, USA

e-mail: cmagnant@georgiasouthern.edu

Karen McCready

King’s College

Department of Mathematics and Computer Science

Wilkes-Barre, PA 18711, USA

e-mail: karenmccready@kings.edu

and

Kathleen Ryan

DeSales University

Department of Mathematics and Computer Science

Center Valley, PA 18034, USA

e-mail: kathleen.ryan@desales.edu

http://dx.doi.org/10.7151/dmgt.2115


108 V. Coll, J. Hook, C. Magnant, K. McCready and K. Ryan

Abstract

A proper edge-coloring of a graph is a coloring in which adjacent edges
receive distinct colors. A path is properly colored if consecutive edges have
distinct colors, and an edge-colored graph is properly connected if there
exists a properly colored path between every pair of vertices. In such a graph,
we introduce the notion of the graph’s proper diameter—which is a function
of both the graph and the coloring— and define it to be the maximum length
of a shortest properly colored path between any two vertices in the graph.
We consider various families of graphs to find bounds on the gap between
the diameter and possible proper diameters, paying singular attention to
2-colorings.

Keywords: diameter, properly connected, proper diameter.
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1. Introduction

In a long distance wireless communications network, each node in the network si-
multaneously sends and receives signals. To avoid interference, the carrier waves
for each of these incoming and outgoing signals must be operating at different
frequencies. By representing each node by a vertex, each connection by an edge,
and each frequency assignment by a color, the problem of finding a path over
which a signal can travel without interference is translated to a question about
the edge-coloring of graphs. More specifically, it is required that no two consec-
utive edges in the transmission path have the same color in order to maintain
the integrity of a signal from start to finish. The design of such networks is
therefore reliant on the ability to color a graph “properly”. More formally, an
edge-colored graph is said to be properly colored if no two adjacent edges share a
color. An edge-colored connected graph G is called properly connected if between
every pair of distinct vertices in G, there exists a path that is properly colored.
For simplicity, an edge-coloring c of G is called properly connected if it makes
G properly connected. Note that while a properly colored graph is necessarily
properly connected, the converse is not true. See Figure 1.

Figure 1. A properly connected but not properly colored graph.

The proper connection number of a connected graph G, pc(G), defined in [2]
and also studied in [1, 5, 6], is the minimum number of colors needed to color
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the edges of G to make it properly connected. One finds that if an edge-colored
graph is sufficiently dense, then the existence of a properly colored path is assured.
For example, using the connectivity κ(G) of G, Borozan et al. [2] show that if
κ(G) ≥ 3, then pc(G) = 2 and if κ(G) ≥ 2, then pc(G) ≤ 3. We refer the reader
to [8] for a dynamic survey on the topic of proper connection.

The notion of a properly colored graph and concepts such as proper con-
nection number are obviously related to rainbow colored graphs and analogous
concepts introduced by Chartrand et al. in [3]. In fact, the communications ap-
plication noted at the outset is a generalization of a security protocol devised by
Chartrand et al. to address communications between disparate governmental and
legal agencies in the wake of the terrorist attack of Sept. 11, 2001 [4].

However, despite a spate of recent papers on the proper and rainbow connec-
tion numbers of a graph (inclusive of the basic work in [3] and [2]) the study of
the spectrum of possible lengths of certain properly (respectively, rainbow) col-
ored paths in a properly (respectively, rainbow) connected graph has not yet been
investigated. In fact, the only known results relating properly colored paths to
distance in the graph has been forcing the properly colored paths to be geodesics,
shortest paths, as studied in [1, 6, 7]. Here we begin to address this omission by
introducing the notion of the proper diameter of a properly connected graph.

Throughout this paper, we assume that all graphs are properly connected.
The proper distance between two vertices u and v is the minimum length of a
properly colored path from u to v. Observe that such a distance function does
not define a metric. See Figure 2 for an example of a properly connected graph
where the triangle inequality fails.

u x v

Figure 2. The proper distance between u and v is greater than the sum of the proper
distances between u and x and between x and v.

Generalizing the notion of the diameter of a graph, diam(G), we formally
define proper diameter.

Definition. The proper diameter of a graph G with a properly connected k-
coloring c is defined to be the maximum proper distance between any two vertices
in G and will be denoted as pdiamk(G, c).

We will consider all colorings c where G is properly connected and discuss
pdiamk(G) which is the maximum of pdiamk(G, c) where c makes G properly
connected. Since coloring the edges of a graph cannot shorten the lengths of
paths, it follows that the diameter of a graph is a trivial lower bound for the
proper diameter. Note that the proper diameter of a graph is a function of
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both the graph and the coloring, but for some classes of graphs, such as trees
and complete graphs, the diameter and proper diameter are necessarily equal –
regardless of the coloring.

We now ask two questions which drive our current investigation.

• How large can the gap be between diam(G) and pdiam2(G)?

• What is the spectrum of possible values for pdiam2(G, c)?

As a first step in answering these questions, we address—and completely
resolve—the two driving questions for the following graph classes: cycles (Section
2.1), fans (Section 2.2), and complete multipartite graphs (Section 2.3). After the
fashion of the result of Borozan et al. [2] noted above, the connectivity of a graph
can also be used to give a tight upper bound of n − κ(G) + 1 for pdiam2(G).
We prove this result in Section 3. We conclude with two lemmas which provide
additional bounds on the proper diameter. The first provides a general lower
bound for graphs with odd girth, and the second gives an upper bound on the
proper diameter of a graph formed by adding a vertex of degree 2 to a properly
connected graph under certain conditions. Note that throughout the proofs of
this paper we use c(uv) = 1 or c(uv) = 2 to denote an edge uv of color 1 or
color 2, respectively. In the figures, color 1 is represented by a solid red line and
color 2 is represented by a dashed blue line.

2. General Classes of Graphs

2.1. Cycles

We begin by considering the straightforward case of even and odd cycles. This
class of graphs illustrates that using only two colors is sufficient to produce a
colored graph whose proper diameter is quite large—nearly double the diameter.

In order for an odd cycle C2m+1 to be properly connected with two colors,
there must be exactly one pair of consecutive edges with the same color. The path
between the vertices at opposite ends of these two edges yields proper diameter
2m− 1.

There are two possible properly connected 2-colorings of an even cycle C2m.
If the cycle is properly colored, the proper diameter is certainly equal to the
diameter m. Otherwise, exactly one set of three consecutive edges must have the
same color while all other consecutive pairs are different. Suppose v1v2, v2v3 and
v3v4 all have color 1. Then the path between vertices v1 and v3 gives a proper
diameter of 2m− 2.

Observation 1. Given any properly connected 2-coloring c of a cycle graph,

pdiam2(C2m+1, c) is 2m−1 and pdiam2(C2m, c) is either m or 2m−2 where both

values are attainable.
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2.2. Fans

Next, we consider fan graphs F1,n
∼= K1 ∨ Pn, where ∨ denotes graph join, to

find tight bounds on the attainable values of pdiam2(F1,n, c). This class of graphs
illustrates that two colors are sufficient to produce a very large difference between
the diameter and the proper diameter of a graph. In particular, F1,2k+1 can be
2-colored so that its proper diameter is k times its diameter. See Example 2.

Example 2. A fan graph F1,n has diameter 2 and can be 2-colored so that the
proper diameter is n − 1. Color all edges incident to the vertex u with degree
n using color 1. Color the edges of the path that remain by alternating colors.
The proper diameter will be the length of this path, n− 1. See Figure 3 for this
coloring on F1,8.

u

v1 v2 v3 v4 v5 v6 v7 v8

Figure 3. A properly connected 2-coloring c of F1,8 with diam(F1,8) = 2 and
pdiam

2
(F1,8, c) = 7.

Example 3. A fan graph F1,n can be given a properly connected 2-coloring c so
that the proper diameter is 3. Alternate colors of edges incident to the vertex
u with degree n beginning with c(uv1) = 2. Color the edges of the path by
alternating colors beginning with c(v1v2) = 2. The proper diameter is 3. If
i and j have opposite parity, there is properly colored path viuvj of length 2.
Otherwise, there is a properly colored path vivi+1uvj of length 3. See Figure 4
for this coloring on F1,8.

u

v1 v2 v3 v4 v5 v6 v7 v8

Figure 4. A properly connected 2-coloring c of F1,8 with diam(F1,8) = 2 and
pdiam

2
(F1,8, c) = 3.
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Theorem 4. For a properly connected 2-coloring c of F1,n, if n ≥ 7, then

pdiam2(F1,n, c) ∈ [3, n − 1]. These bounds are tight. If 3 ≤ n ≤ 6, then a

lower bound of 2 is attainable.

Proof. First suppose n ≥ 7. Let u be the vertex of degree n and label the
path vertices as {v1, v2, . . . , vn}. Suppose that there is a properly connected 2-
coloring c of F1,n with proper diameter equal to the diameter, 2. Without loss
of generality, suppose c(uv1) = 1. Regardless of the coloring of the edges of the
path, c(uv4) = 2 since the only path of length 2 from v1 to v4 passes through u.
Similarly, all edges from u to {v5, v6, v7} must have color 2. Since the only path
of length 2 from v4 to v7 passes through u, there is no properly colored path of
length 2 from v4 to v7. As a result, every properly connected 2-coloring of F1,n

with n ≥ 7 has a proper diameter at least 3. Example 3 shows that 3 is a tight
lower bound for F1,n when n ≥ 7.

If 3 ≤ n ≤ 6, then a proper diameter of 2 can be achieved by coloring the
first

⌈

n
2

⌉

edges from u to the path with color 1 and the remaining edges from u to
the path with color 2. Alternate coloring edges of the path with colors 1 and 2.

For the upper bound, suppose there is some properly connected 2-coloring c

of F1,n with proper diameter n. This implies that there is a properly colored path
of length n, say H, between some pair of vertices and this is a shortest properly
colored path. Note that H is a Hamiltonian path. The endpoints of H cannot
be nonadjacent vertices vi and vj with 1 < i < j < n since any such path would
miss at least one vertex and thus would not be Hamiltonian. Also, the vertex u

is adjacent to every vertex on the path and so it cannot be an endpoint of H.
The observations in the previous two sentences imply that either v1 or vn must
be an endpoint of H.

Suppose first that the endpoints of H are v1 and vj for some 2 < j < n. The
only Hamiltonian path from v1 to vj is v1v2 · · · vj−1uvnvn−1 · · · vj which must
alternate between color 1 and color 2. This implies that uvj−1 and uvn must
be opposite in color, say color 1 and color 2, respectively. In order to avoid a
shorter properly colored path, the edge uvj must also have color 1. If c(uv1) = 1,
then we have a properly colored path v1uvnvn−1 · · · vj which has length at most
n− 1. If c(uv1) = 2, then v1uvj is a properly colored path of length 2. A similar
argument can be made if we assume the endpoints of H are vn and vi for some
1 < i < n− 1.

Thus, we have eliminated all possible endpoints of H except for a path be-
ginning at v1 and ending at vn. In order for H to contain u, the path must use
edges of the form viu and uvi+1 of opposite color.

Case 1. Let 1 < i < n−1. Without loss of generality, assume that c(uvi) = 1,
c(uvi+1) = 2, and the remaining edges on the path alternate color. This im-
plies that uvn must be colored 1 or else there is a shorter properly colored path
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v1v2 · · · viuvn. If c(uv1) = 2, then v1uvn is a properly colored path of length 2. If
c(uv1) = 1, then v1uvi+1vi+2 · · · vn is a properly colored path of length at most
n− 1, which is a contradiction.

Case 2. Let v1 = vi with c(uv1) = 1 and c(uv2) = 2. As in the previous case,
uvn must be colored 1. Since c(v2v3) = 1, the edge v1v2 must also be colored 1 to
avoid a properly colored path without u. But, now v1v2uvn is a properly colored
path of length 3, which is again a contradiction.

Case 3. Let vn−1 = vi with c(uvn−1) = 1 and c(uvn) = 2. If uv1 is colored 1,
then v1uvn is a properly colored path of length 2. In a fashion similar to the second
case, c(vn−2vn−1) = c(vn−1vn) = 2 to avoid a properly colored path without u.
If c(uv1) is color 2, then v1uvn−1vn is a properly colored path of length 3, giving
a contradiction.

Example 2 demonstrates the sharpness of the upper bound.

Theorem 4 establishes tight bounds on the range of values of pdiam2(F1,n, c).
The next theorem establishes that all values in this range are attainable.

Theorem 5. If n ≥ 7, then every value in the interval [3, n− 1] is an attainable

value of pdiam2(F1,n, c).

Proof. By Theorem 4, we know pdiam2(F1,n, c) is within the range of values
[3, n−1]. Also, as described in the proof of Theorem 4, the endpoints of this range
are achieved as in Examples 3 and 2, respectively. We will use these colorings to
create a properly connected 2-coloring of F1,n where pdiam2(F1,n, c) = n− k for
1 ≤ k ≤ n− 3 and n ≥ 7. Thus, we provide a properly connected 2-coloring c for
every value within the given range.

As before, let u be the vertex of degree n and label the path vertices as v1
through vn. Let L consist of the set of vertices vi where 1 ≤ i ≤ n− (k − 1) and
let R consist of the set of vertices vi where n − (k − 1) + 1 ≤ i ≤ n. Note that
when k = 1, the set R is empty and the coloring we describe is as in Example 2.

Color the edges from u to the vertices of L with color 1. If |R| is odd,
then color the edges from u to the vertices of R by alternating in color starting
with color 2. If |R| is even, then color the edges from u to the vertices of R by
alternating in color starting with color 2 up to and including vn−1. For reasons
evident in the following paragraph, let c(uvn) = 2.

Now, we color the edges of the path vertices v1 through vn−(k−1) by alternat-
ing in color starting with color 1. Color the edge from vn−(k−1) to vn−(k−1)+1 with
color 2. Then continue coloring the path vertices vn−(k−1)+1 through vn by alter-
nating in color starting with color 2 to eliminate shorter properly colored paths.
This coloring is depicted in Figure 5. Clearly, u is adjacent to vi for all i and thus
has a path of length 1 to these vertices. Since the subgraph induced on L∪{u} is
colored as in Example 2, pdiam2 (F1,n [L ∪ {u}] , c) = n− (k−1)−1 = n−k. The
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subgraph induced on R ∪ {u} is colored as in Example 3, but with c(uvn) = 2
in order to have a properly colored path from v1 to vn. If 1 ≤ k ≤ 4, then
pdiam2 (F1,n [R ∪ {u}] , c) ≤ 2. If k ≥ 5, then pdiam2 (F1,n [R ∪ {u}] , c) = 3. We
will now show that the path length between any vertex in L and any vertex in
R is at most 3. For every vertex vi in L, c(uvi) = 1, and so we can show this for
a single vertex in L, say v1, without loss of generality. Since c(uv1) = 1, v1 can
reach any vertex vj in R with c(uvj) = 2 via the path v1uvj of length 2. Other-
wise, if vj in R has c(uvj) = 1 with j < n, then v1uvj+1vj is a path of length 3
from v1 to vj . Since the proper distance between v1 and vn−(k−1) is n − k ≥ 3
and since the proper distance between any other pair of vertices is either 2 or 3,
we see that pdiam(G, c) = n− k, as desired.

v1 vn−(k−1) vn−(k−1)+1 vn

u

L R

Figure 5. A properly connected fan with pdiam
2
(F1,n, c) = n− k for 1 ≤ k ≤ n− 3 and

n ≥ 7.

2.3. Complete multipartite graphs

Finally, we consider properly connected 2-colorings c of complete multipartite
graphs Kn1,n2,...,nℓ

with nℓ ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ. If ℓ ≥ 3, then
pdiam2(Kn1,n2,...,nℓ

, c) ∈ [2, 4]. These bounds are tight and all values are attain-
able. If ℓ = 2, then the graph is a complete bipartite graph Kn,m. Since no
pair of vertices in the same partite set can have a proper distance of 3, the only
possible values of pdiam2(Kn,m, c) are 2 and 4. Both values are attainable.

Theorem 6. Let Kn1,n2,...,nℓ
be a properly connected 2-colored, complete ℓ-partite

graph with nℓ ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ, where ℓ ≥ 2. The proper diameter

of Kn1,n2,...,nℓ
falls in the interval [2, 4].

Proof. Consider any properly connected 2-coloring c of a complete ℓ-partite
graph with nℓ ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ, where ℓ ≥ 2. Since there is a
path of length 1 between vertices in distinct partite sets, we only need to consider
the lengths of properly colored paths between vertices in the same partite set. Let
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a1 and a2 be any two distinct vertices in a partite set A. Let P = a1x1x2 · · ·xja2
be a shortest properly colored path between a1 and a2. Assume for the moment
that the proper distance between a1 and a2 is at least 5 so that j ≥ 4. For some
h between 2 and j − 1, there is an xh on P such that xh is not in A. Since
P is properly colored, we may assume that c(xh−1xh) = 1 and c(xhxh+1) = 2.
Then c(a1xh) = 2 as otherwise a1xhxh+1 · · ·xja2 is a shorter properly colored
path than P . Similarly, c(xha2) = 1 as otherwise a1 · · ·xh−1xha2 is a shorter
properly colored path than P . However, since c(a1xh) = 2 and c(xha2) = 1, the
path a1xha2 is a properly colored path of length 2 between a1 and a2, which is a
contradiction.

In Theorems 7, 8 and 9, we respectively classify when a proper diameter of
2, 3, or 4 is attainable for complete multipartite graphs. Focusing on complete
bipartite graphs, a proper diameter of 2 is attainable except for those Kn,m where
one partite set is much larger than the other

(

max{n,m} > 2min{n,m}
)

. On the
other hand, besides those Kn,m with very small partite sets (min{n,m} = 1 or
max{n,m} ≤ 2) a proper diameter of 4 can always be achieved.

Theorem 7. Let Kn1,n2,...,nℓ
be an ℓ-partite graph of order n where nℓ ≥ 2

and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ. There exists a properly connected 2-coloring of

Kn1,n2,...,nℓ
with proper diameter 2 if and only if nℓ ≤ 2n−nℓ.

Proof. Let G = Kn1,n2,...,nℓ
. Label the partite sets of G as A1, A2, . . . , Aℓ where

Ai = {ai1, a
i
2, . . . , a

i
ni
}, so that partite set Ai has size ni. We let B refer to the

n−nℓ vertices not in Aℓ, and for clarity, we label these vertices as b1, b2, . . . , bn−nℓ

when otherwise distinguishing between the distinct partite sets of the vertices of
B would overcomplicate the proof.

In any properly connected 2-coloring c of G, each vertex a ∈ Aℓ has a coloring

tuple with B, say (c1, c2, . . . , cn−nℓ
) which indicates that the edge abi has color

ci ∈ {1, 2} where 1 ≤ i ≤ n − nℓ. Thus, there are 2n−nℓ possible coloring tuples
and so 2n−nℓ ways to color the edges between any vertex a ∈ Aℓ and the n− nℓ

vertices of B.

We prove the forward direction by contrapositive. Let nℓ > 2n−nℓ and
consider any properly connected 2-coloring c of G. We argue that G does not
have proper diameter 2. Since nℓ > 2n−nℓ , the number of vertices in Aℓ is greater
than the number of possible coloring tuples, and thus, at least two vertices in Aℓ,
say aℓi and aℓj , have the same coloring tuple with B. This means that for every

vertex b ∈ B, c
(

aℓib
)

= c
(

aℓjb
)

for all b ∈ B. As a result, there does not exist a

properly colored path of length 2 between aℓi and aℓj and so the proper diameter
of G is greater than 2.

For the backwards direction, we construct a coloring with proper diameter
2. The first step of this coloring process is described in this paragraph. For
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each Ai where 1 ≤ i ≤ ℓ − 1, do the following. Consider the edges in the set
{

ai1a
ℓ
1, a

i
2a

ℓ
2, . . . , a

i
ni
aℓni

}

. This set of edges is a matching between Ai and the first
ni vertices of Aℓ. Color these edges with color 1. Then color all remaining edges
between Ai and the first nℓ−1 vertices of Aℓ, namely, aℓ1, a

ℓ
2, . . . , a

ℓ
nℓ−1

, with color
2. This portion of the coloring ensures that there is a properly colored path of
length 2 between any pair of vertices in Ai, as desired. To see this, for any 2
distinct vertices aij and ail in Ai, note that the path aija

ℓ
ja

i
l is a properly colored

path of length 2.

Upon completing the first step of our coloring construction, described in the
previous paragraph, observe that a color has been assigned to each of the edges
incident to the first nℓ−1 vertices of Aℓ and to none of the edges incident to the
final nℓ−nℓ−1 vertices of Aℓ. Furthermore, by choice of the coloring in step 1, each
of the initial nℓ−1 vertices of Aℓ has a distinct coloring tuple (c1, c2, . . . , cn−nℓ

)
with the n − nℓ vertices of B. This is due to how we colored the edges incident
to vertices in Aℓ−1, since for all vertices aℓi ∈ Aℓ where 1 ≤ i ≤ nℓ−1, a

ℓ
i is the

only vertex connected to aℓ−1
i by an edge colored by c with color 1. Therefore,

when done step 1, we used nℓ−1 of the 2n−nℓ possible coloring tuples with B and
so there are 2n−nℓ − nℓ−1 that remain.

Finally, we discuss how to color the edges incident to the remaining nℓ−nℓ−1

vertices in Aℓ. Since nℓ ≤ 2n−nℓ , we see that nℓ − nℓ−1 ≤ 2n−nℓ − nℓ−1 which
means that the number of vertices connected to Aℓ with uncolored edges is no
larger than the number of unused coloring tuples. Thus, there are enough coloring
tuples to ensure that we can color the edges between the remaining vertices of Aℓ

and B so that each remaining vertex aℓj ∈ Aℓ has a distinct coloring tuple with
B. After doing so, all vertices in Aℓ have a distinct coloring tuple with B.

It remains to show that there is a path of length 2 between any pair of
vertices in Aℓ. Let aℓi and aℓj be distinct vertices in Aℓ with coloring tuples
(c1, c2, . . . , cn−nℓ

) and (ĉ1, ĉ2, . . . , ĉn−nℓ
), respectively. By construction, these tu-

ples are distinct and so cl 6= ĉl for some l. Then aℓibla
ℓ
j is a properly colored path

of length 2.

Finally, color the edges between the partite sets A1, A2, . . . , Aℓ−1 in any fash-
ion. The proper diameter of the constructed 2-coloring of G is 2, as desired.

Theorem 8. For ℓ ≥ 3, there exists a properly connected 2-coloring with proper

diameter 3 of any complete ℓ-partite graph Kn1,n2,...,nℓ
where 1 ≤ n1 ≤ n2 ≤ · · · ≤

nℓ and nℓ ≥ 2.

Proof. Let A, B and C be three partite sets, where A is a largest partite set.
First, let us suppose that there are at least four vertices in A. Let A1 be all but
any two vertices of A with all edges of color 1 to B and C. Let A2 be a single
vertex of A with all edges of color 1 to B and all edges of color 2 to C. Let A3 be
a single vertex of A with all edges of color 2 to B and all edges of color 1 to C.
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Color the edges between B and C with color 2. Then there is a properly colored
path containing a vertex in B and a vertex in C between any pair of vertices
in A1, giving a shortest properly colored path of length 3. Similarly, there is a
properly colored path of length 3 between any existing pairs of vertices in B or
in C using the vertex in A3 or A2, respectively. Since vertices in different partite
sets are adjacent, and the vertices in A1, A2 and A3 that are not both in A1 are
connected by a properly colored path of length 2, the proper diameter of this
coloring is 3. See Figure 6.

A1

A2

A3

B C

Figure 6. This figure depicts a properly connected 2-coloring of a complete 3-partite
graph with proper diameter 3. A thick edge indicates that all edges between the sets are
the same color.

To generalize the above coloring for any number of partite sets, color the
edges from any additional partite set D to every existing vertex in the graph
using color 1. Between each pair of vertices in D, there is a properly colored path
of length 3 using an edge of color 1 from D to B, an edge of color 2 from B to
C, and an edge of color 1 from C to D.

If A has exactly 3 vertices and at least one of B or C has 2 or 3 vertices,
then each set A1, A2, and A3 consists of a single vertex with the same coloring
described above. Since either B or C has 2 vertices, the proper diameter of 3 is
achieved by the properly colored path between the pair of vertices in that set. If
either A has 3 vertices and both B and C have a single vertex or if each partite
set has at most 2 vertices, color a single edge between B and C with color 2, and
color all remaining edges in the graph with color 1. Then any existing pairs of
vertices in B or in C have proper distance 2, and the shortest properly colored
path between each pair of vertices in A requires an edge of color 1 from A to B,
the edge of color 2 from B to C, and an edge of color 1 from C to A. Since A

must have at least 2 vertices, this gives a proper diameter of 3. In any of these
cases, the same generalization as above also holds for any additional partite set
D by coloring the edges between D and all other partite sets with color 1.
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Theorem 9. There exists a properly connected 2-coloring of Kn,m with proper

diameter 4 if and only if min{n,m} ≥ 2 and max{n,m} ≥ 3. Furthermore, for

ℓ ≥ 3, there exists a properly connected 2-coloring of any complete ℓ-partite graph

Kn1,n2,...,nℓ
, where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ, with proper diameter 4 if and only if

the largest partite set contains at least three vertices.

Proof. Let G = Kn,m be a complete bipartite graph with a properly connected
2-coloring c. If min{n,m} = 1 or max{n,m} ≤ 2, then G ∼= K1,max{n,m} or
G ∼= C4, none of which can be colored so as to have proper diameter 4. Thus, if
pdiam2(Kn,m, c) = 4, then min{n,m} ≥ 2 and max{n,m} ≥ 3.

Now, consider Kn,m where the smaller partite set has at least 2 vertices and
the larger partite set has at least 3. Let A be a set of any two vertices from
the larger partite set and let A′ be a set containing the remaining vertices of A.
Also, let B be a set containing any one vertex from the smaller partite set and
let B′ contain the remaining vertices of B. Color all edges between A and B

and between A′ and B′ with color 1. Color all other edges with color 2. The
proper distance between the two vertices in A is 4 and so the proper diameter of
this coloring is 4 as well. See Figure 7 for an example involving K3,5. A similar
coloring to Figure 7 appears in [2].

A

A′

B′B

Figure 7. A properly connected 2-coloring of K3,5 with proper diameter 4.

For ℓ ≥ 3, suppose that a largest partite set of a complete ℓ-partite graph
Kn1,n2,...,nℓ

, where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ, contains at least 3 vertices. As in
the bipartite case, let A be a set of any two vertices from a largest partite set
and let A′ contain the remaining vertices. Let B and C denote additional partite
sets. Color all edges between A and B, between A′ and C, and between B and
C with color 1. Color all edges between A and C and between A′ and B with
color 2. Then the proper distance between the pair of vertices in A is 4, and
the proper distance between any other pair of vertices is at most 4. Hence, the
proper diameter is 4. For any additional partite set D, color all edges between
D and the other partite sets with color 1. Then the proper distance is 3 for any
existing pairs of vertices in D, and so the proper diameter remains 4.
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Finally, assume a complete ℓ-partite graph Kn1,n2,...,nℓ
, where 1 ≤ n1 ≤

n2 ≤ · · · ≤ nℓ, has proper diameter 4 and each partite set contains at most 2
vertices. Then there must be a partite set A with exactly 2 vertices, say a1 and
a2. Suppose a1x1x2x3a2 is a shortest properly colored path from a1 to a2 of
length 4 with c(x1x2) = 1 and c(x2x3) = 2. Since x2 is not in A, there is an edge
a1x2, which must have color 2 otherwise a1x2x3a2 is a shorter properly colored
path. Similarly, edge x2a2 must have color 1. This leads to an alternating path
a1x2a2 of length 2, giving a contradiction. Therefore, if no partite set contains
at least 3 vertices, then the proper diameter must be less than 4.

We conclude with Corollary 10, which follows from Theorem 6, Theorem 7,
and Theorem 9, and summarizes the facts about complete bipartite graphs.

Corollary 10. Let m ≥ n and m ≥ 2. The proper diameter of any properly

connected 2-coloring of Kn,m is 2 or 4. Moreover,

(i) A proper diameter of 2 is attainable if and only if m ≤ 2n.

(ii) A proper diameter of 4 is attainable if and only if n ≥ 2 and m ≥ 3.

3. General Bounds

Whereas the results of previous sections focus on specific graph families, in this
section we provide preliminary bounds on the maximum value of pdiam2(G, c)
which is pdiam2(G) for general graphs G. Analyzing the connectivity of G

is a natural starting point, since a large value of κ(G) provides density and
flexibility in routing from a given vertex to another. Theorem 12 provides a
worst-case bound on the proper diameter of a 2-coloring of G and shows that
as the connectivity increases for a fixed value of n, the maximum proper di-
ameter for 2-colorings decreases. The proof is by contradiction and relies on
Lemma 11. To guide the reader through the proof of Lemma 11, we first as-
sume that a 3-connected graph has a shortest properly colored Hamiltonian path
between v1 and vt. Then we find a shorter properly colored path by start-
ing at v1 and iterating through edges of the form vijvij−1 · · · vi′j+1

vij+1
for all

j needed to reach vt. For example, in Figure 8, a shorter properly colored path
is v1vi1vi1−1vi′

2
vi2vi2−1vi′

3
vi3vi3−1vi′

4
vi4 .

Lemma 11. In any properly connected graph G on t vertices with κ(G) ≥ 3,
pdiam2(G) < t− 1.

Proof. Assume G is a 3-connected graph on t vertices with a properly connected
2-coloring c, where pdiam2(G, c) = t − 1. Then there exists a shortest properly
colored path P = v1v2 · · · vt between some vertices v1 and vt. The edges of P
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alternate between 2 colors, so suppose c(v2i−1v2i) = 1 and c(v2iv2i+1) = 2 for
each integer i with 1 ≤ i ≤

⌊

t−1
2

⌋

. Note that c (vt−1, vt) = 1 if t is even.
We now construct a specific sequence of vertices vi1 , vi2 , . . . , vim in order to

find a shorter properly colored path from v1 to vt than P . Since G is 3-connected,
v1 must have 2 neighbors besides v2. This corresponds to two edges of the form
v1vi for i > 2. Let i1 be the largest index such that v1vi1 ∈ E(G). In particular,
3 < i1 < t. Following similar logic as that just used to define vi1 , define vij for
j ≥ 2 reiteratively as below. See Figure 8 for an illustration.

• If vt is adjacent to a vertex of
{

v1, v3, v4, . . . , vij−1−1

}

, then let ij = t and
m = j.

• Otherwise, there must be an edge from Lij =
{

v1, v3, v4, . . . , vij−1−1

}

to
Rij =

{

vij−1+1, . . . , vt
}

. If not, then
{

v2, vij−1

}

is a cut set. From all the edges
that exist between Lij and Rij , let vij be the vertex with the largest index from
Rij that is incident to such an edge. Define ej as an edge from Lij to Rij with
endpoints vi′j and vij , respectively. Note that ej cannot be incident to vertices v2
or vij−1

because they are excluded from Lij ∪Rij . We exclude v2 from Lij in order
to build paths from v1 to vt that skip v2. Note that i′j < i′j+1 by construction.

v1 v2
vi′

2

vi1
vi′

3

vi2
vi′

4

vi3 vi4

Figure 8. A strategic sequence vi1 , vi2 , . . . , vim along P where m = 4.

We proceed by induction on j to show that for 1 ≤ j ≤ m − 1, we have

c (ej+1) = c
(

vi′j+1
vij+1

)

= c
(

vij+1
vij+1+1

)

, and additionally, there is a prop-

erly colored path Pij+1
from v1 to vij+1

of length at most ij − 1 with terminal
edge vi′j+1

vij+1
. When j = 1, we have vij+1

= vi2 . If i2 = t, then depending

on whether the color of edge e2 = vi′
2
vi2 = vi′

2
vt differs from c

(

vi′
2
−1vi′

2

)

or

from c
(

vi′
2
vi′

2
+1

)

, either v1v2 · · · vi′
2
vt or v1vi1vi1−1 · · · vi′

2
vt, respectively, would

be a properly colored path from v1 to vt that is shorter than P , as these paths
miss vi1 and v2, respectively. Thus, we may assume that i2 < t. In this

case, if c(e2) = c
(

vi′
2
vi2

)

= c (vi2−1vi2), then one of v1v2 · · · vi′
2
vi2vi2+1 · · · vt

or v1vi1vi1−1 · · · vi′
2
vi2vi2+1 · · · vt would be a shorter properly colored path from

v1 to vt. Therefore, we must have c
(

e2
)

= c
(

vi′
2
vi2

)

= c (vi2vi2+1). Addition-

ally, if c
(

vi′
2
−1vi′

2

)

= c
(

vi′
2
vi2

)

, there is a properly colored path Pi2 of length

at most i1 − 1, given by v1vi1vi1−1 · · · vi′
2
vi2 . Note that this path is properly col-

ored only if c (v1vi1) 6= c (vi1vi1−1), which we may assume is true since otherwise
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c (v1vi1) 6= c (vi1vi1+1) and then v1vi1vi1+1 · · · vt is a properly colored path from v1

to vt that is shorter than P . If c
(

vi′
2
−1vi′

2

)

6= c
(

vi′
2
vi2

)

, then v1v2 · · · vi′
2
−1vi′

2
vi2

is a properly colored path of length at most i1 − 1, giving the desired Pi2 .

Assume c
(

vi′j+1
vij+1

)

= c
(

vij+1
vij+1+1

)

for all j such that 1 ≤ j < ℓ for

some ℓ ≤ m− 1. Additionally, assume that there is a properly colored path Pij+1

from v1 to vij+1
of length at most ij − 1 with terminal edge vi′j+1

vij+1
. Suppose

that c
(

vi′
ℓ+1

viℓ+1

)

6= c
(

viℓ+1
viℓ+1+1

)

. Now if c
(

vi′
ℓ+1

−1vi′
ℓ+1

)

6= c
(

vi′
ℓ+1

viℓ+1

)

,

then P ′ = v1v2 · · · vi′
ℓ+1

viℓ+1
viℓ+1+1 · · · vt is a shorter properly colored path from

v1 to vt that skips viℓ , which is a contradiction. Otherwise, we know that

c
(

vi′
ℓ+1

−1vi′
ℓ+1

)

= c
(

vi′
ℓ+1

viℓ+1

)

.

By induction, there is a properly colored path Piℓ from v1 to viℓ of length at

most iℓ−1 − 1 with terminal edge vi′
ℓ
viℓ such that c

(

vi′
ℓ
viℓ

)

= c (viℓviℓ+1). Thus,

Piℓviℓ−1 · · · vi′
ℓ+1

+1vi′
ℓ+1

viℓ+1
viℓ+1+1 · · · vt is a shorter properly colored path from v1

to vt, which is a contradiction. This means that our supposition is incorrect and

thus c
(

vi′
ℓ+1

viℓ+1

)

= c
(

viℓ+1
viℓ+1+1

)

. Moreover, the path Piℓviℓ−1 · · · vi′
ℓ+1

viℓ+1
is

the desired proper path of length at most iℓ − 1 with terminal edge vi′
ℓ+1

viℓ+1
.

When ℓ = m− 1 this gives a properly colored path from v1 to vim = vt of length
at most im−1 − 1 < t− 1, yielding a contradiction.

Theorem 12. For any properly connected 2-colored graph G of order n ≥ 2,

pdiam2(G) ≤ n− κ(G) + 1.(1)

The bound in (1) is tight.

Proof. Let c be a properly connected 2-coloring of a graph G of order n ≥ 2.
First we will show that the bound is tight by the following construction. Let ℓ

be a positive integer and start with an alternating path P2ℓ+1 = v1v2 · · · v2ℓ+1

in which c(v2i−1v2i) = 1 and c(v2iv2i+1) = 2 for all i. To this, we add the
edges v1v2ℓ and v2v2ℓ+1 coloring the former with color 2 and the latter with
color 1. This graph is properly connected, the underlying uncolored graph is 2-
connected, and the proper diameter is 2ℓ. Finally, we add k− 2 vertices, coloring
all possible edges between each vertex and the vertices of P2ℓ+1 with color 1,
thus inducing a complete graph in color 1. See Figure 9. The resulting graph is
still properly connected, the underlying uncolored graph is k-connected, and the
proper diameter is still 2ℓ = n − k + 1. Note that we achieve the desired bound
if k = κ(G) and also if n− k is even using a similar construction.

Suppose that the proper diameter exceeds n− κ(G) + 1. Then there exists a
pair of vertices in G, say u and v, such that the proper distance between u and v
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is at least n− κ(G) + 2. Let P be a shortest properly colored path on t vertices
from u to v. Note that t is one more than the proper distance between u and v.
Let R be the remaining vertices and let G′ = G[P ]. Since |R| ≤ κ(G) − 3, we
see that κ(G′) ≥ 3. By Lemma 11, pdiam2(G

′, c) < t − 1, and so there exists a
properly colored path between u and v in G′ with length less than P , which is a
contradiction.

v1 v2 v3 v4 v5 v2ℓ−1 v2ℓ v2ℓ+1

k − 2 vertices

Figure 9. This figure illustrates a properly connected graph G with proper diameter
n−k+1. The thick solid red edge depicts that all edges between the two sets of vertices
are color 1.

Next, we look at Lemma 13, which gives a general lower bound using girth.
In Section 2.1 we argue that any properly colored odd cycle on 2m + 1 vertices
has proper diameter 2m − 1. This observation generalizes to any graph whose
girth is given by an odd cycle and also demonstrates that the bound in Lemma
13 is tight.

Lemma 13. If G is a graph with properly connected 2-coloring c and girth 2m+1
for m ≥ 2, then pdiam2(G, c) ≥ 2m− 1.

Proof. Let v1, v2, . . . , v2m+1 denote the vertices of a (2m + 1)-cycle in G, with
m ≥ 2. However the edges of the cycle are colored, since there are two colors
and an odd number of edges, some pair of adjacent edges vivi+1 and vi+1vi+2

must share a color. Thus, the shortest properly colored path from vi to vi+2 on
this cycle must have length 2m− 1. Suppose there is a properly colored path of
length less than 2m−1 from vi to vi+2. Let viw1w2 · · ·wlvi+2 denote such a path
of minimum length in G. Then viw1w2 · · ·wlvi+2vi+1vi is a cycle of length less
than 2m+1 since there is no shorter path between any two vertices on this path.
Therefore, pdiam2(G, c) ≥ 2m− 1 if G contains an odd cycle with length 2m+1
and no smaller cycle.
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We conclude this section by considering how a small modification to a prop-
erly connected graph can affect the proper diameter. In general, removing a
vertex from a properly connected graph does not necessarily result in a new
graph that is still properly connected since the deleted vertex may have been
required to obtain a properly colored path between some pair of vertices. Addi-
tionally, adding vertices and edges to a graph does not always yield a properly
connected graph, depending on how the additional edges are colored. In the
following lemma, given a non-complete graph G with a properly connected 2-
coloring c, we look at one way to form a new graph G′ with a properly connected
2-coloring c′ by adding a degree-2 vertex and two edges to G, and we consider
how the proper diameter of G′ under c′ is related to that of G under c. By Lemma
14, under certain conditions, the addition of a single vertex of degree 2 to G at
worst doubles the proper diameter of the original edge-colored graph.

Lemma 14. Let G be a graph with a properly connected 2-coloring c such that

pdiam2(G, c) = d > 1. Let u1, ud+1 ∈ V (G) such that the proper distance between

u1 and ud+1 is d, and let u1u2 · · ·udud+1 be a shortest properly colored path from

u1 to ud+1. Let G′ be a graph formed by adding a vertex v to G and edges vu1
and vud+1 with edge-coloring c′ : E(G′) → {1, 2} such that

c′(e) =











c(e) if e ∈ E(G),

3− c(u1u2) if e = u1v,

3− c(udud+1) if e = ud+1v.

Then pdiam2(G
′, c′) ≤ 2d.

v

u1 u2 u3 u4 u5

v

u1 u2 u3 u4 u5 u6

Figure 10. A properly connected P5 and P6 and a degree-2 vertex v in the cases where
d = 4 and d = 5.

Proof. The only edges that do not exist in both G and G′ are those incident
with v. Since c and c′ assign the same colors to all other edges, it suffices to show
that for any vertex w ∈ V (G′), there exists a properly colored path of length of
at most 2d between w and v.

Observe that by definition, c′(u1v) 6= c′(u1u2) and c′(ud+1v) 6= c′(udud+1).
Hence, paths P1 = vu1u2 · · ·udud+1 and P2 = u1u2 · · ·udud+1v are both properly
colored in G′. Since P1 and P2 each has length d+1, the proper distance between
v and ui for 1 ≤ i ≤ d+ 1 is therefore at most d+ 1, as desired.
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Let us now consider any vertex w1 6= v where w1 is not on the path P =
u1u2 · · ·ud+1. Let Q = w1w2 · · ·wn be a shortest properly colored path in G

between w1 and any vertex on P . Then the endpoint of Q is a vertex on P , so
wn = uj for some 1 ≤ j ≤ d + 1. Also, the vertices w1, w2, . . . , wn−1 are not
on P as otherwise there exists a properly colored path that is shorter than Q

between w1 and some vertex on P . Finally, the path Q has length at most d

since pdiam2(G, c) = d.

The pathQ exists inG′ and its edges are colored the same by c′ as c. Since the
color of the final edge of Qmust be distinct from either c′(uj−1, uj) or c

′(uj , uj+1),
either the path QP ′

1 formed by concatenating Q with P ′
1 = ujuj−1 · · ·u1v or the

path QP ′
2 formed by concatenating Q with P ′

2 = ujuj+1 · · ·ud+1v is a properly
colored path from w1 to v. Note that P ′

1 and P ′
2 have length at most d if Q ends

at an internal vertex of P but one of P ′
1 or P ′

2 has length exactly d+ 1 if Q ends
at an endpoint of P . Hence, if Q ends at an internal vertex of P or if Q has
length strictly less than d, then both QP ′

1 and QP ′
2 have length at most 2d, and

so no matter which of QP ′
1 and QP ′

2 is properly colored, the vertices w1 and v

have a proper distance of at most 2d, as desired.

Otherwise the path Q has length exactly d and ends at an endpoint of P .
Since Q by definition is a shortest properly colored path in G between w1 and
any vertex on P and since pdiam2(G, c) = d, this means that a shortest properly
colored path Q′ between w1 and u2 exists and is also of length exactly d. Say
Q′ has an internal vertex uk ∈ P = u1u2 · · ·ud+1. Then the subpath on Q′ from
w1 to uk yields a properly colored path shorter than d from w1 to P , giving
a contradiction. Hence, only the endpoint of Q′ is on P . As before, either
concatenating the path Q′ with u2u3 · · ·ud+1v or u2u1v yields a properly colored
path from w1 to v. Also, both of these concatenated paths have length at most
2d since u2 is an internal vertex of P . Thus, the claim holds.

G diam(G) pdiam2(G, c) Notes

path, P diam(P ) diam(P ) If the path has n vertices, then diam(P ) = pdiam2(P, c) = n− 1
holds for all colorings c.

Kn 1 1 This is the only possibility.

C2m m {m, 2m− 2} These are the only possibilities. See Observation 1.

C2m+1 m 2m− 1 This is the only possibility. See Observation 1.

F1,n, n ≥ 7 2 [3, n− 1] Bounds are tight and all values are attainable. See Theorems 4
and 5.

Kn,m 2 {2, 4} See Corollary 10.

Kn1,n2,...,nℓ
2 [2, 4] Bounds are tight and all values are attainable. See Theorems 6

through 9.

Table 1. Diameter vs. proper diameter.
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4. Conclusion

Table 1 compares the proper diameter for the graph families discussed in this
paper to their diameter. For odd cycles and sufficiently large fan graphs, the
proper diameter cannot equal the diameter of the graph using two colors. We
also see that fan graphs and complete multipartite graphs (with at least three
partite sets) are two families of graphs that can attain any proper diameter value
between the upper and lower bounds with two colors.
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