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Gábor Mészáros
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Abstract

The study of a graph theory model of certain telecommunications net-
work problems lead to the concept of path-pairability, a variation of weak
linkedness of graphs. A graph G is k-path-pairable if for any set of 2k dis-
tinct vertices, si, ti, 1 ≤ i ≤ k, there exist pairwise edge-disjoint si, ti-paths
in G, for 1 ≤ i ≤ k. The path-pairability number is the largest k such that G
is k-path-pairable. Cliques, stars, the Cartesian product of two cliques (of
order at least three) are ‘fully pairable’; that is ⌊n/2⌋-pairable, where n is
the order of the graph. Here we determine the path-pairability number of
the Cartesian product of two stars.
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1. Introduction

A telecommunications network (such as a data- or telephone network) is a col-
lection of terminal nodes, links, and intermediate nodes which are assembled to
enable simultaneous communication between the terminals. In typical applica-
tions pairs of communicating terminals are connected through transmission links.
The basic characteristic of a given telecommunications network is, how many dis-
tinct communication lines can simultaneously function. In terms of graph theory
terminals and intermediate nodes of a network are the vertices of a graph, the
lines and the transmission links correspond to edges and paths in the graph. The
graph theory model of telecommunications networks and the various practical
connectedness requirements imposed on the real networks lead to the notion of
various linkage or pairing properties of a graph. Here we focus on the ‘k-path-
pairability’ of graphs, a concept introduced by Csaba et al. in [1] and has been
investigated since then by several authors in [3, 4, 6, 7, 9].

For k fixed, a simple graph G with at least 2k vertices is k-path-pairable if for
any list of 2k distinct vertices called terminals, s1, . . . , sk, t1, . . . , tk, there exist
pairwise edge-disjoint si, ti-paths in G, for 1 ≤ i ≤ k. The concept of k-path-
pairability is a variant of weak k-linkedness, a property close to edge connectivity,
where on the list s1, . . . , sk, t1, . . . , tk vertices may repeat. Indeed, a weakly k-
linked graph must be k-edge connected (think of the choice of si = s, ti = t, for
1 ≤ i ≤ k, where s 6= t); on the other hand, k-edge connectivity of a graph is
‘nearly’ sufficient for weak k-linkedness (for instance, Huck proved in [5] that, for
k odd, a (k+1)-edge-connected graph is weakly k-linked). In contrast, Faudree et
al. showed in [2] that not even high degree is necessary for k-path-pairability: for
every k, and sufficiently large n, there is a 3-regular and k-path-pairable graph
of order n.

We define the path-pairability number of a graph G as pp(G) = max{k | G is
k-path-pairable}. For instance, pp(K2,2) = 1, pp(K1,b) = ⌈b/2⌉, pp(Kn) = ⌊n/2⌋
(where Ka,b is the complete a× b bipartite graph and Kn is the complete graph
of order n). A k-path-pairable graph of order 2k is simply called path-pairable.

The most obvious path-pairable graphs are Kn, for n even, and K1,a, for
odd a. It is not quite obvious, but an easy exercise to verify that Ka,b is path-
pairable, for all a, b ≥ 3 and ab even. The Petersen graph and the 3-cube Q(3) are
path-pairable as well. A simple parity argument shows that the 2t-dimensional
hypercube, Q(2t), is not path-pairable. Csaba et al. made the following appealing
conjecture in 1992 (see [1]) which is still open: the hypercube Q(2t+1) is path-
pairable, for every integer t ≥ 1.

To find path-pairable graphs with small maximum degree it suffices to con-
sider the Cartesian product of two cliques (such that the product has even order
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at least 6), or the Cartesian product of two complete n×n bipartite graphs (for n
even) (see [7, 9]). It was proved recently by Győri et al. in [4] that the Cartesian
nth power of Kt is path-pairable, for t ≥ 18.

Here we discuss the path-pairability number of the Cartesian product of stars,
the only path-pairable trees. It is straightforward to show that pp(K1,1�K1,1) =
pp(K1,1�K1,2) = 1 and pp(K1,2�K1,2) = pp(K1,2�K1,3) = 2 (see Proposition 11
in the Appendix). Our main result (proved in Section 2) answers the conjecture
due to Mészáros in [8].

Theorem 1. pp(K1,a�K1,b) = ⌈(a+ b)/2⌉, for every a, b ≥ 3.

According to Theorem 1 the path-pairability number of the Cartesian prod-
uct of stars is not bounded. It is a natural question to ask whether the path-
pairability number of the product of two non-path-pairable trees can be arbi-
trarily high. For bounded path-paribility, consider the example of a grid graph
Pn�Pn, where Pn is a path on n vertices. (In [6] the bound pp(Pn�Pn) ≤ 5 is
obtained from a pairing where a cluster of six terminals in a 2× 3 corner of the
grid Pn�Pn, n ≥ 4, is cut off from their six terminal pairs by 3+2 = 5 edges.) In
Section 3 a somewhat unexpected answer is obtained by using a strategy similar
to the one in Theorem 1. If K̂1,m denote a star K1,m with a subdivided edge,

then pp(K̂1,m) = 1; meanwhile, for a, b ≥ 3, pp(K̂1,a�K̂1,b) ≥ ⌊min{a, b}/2⌋

(Proposition 7). Determining the exact value of pp(K̂1,a�K̂1,b) remains open.

2. The Product of Two Stars

It was conjectured in [8] that pp(K1,a�K1,b) = ⌈(a+ b)/2⌉. We shall prove that
the conjecture is true except for particular parameter values discussed in the
Appendix. Let the vertices of G(a, b) = K1,a�K1,b be arranged in an (a + 1) ×
(b+1) array, where the vertices are labeled with (i, j), 0 ≤ i ≤ a, 0 ≤ j ≤ b, such
that vertex (0, 0) has degree a+ b, each vertex of the form (0, j) has degree a+1,
each vertex of the form (i, 0) has degree b+ 1, and all other vertices have degree
2. Then each row A(i) = {(i, j) | 0 ≤ j ≤ b} induces a copy of K1,b with center
(i, 0), and each column B(j) = {(i, j) | 0 ≤ i ≤ a} induces a copy of K1,a with
center (0, j). The set Γ = A(0)∪B(0) induces a star K1,a+b with center at (0, 0);
it is called the boundary star of G(a, b).

Proposition 2. For 2 ≤ a ≤ b and a+ b ≥ 6, pp(K1,a�K1,b) ≤ ⌈(a+ b)/2⌉.

Proof. For a+ b even, let k = a+ b+ 2, and define the pairs sℓ, tℓ, 1 ≤ ℓ ≤ k/2
as follows:
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t1
s1 s2 s3 s4 · · · sk/2 tk/2 tk/2−1 · · · ta+2

t3 t2
t4
· · ·

ta
ta+1

For a+ b odd, let k = a+ b+ 3, and define the pairs similarly:

t1
s1 s2 s3 s4 · · · sk/2 tk/2 tk/2−1 · · · ta+3

t4 t2 t3
t5
· · ·

ta+1

ta+2

Observe that k/2 ≤ b+1; hence there is room for sk/2 in A(1). The collection of
k/2 pairwise edge disjoint si, ti-paths, 1 ≤ i ≤ k/2, if it exists, called a solution.
In each case either s2s1 or s2t1 is the first edge of the s2, t2-path P2 of a solution.
Since all vertices of degree two in A(1) ∪ B(1) are occupied by a terminal, P2

must proceed using either the edge s1− (0, 0) or the edge t1− (0, 0). On the other
hand, for the same reason, the s1, t1-path P1 must use both edges s1 − (0, 0) and
t1 − (0, 0). Thus P1 and P2 cannot be edge-disjoint.

2.1. Mating terminals

To verify that G(a, b) = K1,a�K1,b is k-path-pairable we must show that given
any 2k distinct vertices s1, . . . , sk, t1, . . . , tk of G(a, b), we can find k pairwise
edge-disjoint sℓ, tℓ-paths, for 1 ≤ ℓ ≤ k. Our procedure to obtain these sℓ, tℓ-
paths will consist of two basic steps. First we assign distinct boundary vertices
φ(sℓ), φ(tℓ) ∈ Γ, called the mates of sℓ and tℓ, such that they can be reached
from sℓ and from tℓ via pairwise edge-disjoint mating paths. Second, we join each
pair of mates using paths of length two through the center vertex in Γ. The
concatenation of these three pieces, for each 1 ≤ ℓ ≤ k, yields a solution, the
required k pairwise edge-disjoint paths.

For a terminal u = (i, p) /∈ Γ, the vertices (i, 0) and (0, p) are the possible 1-
step boundary mates of u reached by the mating path u − (i, 0) or u − (0, p).
Vertices (0, q) and (j, 0) such that q 6= p and j 6= i are the possible 3-step
boundary mates of u. A 3-step boundary mate of u is reached by the mating
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path u− (i, 0)− (i, q)− (0, q) or u− (0, p)− (j, p)− (j, 0) through transit vertex

(i, q) or (j, p).

Lemma 3. For n ≤ a+ b, and for any set X of n distinct terminals of G(a, b),
there is an injection φ : X 7−→ Γ such that φ(x) = x, for every x ∈ X ∩ Γ, and
φ(x) is a 1- or 3-step boundary mate of x, for every x ∈ X \ Γ, furthermore, the

mating paths determined by φ are pairwise edge-disjoint.

Proof. Let L0 = X ∩ Γ and set φ(x) = x, for each x ∈ L0. The definition of φ
will be successively extended for the terminals in X \L0 via an algorithm, which
repeatedly updates an increasing set L1∪L3 of terminals already associated with
1- or 3-step boundary mates. At any given stage of the algorithm, Li contains
all terminals t associated with an i-step boundary mate t′ ∈ L′

i. An auxiliary set
T is also maintained and updated including the transit vertices belonging to the
mating paths of length 3 between a terminal t ∈ L3 and its actual mate t′ ∈ L′

3.
Set L = L0∪L1∪L3, L

′ = L0∪L′

1∪L′

3. The algorithm terminates when L = X,
and then φ(t) = t′, for all t ∈ L.

If L 6= X, there is an unmated terminal t ∈ X\L, and since |L| < |X| ≤ a+b,
there is an unused boundary vertex y ∈ Γ \ L′. Let t = (i, p) and y = (j, 0) (or
y = (0, q)). Using the symmetry of the rows and columns in G(a, b) we assume
that y = (j, 0) ∈ Γ \ L′. The mate of t is assigned as follows.

0

0

i

p

ty

(1)

0

0

i

j

p

w

t

y

(2)

0

0

i

j

p

u

t

y

u′

(3)

0

0

i

j

pq

xu

t

y

u′

(4)

(1) If j = i, then we include t and t′ = y to L1 and L′

1, respectively. At each
stage of the algorithm repeat this step as long as possible. If no such pair
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t, y exists, then for each unmated terminal t = (i, p) ∈ X \ L and for each
unused boundary vertex y = (j, 0) and y = (0, q), we have j 6= i and q 6= p.

(2) If w = (j, p) /∈ X ∪T , then the path t− (0, p)−w− y does not interfere with
the mating paths used between the terminals in L and their mate in L′. Now
we redefine the sets L3, L

′

3 and T by including t into L3, w into T , and t′ = y
into L′

3.

Assume now that t = (i, p) ∈ X \ L, y = (j, 0) ∈ Γ \ L′, and neither (1) nor (2)
applies, in particular, (j, p) ∈ L ∪ T .

(3) If u = (j, p) ∈ L, and since y is unused, we have u ∈ L1 and u′ = (0, p) ∈ L′

1.
Now we redefine the 1-step mate of u by letting u′ = y and reassigning (0, p)
as the 1-step mate of t. The sets L1 and L′

1 are updated according to the
changes made in the mapping φ.

(4) If x = (j, p) ∈ T , then x is supposed to be used as a transit vertex in a 3-step
mating path between some u = (j, q) ∈ L3 and u′ = (0, p) ∈ L′

3. Since y is
unused, it is not possible due to our assumption.

The algorithm terminates when L = X, and then φ(t) = t′, for all t ∈ X.

2.2. Mating lemma extended

In case of a+b+1 terminals there is not enough room for the mates in Γ\{(0, 0)}
and our procedure in Section 2.1 must be modified. The strategy is simple, before
we start injecting the terminals into Γ we ‘reserve’ an sℓ, tℓ-path of length at most
6, for some ℓ, such that this reserved path does not use edges in Γ. Reserving a
path will be done by ‘blocking’ the participating edges from being used later in
the mating procedure. Lemma 4 extends Lemma 3 just for this purpose.

Lemma 4. Let X be a set of a + b distinct terminals in G(a, b) and let Z be a

set of at most three vertices of V (G(a, b)) \ X. Assume that for a set X0 ⊆ X
there is an injective pre-map φ0 : X0 7−→ Γ such that

– φ0(x) = x, for every x ∈ X0 ∩ Γ,

– φ0(x) is a 1- or 3-step boundary mate of x, for every x ∈ X0 \ Γ,

– (0, j), (i, 0) ∈ φ0(X0), for every (i, j) ∈ Z,

– the mating paths determined by φ0 are edge-disjoint and disjoint from Z.

Then φ0 has an extension to an injection φ : X 7−→ Γ such that φ(x) = x, for
x ∈ X ∩ Γ, φ(x) is a 1- or 3-step boundary mate of x, for every x ∈ X \ Γ, and
the mating paths determined by φ are edge-disjoint and disjoint from Z.

Proof. We use the notation of Lemma 3. In particular, L0 = X ∩ Γ. Observe
that the case Z = ∅ with X0 = L0 and the identity map φ0 : X0 7−→ X0 is the
claim we proved by using the algorithm in Lemma 3.



The Path-Pairability Number of Product of Stars 915

For |Z| ≥ 1, we repeat the algorithm in Lemma 3 by setting the initial values
implied by the partial injection φ0 as follows. Let L = X0 and L′ = φ(X0)
partitioned into L0∪L1∪L3 and L0∪L′

1∪L′

3, respectively, where L
′

h is the set of
all h-step mates assigned by φ0 to the terminals in Lh, for h = 1, 3. Furthermore,
let T0 be the set of all transit vertices used in the mating paths of length 3 between
x ∈ X0 and its mate φ0(x), and set T = T0 ∪ Z.

If L 6= X, there is an unmated terminal t = (i, j) ∈ X \ L, and there is an
unused boundary vertex y = (p, 0) ∈ Γ \ L′ (or y = (0, q) ∈ Γ \ L′). Observe
that (p, j) /∈ Z (or (i, q) /∈ Z), since otherwise, (p, 0) ∈ L′ (or (0, q) ∈ L′), by our
assumption on Z. As a consequence, a terminal in Z is never considered in steps
(1)–(4) of the algorithm in Lemma 3; in fact, t, u, x, z /∈ Z in the corresponding
steps (1)–(4). Thus Lemma 3 yields the required extension φ.

When we apply the mating lemma an sℓ, tℓ-path will be reserved by specifying
a set Z of at most 3 vertices containing tℓ, together with X0 and φ0(X0) such
that the assumptions of Lemma 4 are satisfied. We will say that the mates in
φ0(X0) are ‘blocking’ the terminals and the transit vertices in Z.

2.3. The row-column bipartite graph

Let H be the a×b bipartite graph of the rows and columns of G(a, b) with vertex
set V (H) = {A(1), . . . , A(a)} ∪ {B(1), . . . , B(b)}, and there is an edge between
A(i) and B(j), 1 ≤ i ≤ a, 1 ≤ j ≤ b, if and only if (i, j) ∈ X. (Here we assume
that A(0)∪B(0) contains no terminal; this restriction will be reconsidered later.)
We will need an elementary lemma in Section 2.4.

Λ Θ Σ

Figure 1. The base graphs in Lemma 5.

Lemma 5. Let H be the family of all connected bipartite graphs such that each

H ∈ H has |V (H)|+1 edges and the degree of each vertex in one of the partition

classes of H is equal to 2. Then every member of H can be obtained starting

with one of the base graphs Λ,Θ,Σ in Figure 1 and by repeating even extensions:

subdividing an edge with an even number of vertices or suspending a path of even

length at any vertex of the smaller partition class.
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Proof. Let H ∈ H be a bipartite graph, with partition classes A and B, |A| = a,
|B| = b, and assume that the vertices in B have degree 2. Because H has 2b =
a + b + 1 vertices we obtain b = a + 1. First observe that starting with H any
of the described even extensions produce members in H. Assume that H ∈ H is
minimal with respect to the (inverse of the) two even extensions; in particular,

(i) dH(x) ≥ 2, for every x ∈ A, and

(ii) for a 4-path (x0, y, x, y0), if x0 ∈ A and dH(x) = 2, then x0y0 ∈ E(H).

We show that H is one of the graphs Λ,Θ,Σ. Since H has 2a+ 2 edges incident
with a vertices of degree at least 2, by (i), the possible degree sequence of the

vertices in A are (4,

a−1︷ ︸︸ ︷
2, . . . , 2) and (3, 3,

a−2︷ ︸︸ ︷
2, . . . , 2).

If x ∈ A has degree 4, then by (ii), H − x is the union of two paths of
length 2, and H ∼= Λ follows. If x1, x2 ∈ A are the two vertices of degree 3, then
connectivity of H and (ii) imply that x1, x2 have a common neighbor y. Then
H − {x1, x2, y} induces two paths of length 0 or 2. Using property (ii) again, we
obtain H ∼= Θ or H ∼= Σ.

Observe that with the only exception of Θ, every graph in H has a path of
length 4 with end vertices lying in the smaller partition class. Lemma 5 has no
natural extension for non-connected graphs, we will use the following observation,
instead.

Proposition 6. If a non-connected bipartite graph H contains |V (H)|+ 1 edges

and the degree of each vertex in one of the partition classes is equal to 2, then
H has a connected component which is either a cycle or an even path with end

vertices in the smaller partition class.

Proof. Let H be an a × b bipartite graph, and let A and B be the partition
classes with |A| = a, |B| = b. Let Hi, 1 ≤ i ≤ c, with c ≥ 2, be the connected
components of H, where each Hi is an ai × bi bipartite graph and

∑
ai = a and∑

bi = b. If the vertices in B have degree 2, then H has 2b = a+ b+ 1 edges.
By the connectivity of the components, we have 2bi ≥ ai + bi − 1, for every

i = 1, . . . , c, with equality if Hi is an even path with end vertices in A. If
it does not happen, then 2bi ≥ ai + bi, for every i = 1, . . . , c, with equality
provided Hi is an even cycle. Assuming that this is not the case either, we have
2bi ≥ ai + bi + 1, for every i = 1, . . . , c. Adding up these inequalities results in
a+ b+ 1 = 2b ≥ a+ b+ c. Thus we obtain c = 1, a contradiction.

2.4. Proof of the main theorem

We prove that for every a, b ≥ 2, except the case {a, b} = {2, 3},

pp(K1,a�K1,b) = ⌈(a+ b)/2⌉.
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Proof. Let a ≤ b and k = ⌈(a + b)/2⌉. By Proposition 2, it is enough to show
that G(a, b) is k-path-pairable. Let X = {s1, t1, . . . , sk, tk} be a set of 2k distinct
terminals.

For a + b even, 2k = a + b, and by Lemma 3, it follows that the terminals
have an injection into 1- or 3-step mates on the boundary Γ of G(a, b) along with
edge-disjoint paths. Then for every pair sℓ, tℓ, 1 ≤ ℓ ≤ k, the mates φ(sℓ) and
φ(tℓ) can be joined in Γ. The concatenation of these three pieces produces the
required sℓ, tℓ-paths.

From now on we assume that a + b is odd, in particular, b ≥ a + 1 and
2k = a+ b+ 1. In this case Γ− (0, 0) cannot receive the mates of all terminals,
one pair sℓ, tℓ must be joined with a path Pℓ not using edges of Γ. To make
sure that the remaining pairs have an injection into Γ we need to ‘reserve’ Pℓ

by ‘blocking’ the edges of Pℓ from being used in the mating procedure. In a
case-by-case analysis we apply Lemma 4 that sets up a blocking by specifying an
appropriate pre-map φ0. The first two types of blocking are used when members
of some pair of terminals lie in the same row or column.

0

0

i

j

p

tℓ
u

sℓ

s′ℓ

u′

(α)

0

0 q

i

p

tℓ

u′

s′ℓ

u

sℓ

(β)

(α) Let sℓ = (i, p), tℓ = (j, p), where 0 ≤ i, j ≤ a, 1 ≤ p ≤ b. We reserve the
path sℓ − (0, p)− tℓ (or sℓ − tℓ). Let u ∈ X \B(p) be a terminal closest to (j, 0),
and apply Lemma 4 with X \ {tℓ}, Z = {tℓ}, φ0(sℓ) = (0, p), and φ0(u) = (j, 0).

(β) Let sℓ = (i, q), tℓ = (i, p), where 0 ≤ p, q ≤ b, 1 ≤ i ≤ a. We reserve
the path sℓ − (i, 0) − tℓ (or sℓ − tℓ). Let u ∈ X \ A(i) be a terminal closest to
(0, p). Now we apply Lemma 4 with X \ {tℓ}, Z = {tℓ}, φ0(sℓ) = (i, 0), and
φ0(u) = (0, p).

Concerning the choice of a ‘closest’ terminal u in the blockings above Figure (α)
illustrates the case (X ∩ A(j)) \ {tℓ} 6= ∅ when u′ is a 1-step mate of u; Figure
(β) illustrates the case (X ∩B(p)) \ {tℓ} = ∅ when u′ is a 3-step mate of u.

Due to (α) and (β), we may assume for every pair of terminals sℓ = (i, p), tℓ =
(j, q), that i 6= j and p 6= q. We also assume (0, 0) /∈ X, since otherwise, Γ can
be filled with mates of the remaining a+ b terminals using Lemma 3, and we are
done.
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First we are dealing with the terminals in X ∩ Γ. For each x = (0, q) ∈ X,
if (i, q) /∈ X, for some 1 ≤ i ≤ a, then we replace x with x∗ = (i, q). Suppose
now that there is a pairing with the modified set X∗ of terminals. Let P be the
path connecting s∗ℓ and t∗ℓ . Then P either contains a subpath from sℓ to tℓ, or
one (or both) of the edges s∗ℓ − sℓ and t∗ℓ − tℓ are not used in the pairing, in which
case they can be added to P forming a path from sℓ to tℓ. From a pairing for
the pairs in X∗ thus we derive a pairing for the original set X of terminals. The
same reasoning can be repeated for the terminals lying in B(0). Thus we may
assume that

(0, q) ∈ X implies (i, q) ∈ X, for every 1 ≤ i ≤ a,

(p, 0) ∈ X implies (p, j) ∈ X, for every 1 ≤ j ≤ b.

Since 2(b+1) > a+b+1, we have |X ∩B(0)| ≤ 1, and in the case of equality,
we also have m = |X ∩ A(0)| ≤ 1. Observe that for X ∩ B(0) = ∅, the average
number of terminals per column is (a+ b+ 1)/b ≤ 2 with equality for b = a+ 1.

Case I. Every column B(j), 1 ≤ j ≤ b, contains exactly two terminals. Since
a ≥ 2, we have X ∩Γ = ∅ and a = b−1. Let H be the a× b raw-column bipartite
graph of G(a, b) where each edge (i, j) ∈ H corresponds to the terminal (i, j) ∈ X
located at A(i) ∩B(j).

Assume thatH is not connected. Then, by Proposition 6, H has a component
H1 which is a cycle or an even path. Let H0 = H −H1. If there is a pair sℓ, tℓ
separated by H0 and H1, say sℓ ∈ H0, tℓ ∈ H1, then blocking a path between
them will be done as follows.

(γ) Let sℓ = (i, p), tℓ = (j, q), with i 6= j, p 6= q; then (i, q) /∈ X (since sℓ, tℓ
are in distinct components). We reserve the path sℓ − (i, 0)− (i, q)− (0, q)− tℓ.
Let u ∈ (X ∩B(p)) \ {sℓ} and let v ∈ (X ∩B(q)) \ {tℓ}. We apply Lemma 4 with
X \ {tℓ}, Z = {tℓ, (i, q)}, φ0(u) = (j, 0), φ0(v) = (0, q), and φ(sℓ) = (i, 0).

Notice that (γ) can be used under the weaker condition that (i, q) /∈ X and
each of B(p) and B(q) contains at least two terminals (if |X ∩B(p)| > 2, then u
is selected to be the closest terminal to (j, 0)).

Now we assume that there is no pair of terminals separated by distinct con-
nected components of H. Let sℓ, tℓ belong to H1. Assuming that (γ) does not
apply, and since H1 is either an even path or a cycle, we obtain that H1

∼= K2,2

containing another pair, simply denote them u, v. Reserving a path for (sℓ, tℓ)
will be done as follows.

(δ) Let sℓ = (i, p), tℓ = (j, q), u = (i, q), v = (j, p) (with i 6= j, p 6= q), and let
w = (h, r) ∈ X, for h /∈ {i, j}, r /∈ {p, q}. To reserve the path sℓ − (i, 0)− (i, r)−
(0, r)− (j, r)− (j, 0)− tℓ we apply Lemma 4 with X \ {tℓ}, Z = {tℓ, (i, r), (j, r)},
φ0(sℓ) = (i, 0), φ0(u) = (0, q), φ0(w) = (0, r), and φ0(v) = (j, 0).
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Figure 2. (γ) and (δ) in terms of H.

Next letH be connected. By Lemma 5, H is either isomorphic to a base graph
H0 ∈ {Λ,Σ,Θ} or obtained from a base graph by even extensions. Observe that
H 6∼= Θ, since otherwise we have the case a = 2, b = 3 excluded in the theorem.

A fairly straightforward case analysis shows thatH always contains an appro-
priate pair sℓ, tℓ, such that sℓ = (i, p) is an edge of H belonging to an (eventually
subdivided) copy of a K2,2 ⊂ H0, together with tℓ = (j, q), u, v and w, as shown
in Figure 2 (dashed lines indicate non-edges of H). In the first two cases (γ)
works, in the third case (δ) applies.

Case II. There is a column not in Γ which contains exactly one terminal. Let
X ∩B(b) = {sℓ}, sℓ = (i, b) and tℓ = (j, q). Observe that i 6= 0 and assume i 6= j.
We reserve the path sℓ − (0, b)− (j, b)− (j, 0)− tℓ. Let u ∈ X \ ({sℓ, tℓ} ∪B(q))
be a terminal closest to (j, 0). Let v ∈ X \ ({sℓ, tℓ}∪A(j)) be a terminal different
from u and closest to (0, q). (Such u and v exist, because |X| ≥ b + 3.) Now
we apply Lemma 4 with X \ {tℓ}, Z = {tℓ, (j, b)}, φ0(sℓ) = (0, b), φ0(u) = (j, 0),
φ0(v) = (0, q).

Case III. There is a column containing no terminal. Let X ∩ B(b) = ∅, and
assume that Case II does not apply, thus each column has 0 or at least 2 terminals.
Recall that |X ∩B(0)| ≤ 1 and either |X ∩A(0)| ≤ 2 or |X ∩Γ| = |X ∩A(0)| ≥ 3.

Case III.1. First we assume that X ′ = X \ Γ is not contained in the union
of two rows. Let sℓ = (i, p) ∈ X ′, tℓ = (j, q) ∈ X ′ (with i 6= j, p 6= q). We shall
reserve the path sℓ − (i, 0)− (i, b)− (0, b)− (j, b)− (j, 0)− tℓ.
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Case III.2

By assumption, there is a terminal u ∈ X ′ \ (A(i) ∪ A(j)); assume without
loss of generality that u /∈ B(q). Next we select a terminal v1 ∈ (X ∩B(q)) \ {tℓ}
closest to (0, q). There still remain terminals not in B(q) ∪ {u, sℓ}, let v2 ∈
X \ (B(q) ∪ {u, sℓ}) be a terminal closest to (j, 0). Now we apply Lemma 4 with
X \ {tℓ}, Z = {tℓ, (i, b), (j, b)}, φ0(sℓ) = (i, 0), φ0(u) = (0, b), φ0(v1) = (0, q), and
φ0(v2) = (j, 0) (see Figure Case III.1).

Case III.2. Next we assume that m = |X∩A(0)| ≤ 2, and X ′ = X \Γ belongs
to the union of two rows, X ′ ⊆ A(i) ∪A(j) (1 ≤ i < j ≤ a).

For sℓ = (i, p), tℓ = (j, q) (with p 6= q), we reserve the vertices of the path
sℓ − (i, 0) − (i, b) − (0, b) − (j, b) − (j, 0) − tℓ not in B(b). Then we remove the
pair sℓ, tℓ from X, and apply Lemma 4 on G(a, b− 1) ∼= G(a, b)−B(b) with the
remaining (a+b−1)/2 pairs. For r /∈ {p, q}, let B(r) be a column containing (two)
terminals. Let Z = {sℓ, tℓ}, φ0(j, p) = (0, p), φ0(i, q) = (0, q). Set φ0(i, r) = (i, 0)
and φ0(j, r) = (j, 0), unless one of (i, 0) or (j, 0) is a terminal, in which case we
set φ0(i, 0) = (i, 0) or φ0(j, 0) = (j, 0), respectively (see Figure Case III.2).

Case III.3. Finally we consider the case when m = |X ∩ A(0)| ≥ 3. Since
m(a + 1) ≤ a + b + 1 and a ≥ 2, we obtain m < (a + b + 1)/2. Hence there
is a pair of terminals not in A(0), let sℓ = (i, p), tℓ = (j, q), where 1 ≤ i, j ≤ a
and 1 ≤ p, q < b (with i 6= j, p 6= q). Since m ≥ 3, there are distinct terminals
u1, u2 ∈ A(i)\{sℓ}, and there are distinct terminals v1, v2 ∈ A(j)\{tℓ} such that
u2 is closest to (0, q) and v2 is closest to (0, p).

We reserve the path sℓ−(i, 0)−(i, b)−(0, b)−(j, b)−(j, 0)−tℓ as in Case III.2
and remove an appropriate pair of terminals from X. Then we apply Lemma 4 on
G(a, b− 1) ∼= G(a, b)−B(b) with the set of terminals X \ {sℓ, tℓ}, and by setting
Z = {sℓ, tℓ}, φ0(u1) = (i, 0), φ0(v1) = (j, 0), φ0(u2) = (0, q), φ0(v2) = (0, p).

3. The Product of Two Trees Different From a Star

A k-path-pairable graph G obviously satisfies the condition that for any subset
A ⊂ V (G), |A| ≤ k, the number of edges from A to V (G) \ A is at least k.
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Based on this ‘cut condition’ it follows easily that the Cartesian product of a
non-star tree T has pp(T ) = 1. One would expect that for non-star trees T1, T2

pp(T1�T2) ≤ c, with some constant c. Our next result shows that this is not
always the case.

Proposition 7. If K̂1,m denote a star K1,m with a subdivided edge, then for

a, b ≥ 3, pp(K̂1,a�K̂1,b) ≥ ⌊min{a/2, b/2}⌋ .

Proof. Let x0 ∈ K̂1,a and y0 ∈ K̂1,b be the leaf incident to the subdivided edge,
and let x1 and y1 be their neighbors of degree two, respectively. We use the
notations A(x0) = {x0}�K̂1,b, A(x1) = {x1}�K̂1,b, and B(y0) = K̂1,a�{y0},

B(y1) = K̂1,a�{y1}. Let G = K̂1,a�K̂1,b, set z0 = {x0}�{y0}, z1 = {x1}�{y1}
and let Q be the square induced by z1, z0 and their two common neighbors z2, z3.
For a vertex v ∈ (A(x0)∪B(y0)) \ {z0}, let v

′ be the unique neighbor of v in the
subgraph G′ = G− (A(x0) ∪B(y0)) ∼= K1,a�K1,b (see Figure 3).

z0

B(y0)B(y1)

A(x0)
z2 si

A(x1)
z3 z1

os′i

ov o

v′
sℓ

tj

Figure 3. Mating into K1,3�K1,4.

Given a pairing of min{a, b} (or min{a, b}− 1) terminals, our goal is to mate
all terminals in A(x0) ∪ B(y0) into the subgraph G′ = G − (A(x0) ∪ B(y0)) ∼=
K1,a�K1,b using pairwise edge disjoint mating paths and not using edges of G′.

If z0 is a terminal, then mate it into a free (non-terminal) vertex of Q by
using a mating path of length 1 or 2. If every vertex of Q is a terminal, then
mate z0 with z1 along the mating path (z0, z2, z1).

For si ∈ (A(x0) ∪ B(y0)) \ {z0}, if s
′

i is free (it is not a terminal or a mate),
then let s′i be the mate of si. Let α be the number of pairs w,w′ such that
w ∈ (A(x0)∪B(y0)) \ {z0} and precisely one of w and w′ is a terminal (or mate).

Let sℓ ∈ B(y0) \ {z0} and assume that s′ℓ is a terminal (say s′ℓ = tj , j 6= ℓ). If
there exists an auxiliary vertex v ∈ B(y0)\{z0, z3} such that v and v′ are both free,
then we use the mating path of length 3 from sℓ to v′ through v as indicated in
Figure 3. One finds a mating path of length 3 in the same way for sℓ ∈ A(x0)\{z0}
using a free pair of auxiliary vertices v, v′, where v ∈ A(x0) \ {z0, z2}. Assume
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that there are β pairs w,w′ such that w ∈ (A(x0)∪B(y0))\{z0} and both w and
w′ are terminals (or mates). For a ≤ b, there are at most a terminals in G, hence
α+ 2β ≤ a. This implies that

β ≤ a− (α+ β) ≤ |B(y0) \ {z0, z3}| − (α+ β) = |A(x0) \ {z0, z2}| − (α+ β).

Therefore, the number of the free pairs of auxiliary vertices in B(y0) \ {z0 z3}
and also in A(x0) \ {z0, z2} is not smaller than β, hence the mating procedure
succeeds.

Then we are done by induction, unless every vertex of Q is a terminal. If
this exceptional case happens, then all the min{a, b} mates and terminals are in
G′ ∼= K1,a�K1,b in such a way that the mate of z0 and terminal z1 coincide at a
vertex of degree two of G′. To handle this case we need a variation of Lemma 3.
Recall that Γ is the set of vertices of the (a+ b)-star subgraph of K1,a�K1,b.

Lemma 8. For n ≤ min{a, b}, let X be a set of n − 1 distinct terminals in

K1,a�K1,b plus one additional terminal located at a vertex of degree two occupied

by another terminal. Then there is a mapping φ : X 7−→ Γ such that |φ(X)| = n,
φ(x) = x, for x ∈ X ∩ Γ, φ(x) is a 1- or 3-step boundary mate of x, for every

x ∈ X \ Γ, and the mating paths determined by φ are pairwise edge-disjoint.

Proof. Let Γ = Γa ∪ Γb, where Γa induces a K1,a and Γb induces a K1,b. Let
si, sj be the terminals located at the same vertex. We follow the proof of Lemma
3. Observe that during the procedure when si sj are to be mated into Γ, there is
a free vertex in both Γa and Γb, since n− 2 < min{a, b}. Then we mate si into a
free vertex in Γa, and for sj , we use a free vertex in Γb.

After applying Lemma 8 the proof of the proposition concludes with the
solution of the pairing in the star induced by Γ.

Note that if one of the graphs in Proposition 7 is replaced with a star by
subdividing one of its edges twice, then the path-pairability of their Cartesian
products drops below 6, due to the cut condition.
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A. Appendix

In the tables below the vertices of G(a, b) = K1,a�K1,b are arranged in an array
such that each row A(i) = {(i, j) | 0 ≤ j ≤ b} induces a copy of K1,b with center
(i, 0), and each column B(j) = {(i, j) | 0 ≤ i ≤ a} induces a copy of K1,a with
center (0, j). Let Γ be the star induced by A(0) ∪B(0).

Proposition 9. For b ≥ 2, pp(K1,1�K1,b) ≤ ⌊(1 + b)/2⌋.

Proof. For b even, we define the terminal pairs sℓ, tℓ, 1 ≤ ℓ ≤ b/2+1, as follows.

s1 s2 · · · sb/2−1 sb/2 sb/2+1

tb/2+1 tb/2 tb/2−1 · · · t3 t2 t1

There is no solution, since each of the paths joining the terminals sb/2, tb/2 and
joining the terminals sb/2+1, tb/2+1 cannot use a ’vertical‘ edge different from the
edge (0, 0) − (1, 0). For b odd, take the pairs above for b − 1, then add a pair
s(b+1)/2, t(b+1)/2 in the last column B(b).

Proposition 10. pp(K1,2�K1,3) ≤ ⌊(2 + 3)/2⌋.

Proof. The terminals of each pair sℓ, tℓ, 1 ≤ ℓ ≤ 3, below are at distance 4:

s1 s2 s3
t3 t1 t2

Any path between the paired terminals must use at least two edges of the bound-
ary star Γ which contains only 5 edges, hence there is no solution.

Proposition 11. For b ≥ 2, pp(K1,1�K1,b) = ⌊(b+ 1)/2⌋, furthermore,

pp(K1,2�K1,3) = 2.

Proof. By Lemma 3, any set of at most b+1 terminals of G(1, b) has an injection
into the path-pairable boundary star Γ. Then the first equality follows by Propo-
sition 9. By Lemma 3, any set of at most 4 terminals of G(2, 3) has an injection
into the path-pairable star Γ. The second equality follows by Proposition 10.
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