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Abstract

A well-known theorem by Chvátal-Erdős [A note on Hamilton circuits,
Discrete Math. 2 (1972) 111–135] states that if the independence number of
a graph G is at most its connectivity plus one, then G is traceable. In this
article, we show that every 2-connected claw-free graph with independence
number α(G) ≤ 6 is traceable or belongs to two exceptional families of well-
defined graphs. As a corollary, we also show that every 2-connected claw-free
graph with independence number α(G) ≤ 5 is traceable.
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1. Introduction

We consider finite simple undirected graphs G = (V (G), E(G)), and for concepts
and notations not defined here we refer to [1]. The circumference of G, denoted
by c(G), is the length of a longest cycle of G. For x ∈ V (G), NG(x) denotes the
neighborhood of x, for F ⊂ G, we denote NF (x) = NG(x)∩V (F ), and for H ⊂ G,
we denote NF (H) =

⋃

v∈V (H)NF (v). We denote by α(G), α′(G) and κ(G) the
independence number, the maximum matching number and the connectivity of
a graph G, respectively.
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For X ⊂ V (G), 〈X〉G denotes the induced subgraph on X in G. For a
subgraph C of G and for two vertices x1, x2 ∈ V (C), we use distC(x, y) to denote
the length of a shortest path between x and y in C. A pendant vertex of a graph
is a vertex of degree 1, and a pendant edge is an edge having a pendant vertex
as an end vertex. For a subgraph X of a graph G, by shrink X we understand
to delete all edges between vertices of X and then identify the vertices of X into
a single vertex, we denote it by G/X. The core of a graph G, denoted by G0, is
obtained by recursively deleting the pendant vertices in G. We define Λ(G) to
be the set of the vertices in G which are also vertices in G0 and adjacent to a
pendant vertex in G.

A graph is called Hamiltonian if it contains a Hamilton cycle, i.e., a cycle
containing all its vertices. A graph is called traceable if it contains a Hamilton
path, i.e., a path containing all its vertices. A trail in a graph G is a sequence
W = v0e1vl · · · vl−1elvl, whose terms are alternately vertices (not necessarily
distinct) and distinct edges of G, such that vi−1 and vi are ends of ei, 1 ≤ i
≤ l. For convenience, we sometimes abbreviate the term of v0e1vl · · · vl−1elvl
to v0vl · · · vl−1vl. A spanning trail of a graph G is a trail that contains all the
vertices of G.

Chvátal and Erdős proved the following result.

Theorem 1 (Chvátal and Erdős [4]). Every connected graph G of order at least

three with α(G) ≤ κ(G)+1 (α(G) ≤ κ(G), respectively) is traceable (Hamiltonian,

respectively).

Now, we focus our attention on claw-free graphs, i.e., K1,3-free graphs. Claw-
free graphs have been extensively studied for more than four decades. In partic-
ular, finding sufficient conditions for the Hamiltonicity of 2-connected claw-free
graphs have been the subject of many papers (see for example the survey [5]).
Ryjáček [10] introduced the closure of a claw-free graph G, which becomes a
useful tool in investigating Hamiltonian properties of claw-free graphs. A ver-
tex x ∈ V (G) is locally connected if the neighborhood of x induces a connected
subgraph in G. For x ∈ V (G), the graph G′

x obtained from G by adding the
edges {yz : y, z ∈ NG(x) and yz /∈ E(G)} is called the local completion of G
at x. The closure of a claw-free graph G, denoted by cl(G), is obtained from G
by recursively performing local completions at any locally connected vertex with
non-complete neighborhood, as long as it is possible. If H is a graph, then the
line graph of H, denoted L(H), is the graph with E(H) as vertex set, in which
two vertices are adjacent if and only if the corresponding edges have a vertex in
common.

The following theorem provides fundamental properties of the closure oper-
ator.
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Theorem 2 (Ryjáček [10]). Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined,

(ii) G and cl(G) have the same circumference,

(iii) cl(G) is the line graph of a triangle-free graph.

Our results are motivated by the following results which involve the indepen-
dence number for Hamiltonicity of 2 or 3-connected claw-free graphs.

Theorem 3 (Xu, Li, Miao, Wang and Lai [12]). Let G be a claw-free graph with

κ(G) ≥ 2 and α(G) ≤ 3. Then G is Hamiltonian if and only if the Ryjáček’s

closure of G is not isomorphic to the line graph of a member of
{

Ks1,s2,s3
2,3 : s1 ≥

s2 ≥ s3 > 0
}

, where Ks1,s2,s3
2,3 is obtained from K2,3 by attaching si pendant

vertices adjacent to each vertex of degree two.

Theorem 4 (Flandrin and Li [6]). Every claw-free graph G with κ(G) ≥ 3 and

α(G) ≤ 2κ(G) is Hamiltonian.

Theorem 5 (Chen [3]). Let H be a 3-connected claw-free graph with α(H) ≤ 7.
Then H is Hamiltonian or cl(H) = L(G) where G is a graph with α′(G) = 7
that is obtained from the Petersen graph P by adding some pendant edges or

subdividing some edges of P .

It is natural to ask what upper bound on the independence number of a
2-connected claw-free graph would guarantee its traceability. In this paper we
prove Theorem 6 below by using our recent result from [11] (Theorem 10 in this
paper), which allows us to avoid some possible case by case analysis (see our
concluding remarks).

Before stating our main result, we need to define two families of graphs.
C1 = {H : H is obtained from G1 shown in Figure 1, by adding at least one

pendant edge to each vertex of degree two},
C2 = {H : H is obtained from G2 shown in Figure 1, by adding at least one

pendant edge to each vertex of degree two}.

Theorem 6. Let G be a 2-connected claw-free graph with independence number

α(G) ≤ 6. Then G is traceable if and only if its Ryjáček’s closure cl(G) = L(H)
where H ∈ C1 ∪ C2.

Note that each graph G in C1 ∪ C2 has matching number 6, it follows that
α(L(G)) = 6 and we then obtain the following result immediately.

Corollary 7. Every 2-connected claw-free graph with independence number α(G)
≤ 5 is traceable.

In the next section, we will present some basic results and useful definitions
from [11]. In Section 3, we will prove Theorem 6, and in the finial section we give
some concluding remarks.
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Figure 1. Two graphs of order 10 that have no spanning trail.

2. Preliminaries and Basic Results

An edge cut X of G is essential if G\X has at least two nontrivial components.
For an integer k > 0, a graph G is essentially k-edge-connected if G does not
have an essential edge-cut X with |X| < k. Note that a graph G is essentially
k-edge-connected if and only if L(G) is k-connected or complete.

Theorem 8 (Brandt, Favaron and Ryjáček [2]). Let G be a claw-free graph.

Then G is traceable if and only if cl(G) is traceable.

A subgraph H of a graph G is dominating if every edge of G has at least
one end in H. A subgraph H of a graph G is even if every vertex of H has
even degree. Harary and Nash-Williams [7] showed that for a graph H with
|E(H)| ≥ 3, L(H) is Hamiltonian if and only if H has a dominating connected
even subgraph, i.e., dominating closed trail. Similarly to this, there is also a close
relationship between dominating subgraph in a graph and the property of being
traceable for its line graph.

Theorem 9 (Li, Lai and Zhan [8]). Let G be a graph with |E(G)| ≥ 3. Then the

line graph L(G) is traceable if and only if G has a dominating connected subgraph,

i.e., dominating trail.

In what follows we use the concepts and notation introduced in [11].

Let G be a 2-connected graph and let C be a cycle of G. Then any component
D of G−V (C) has at least two distinct neighbors on C. For any path P in D, if
the two ends (possibly only one if P is a vertex) of P have two distinct neighbors
x1, x2 on C, then P is called a 2-attaching path of C in D, and these two vertices
x1, x2 are called a 2-attaching pair of P on C. Furthermore, if D has a longest
2-attaching path P of order k, then D is called a k-component of G− V (C). Let
G be an essentially 2-edge-connected graph and let B1, . . . , Bi, . . . , Bt be all the
blocks of the core G0 of G and let Hi = Bi ∪ {e : e is a pendant edge of G and
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e has one end in V (Bi) ∩ Λ(G)}. Then Hi is called a super-block of G. If Hi

contains at least two cut vertices of G0, then Hi is called an inner-super-block of
G; otherwise, Hi is called an outer-super-block of G.

The following result was proved in [11] which will be applied to prove Theo-
rem 6.

Lemma 10 (Wang and Xiong [11]). Let G be a 2-connected graph with circum-

ference c(G) and let C be a longest cycle of G. Then

(i) if D is a k-component of G− V (C), then k ≤
⌊

c(G)
2

⌋

− 1,

(ii) every 2-component of G− V (C) is a star,

(iii) if c(G) ≤ 5, then G has a spanning trail starting from any vertex,

(iv) if c(G) ≤ 7, then G has a spanning trail.

Lemma 11 (Niu and Xiong [9]). Let G be a 2-edge-connected graph of order at

most ten. Then G has a spanning trail or G ∈ {G1, G2}, where G1, G2 are shown

in Figure 1.

3. The Proof of Theorem 6

In order to prove Theorem 6, we first need to prove the following result.

Theorem 12. Let G be a 2-connected graph of order 11 and circumference c(G) =
9 and let C be a longest cycle of G such that G − V (C) has two 1-components.

If G has no spanning trail, then G ∈ {G3, G4, G5}, where G3, G4, G5 are shown

in Figure 2.

Figure 2. Three graphs of order 11 that have no spanning trail.

Proof. Let C = v0v1 · · · v8v0 be a longest cycle such that u1 and u2 are the two
1-components of G− V (C). Since G has no spanning trail and is 2-connected, it
is easy to see that a vertex on C can have at most one neighbour in {u1, u2} and
no two consecutive vertices on C have neighbours in {u1, u2}. Hence {u1, u2} has
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at most four neighbours on C. Since G is 2-connected, {u1, u2} has exactly four
neighbours on C. We may assume that v0, v2, v4, v6 are the neighbours of {u1, u2}
on C. Let G′ be the graph obtained from C and two additional vertices u1, u2,
i.e., G′ = 〈V (C) ∪ {u1, u2}〉G. Then G′ is isomorphic to those graphs shown in
Figure 2. Now it is easy to check that adding any chord to C will yield a spanning
trail and therefore G = G′. The proof is complete.

The following result is the foundation of Theorem 6.

Theorem 13. Let G be a connected triangle-free graph such that κ(L(G)) ≥ 2
and α(L(G)) ≤ 6. Then L(G) is traceable if and only if G /∈ C1 ∪ C2.

Note that the core of an essentially 2-edge-connected graph is 2-edge-con-
nected, the proof of Theorem 13 can be deduced from the following two results.

Theorem 14. Let G be a connected triangle-free graph such that its core G0 is

2-connected and κ(L(G)) ≥ 2 and α(L(G)) ≤ 6. Then L(G) is traceable if and

only if G /∈ C1 ∪ C2.

Theorem 15. Let G be a connected triangle-free graph such that its core G0 has

connectivity one and κ(L(G)) ≥ 2 and α(L(G)) ≤ 6, then L(G) is traceable.

Now, we may finish the proof of Theorem 6.

Proof of Theorem 6. Suppose that G is non-traceable, then by Theorem 8,
cl(G) is also non-traceable. By Theorem 2(iii), there exists a triangle-free graph
H such that cl(G) = L(H). As adding any edge to a graph does not increase
the independence number α and does not decrease the connectivity κ, both
κ(L(H)) = κ(cl(G)) ≥ κ(G) ≥ 2 and α(L(H)) = α(cl(G)) ≤ α(G) ≤ 6 hold.
Then by Theorem 13, cl(G) = L(H) is traceable if and only if H /∈ C1 ∪ C2.

Proof of Theorem 14. Since a maximum independent set in L(G) corresponds
to a maximum matching in G, α′(G) = α(L(G)) ≤ 6. Suppose that L(G) is not
traceable, it suffices to show thatG ∈ C1∪C2. By Theorem 9, G has no dominating
trail. Let C = v1v2 · · · vc(G)v1 be a longest cycle of G. Since the core G0 of G
is a 2-connected graph that has no spanning trail, c(G) ≥ 8 by Lemma 10(iv).
Since C is not a dominating trail of G, E(G − V (C)) 6= ∅. Similarly G − V (C)
is not a star. Hence α′(G− V (C)) > 1. It follows that c(G) ≤ 9 since otherwise
α′(C) ≥ 5, so α′(G− V (C)) ≤ α′(G)− α′(C) ≤ 6− 5 = 1, a contradiction.

Claim 16. α′(D) ≤ 2 for every component D of G− V (C).

Proof. Since 8 ≤ c(G) ≤ 9, α′(C) = 4. Since α′(G) ≤ 6, α′(G − V (C)) ≤
α′(G)−α′(C) ≤ 6−4 = 2. Hence α′(D) ≤ α′(G−V (C)) ≤ 2 for every component
D of G− V (C). This proves Claim 16.
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It follows immediately from Claim 16 that |Λ(G)\V (C))| ≤ 2.

Claim 17. Every nontrivial component of G − V (C) has a dominating path P
such that one of the end vertices of P is adjacent to C.

Proof. Suppose, by contradiction, that there exists a component D of G−V (C)
such that D has no dominating path such that one of its end vertices is adjacent
to C. Since 8 ≤ |V (C)| ≤ 9 and by Lemma 10(i), D ∩ G0 is a k-component of
G0 − V (C) with 1 ≤ k ≤ 3, then 2 ≤ k ≤ 3; otherwise, D ∩ G0 is a vertex v0,
then clearly v0 is adjacent to C.

Suppose first that k = 2, then by Lemma 10(ii), D ∩ G0 is a star with the
center x and leaves y1, y2, . . . , ys. Since G0 is 2-connected, NG0

(yi) ∩ V (C) 6= ∅
for each i ∈ {1, . . . , s}. Since |Λ(G)\V (C))| ≤ 2, |{y1, . . . , ys} ∩Λ(G)| ≤ 2. Then
s ≥ 2; otherwise xy1 is a dominating path of D such that y1 is adjacent to C,
a contradiction. Without loss of generality, we may assume that ({y1, . . . , ys} ∩
Λ(G)) ⊆ {y1, y2}, then y1xy2 is a dominating path of D such that y1 is adjacent
to C, a contradiction.

Now consider k = 3. Let x1x2x3 be a 2-attaching path of C in D∩G0. Then
E(D − {x1, x2, x3}) 6= ∅, since otherwise x1x2x3 is a dominating path of D such
that x1 is adjacent to C. Thus α′(D − {x1, x2, x3}) ≥ 1. Also by Claim 16,
1 ≤ α′(D − {x1, x2, x3}) ≤ α′(D) − α′(x1x2x3) ≤ 2 − 1 = 1, this implies that
D − {x1, x2, x3} is also a star D′ with the center y and leaves z1, . . . , zt. Since
D is connected, we need to consider all possible connections between {x1, x2, x3}
and V (D′).

(a) The center y in D′ is adjacent to some vertex in {x1, x2, x3}. If yx1 ∈
E(G), then yx1x2x3 is a dominating path of D such that x3 is adjacent to C,
a contradiction. Hence yx1 /∈ E(G), up to symmetry, we have yx3 /∈ E(G) and
hence yx2 ∈ E(G). Then x1 is not adjacent to any vertex in D − {x2, y, z1};
otherwise, there exists a vertex u in D − {x2, y, z1} such that ux1 ∈ E(G), then
{x1u, x2x3, yz1} is matching ofD of size 3, contradicting Claim 16. Hence z1yx2x3
is a dominating path in D such that x3 is adjacent to C, a contradiction.

(b) The center of D′ is not adjacent to any vertex in {x1, x2, x3}. It means
that {yx1, yx2, yx3} ∩ E(G) = ∅ and t ≥ 2. Since D is connected, there exists
a vertex in {z1, . . . , zt}, say z1, that is adjacent to one of {x1, x2, x3}. We have
x1z1 /∈ E(G), since otherwise {x1z1, x2x3, yz2} is a matching of D of size 3. By
symmetry, we also have x3z1 /∈ E(G). The above facts imply that x2z1 ∈ E(G).
Again, by Claim 16, x1 is not adjacent to any vertex in D − {x2, y, z1}, then
yz1x2x3 is a dominating path of D such that x3 is adjacent to C. This proves
Claim 17.

Since G has no dominating trail and by Claim 17, G − V (C) should have
at least two nontrivial components. Since 8 ≤ |V (C)| ≤ 9 and α′(G) ≤ 6,
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α′(G − V (C)) ≤ 2. This implies that G − V (C) has exactly two nontrivial
components D1, D2 and α′(Di) = 1, then Di is a star. This implies that any edge
in Di∩G0 is a 2-attaching path of C in Di∩G0 dominating all edges of Di. Thus
Di ∩ G0 contains a dominating path of Di starting from any vertex in Di ∩ G0.
Therefore, since G has no dominating trail, the following fact is easy.

Claim 18. For any pair of vertices vi, vj with vi ∈ NG0
(D1) ∩ V (C) and vj ∈

NG0
(D2) ∩ V (C), it holds that vi 6= vj and vivj /∈ E(C).

Claim 19. For i ∈ {1, 2}, Di ∩G0 is a 1-component of G0 − V (C).

Proof. By contradiction, suppose, without loss of generality, that D1 ∩ G0 is a
k-component of G0 − V (C) with k ≥ 2. Let x1 · · ·xk be a longest 2-attaching
path of C in D1 ∩ G0 with a 2-attaching pair vi′ , vi′′ . Since C is a longest
cycle of G, we have 3 ≤ distC(vi′ , vi′′) ≤ 4. Suppose that distC(vi′ , vi′′) = 4,
then, assume without loss of generality that vi′ = v1, vi′′ = v5. Therefore, by
Claim 18, NG0

(D2) ∩ {v1, v2, v4, v5, v6, vc(G)} = ∅ and hence NG0
(D2) ∩ V (C) ⊆

{v3, v7, vc(G)−1}. Since C is a longest cycle of G, NG0
(D2) ∩ V (C) = {v3, v7}

or NG0
(D2) ∩ V (C) = {v3, v8}. Without loss of generality, we may assume that

NG0
(D2)∩V (C) = {v3, v7}, then there exists a 2-attaching path P of C inD2∩G0

with v3, v7 as its 2-attaching pair, hence v1x1 · · ·xkv5v4v3Pv7 · · · vc(G)v1 is a cycle
of length at least c(G) + 1, a contradiction.

Hence we have distC(vi′ , vi′′) = 3. Without loss of generality, assume that
vi′ = v1, vi′′ = v4, then by Claim 18, NG0

(D2) ∩ {v1, v2, v3, v4, v5, vc(G)} = ∅ and
then NG0

(D2) ∩ V (C) ⊆ {v6, v7, vc(G)−1}. If c(G) = 8, then NG0
(D2) ∩ V (C) =

{v6, v7}, this yields a cycle of length at least 9, a contradiction. Hence we have
c(G) = 9, then NG0

(D2) ∩ V (C) ⊆ {v6, v7, v8} and thus NG0
(D2) ∩ V (C) =

{v6, v8}. Therefore, since C is a longest cycle of G, D2∩G0 is a 1-component v of
G0 − V (C). Since D2 is nontrivial, we may take a pendant edge vz1 of G. Then
v5 has no neighbor in G− V (C); otherwise, assume that v5 has a neighbor z2 in
G− V (C), then {x1x2, vz1, v5z2, v1v2, v3v4, v6v7, v8v9} is a matching of G, of size
7, contradicting α′(G) ≤ 6. Hence vv6v7v8v9v1v2v3v4xk · · ·x1 is a dominating
trail of G, a contradiction. This proves Claim 19.

Let V2(G0) be the set of all vertices of degree of 2 in G0. Recall that G0 has
no spanning trail.

Case 1. |V (C)| = 9. By Claim 19, |V (G0)| = 11. Hence by Theorem 12,
G0 ∈ {G3, G4, G5}, where G3, G4, G5 are shown in Figure 2, and thus |V2(G0)| =
7. By α′(G) ≤ 6, we have |Λ(G) ∩ V2(G0)| ≤ 6. If |Λ(G) ∩ V2(G0)| ≤ 4, then
G has a dominating trail. If |Λ(G) ∩ V2(G0)| = 6, then there exists an edge in
G0 − Λ(G) ∩ V2(G0). This implies that α′(G) ≥ 7, a contradiction.

Hence we have |Λ(G)∩V2(G0)| = 5. If there exists a pair of vertices u1, u2 ∈
Λ(G) ∩ V2(G0) such that u1u2 ∈ E(C), then one can easily check that G has a
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dominating trail. Thus for any pair of vertices u1, u2 ∈ Λ(G) ∩ V2(G0), it holds
that u1u2 /∈ E(C). This implies that G− Λ(G) ∩ V2(G0) contains a P4 and then
α′(G− Λ(G) ∩ V2(G0)) = 2, hence α′(G) = 7, a contradiction.

Case 2. |V (C)| = 8. By Claim 19, |V (G0)| = 10. Hence by Lemma 11,
G0 ∈ {G1, G2}, where G1, G2 are shown in Figure 1. Since G has no dominating
trail and α′(G) ≤ 6, V2(G0) = Λ(G) and hence G ∈ C1 ∪ C2. The proof is
complete.

Proof of Theorem 15. By contradiction, suppose that G is a counterexample to
the theorem such that the number of super-blocks is minimized. By Theorem 9,
G has no dominating trail.

Claim 20. For any outer-super-block F of G, and for any cycle C of F containing

a cut vertex v of G0, it holds that E(F − V (C)) 6= ∅ and α′(F − V (C)) ≥ 1.

Proof. By contradiction, suppose that E(F − V (C)) = ∅. Let H be the graph
obtained from G by adding one pendant edge to v. Then α′(H/F ) ≤ α′(G)− 2+
1 ≤ 6− 2 + 1 = 5.

Note that the number of super-blocks of H/F is less than G and κ((H/F )∩
G0) ≤ 2. Also note that α(L(H/F )) ≤ 5 and κ(L(H/F )) ≥ 2. Then H/F has a
dominating trail T ; otherwise by the choice of G, the connectivity of (H/F )∩G0

is at least two, by Theorem 14, (H/F ) ∈ C1 ∪ C2 and hence α′(H/F ) = 6,
contradicting α′(H/F ) ≤ 5. This implies that v ∈ V (T ) and then T ∪ C is a
dominating trail of G, a contradiction. This proves Claim 20.

Note that G is triangle-free, α′(C) ≥ 2 for any cycle C of G.

Claim 21. α′(F ) ≥ 3 for any outer-super-block F of G.

Proof. Let v be a cut vertex in G0 in F and let C be a cycle of F that contains v.
By Claim 20, α′(F −V (C)) ≥ 1, then α′(F ) ≥ α′(C)+α′(F −V (C)) ≥ 2+1 = 3.
This proves Claim 21.

Since κ(G0) = 1, G has at least two outer-super-blocks. Furthermore, we
have the following fact.

Claim 22. G has exactly two outer-super-blocks.

Proof. Suppose, to the contrary, that G has at least three outer-super-blocks
F1, F2 and F3, then by Claim 21, α′(F1∪F2∪F3) ≥ α′(F1∪(F2∪F3−V (F2∩F3))) =
α′(F1 ∪ (F2 − V (F2 ∩F3))∪ (F3 − V (F2 ∩F3))) ≥ α′(F1) +α′(F2 − V (F2 ∩F3)) +
α′(F3 − V (F2 ∩ F3)) ≥ 3 + (3 − 1) + (3 − 1) = 7, a contradiction. This proves
Claim 22.

By Claim 22, we may let F1 and F2 be all the outer-super-blocks of G such
that vi is a cut vertex of G0 in Fi. In the following, we need to distinguish two
cases to obtain our desired contradiction.
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Case 1. G has at least two cut vertices. We claim that G has exactly one
inner-super-block. Otherwise, assume that there exist two inner-super-blocks F3

and F4 of G such that F1 ∩ F3 6= ∅ and F2 ∩ F4 6= ∅, then F1 ∩ F3 = {v1} and
F2 ∩ F4 = {v2}. By Claim 21, α′(F1 ∪ F2 ∪ F3 ∪ F4) = α′(F1 ∪ F2 ∪ (F3 ∪ F4 −
{v1, v2})) ≥ α′(F1)+α′(F2)+α′(F3∪F4−{v1, v2}) ≥ 3+3+1 = 7, a contradiction.

Let F be the only one inner-super-block of G. Then F1 ∩ F = {v1} and
F2∩F = {v2}. Let P be a path in F joining v1 and v2. Then P dominates all the
edges of F ; otherwise, α′(F −V (P )) ≥ 1, then by Claim 21, α′(G) = α′(F1 ∪F ∪
F2) ≥ α′(F1∪ (F −V (P ))∪F2) = α′(F1)+α′(F −V (P ))+α′(F2) ≥ 3+1+3 = 7,
a contradiction.

Claim 23. For each i ∈ {1, 2}, c(Fi) ≤ 5.

Proof. Assume, without loss of generality, that c(F1) ≥ 6. Let C be a longest
cycle of F1. Then α′(C) ≥ 3. If v1 ∈ V (C), then by Claim 20, α′(F1−V (C)) ≥ 1,
thus α′(F1) ≥ α′(C) + α′(F1 − V (C)) ≥ 3 + 1 = 4. By Claim 21, α′(G) =
α′(F1 ∪ F ∪ F2) ≥ α′(F1) + α′(F2) ≥ 4 + 3 = 7, a contradiction. If v1 /∈ V (C),
then α′(F1 − v1) ≥ α′(C) ≥ 3. By Claim 21, α′(F2 − v2) ≥ 3 − 1 = 2, then
α′(G) = α′(F1 ∪ F ∪ F2) = α′((F1 − v1)∪ F ∪ (F2 − v2)) ≥ α′(F1 − v1) + α′(F ) +
α′(F2 − v2) ≥ 3 + 2 + 2 = 7, a contradiction. This proves Claim 23.

Note that F ∩G0 is 2-connected for any super-block of G. By Claim 23 and
Lemma 10(iii), Fi∩G0 has a spanning trail Ti starting from vi for i ∈ {1, 2}, then
T1 ∪ P ∪ T2 is a dominating trail of G, a contradiction.

Case 2. G has only one cut vertex v. Then F1 ∩ F2 = {v}.

Claim 24. For each i ∈ {1, 2}, α′(Fi − v) ≤ 3.

Proof. By contradiction, assume without loss of generality that α′(F1 − v) ≥ 4.
By Claim 21, α′(F2) ≥ 3 and then α′(G) ≥ α′(F1 − v) + α′(F2) ≥ 4 + 3 = 7, a
contradiction. This proves Claim 24.

Claim 25. For each i ∈ {1, 2}, if c(Fi) ≥ 6, then Fi has a dominating trail that

starts at v.

Proof. Without loss of generality, we may assume that c(F1) ≥ 6. It suffices to
show that F1 has a dominating trail starting from v. Let C = u0u1 · · ·uc(F1)−1u0
be a longest cycle of F1. If E(F1 − V (C)) = ∅, then v ∈ V (C) or v is adjacent to
C, thus 〈{v} ∪ V (C)〉G contains a dominating trail of F1 starting from v.

Hence we assume that F1−V (C) has a nontrivial componentD. Furthermore,
D is the only one nontrivial component of F1−V (C); otherwise α′(F1−V (C)) ≥ 2.
Since |V (C)| ≥ 6, α′(C) ≥ 3, then α′(F1) ≥ α′(F1−V (C))+α′(C) ≥ 2+3 = 5. By
Claim 21, α′(F2− v) ≥ 3− 1 = 2, then α′(G) ≥ α′(F1∪F2) = α′(F1∪ (F2− v)) ≥
α′(F1) + α′(F2 − v) ≥ 5 + 2 = 7, a contradiction.
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If |V (C)| ≥ 7, then v /∈ V (C), since otherwise α′(F1−v) ≥ α′(C−v)+α′(D) ≥
3+1 = 4, contradicting Claim 24. Let P be a longest path in F1 connecting v and
C. Since |V (C)| ≥ 7 and by Claim 24, P is an edge and E(F1−V (C)∪{v}) = ∅,
then 〈{v} ∪ V (C)〉G contains a dominating trail of F1 starting from v.

Hence we assume that |V (C)| = 6, then α′(C) = 3. Let D ∩ G0 be a k-
component of F1∩G0−V (C). Since C is a longest cycle of F1 and by Lemma 10(i),
k ≤ 2. Now we need to consider the following two possibilities.

(a) k = 1. It means that D ∩ G0 is a vertex w, then w dominates all edges
of D. Since D is nontrivial, we may take a pendant edge ww′ of G. Suppose
first that v /∈ V (C). Since α′(C) = 3 and by Claim 24, E(F1 − V (C) ∪ {v}) = ∅.
Therefore, since D is the only one nontrivial component of F1−V (C), v ∈ V (D).
Furthermore, since v is the cut vertex of G0, we have v = w, hence 〈{v}∪V (C)〉G
contains a dominating trail of F1 starting from v.

Now suppose that v ∈ V (C). Without loss of generality, we may let v = u0.
If {wu0, wu1, wu5} ∩E(G) 6= ∅, then 〈{w} ∪ V (C)〉G contains a dominating trail
of F1 starting from v. Hence we assume that {wu0, wu1, wu5} ∩ E(G) = ∅, then
NG0

(w) ∩ V (C) ⊆ {u2, u3, u4}. Since F1 ∩ G0 is 2-connected, w has at least
two neighbors on C, then |NG0

(w) ∩ {u2, u3, u4}| ≥ 2. Since C is a longest
cycle of F1, u has exactly two neighbors in {u2, u3, u4} and it should be u2, u4.
Furthermore, u1 has no neighbour in F1 − V (C); otherwise, assume that u1 has
a neighbor z in F1 − V (C), then {u1z, u2u3, u4u5, ww

′} is a matching of F1 − v
of size 4, contradicting Claim 24. Therefore, u0u5u4u3u2w is a dominating trail
of F1 starting from u0.

(b) k = 2. By Lemma 10(ii), D ∩ G0 is a star with center x and leaves
y1, . . . , ys. Suppose first that v ∈ V (C). Without loss of generality, we may
let v = u0. Since |V (C)| = 6, α′(C − v) = 2. Therefore, by Claim 24,
|Λ(G)∩{y1, . . . , ys}| ≤ 1. Without loss of generality, we may assume that Λ(G)∩
{y1, . . . , ys} ⊆ {y1}, then xy1 dominates all the edges ofD. If {xu0, xu1, xu5, y1u0,
y1u1, y1u5}∩E(G) 6= ∅, then 〈{x, y1}∪V (C)〉G contains a dominating trail of F1

starting from v. Hence we assume that {xu0, xu1, xu5, y1u0, y1u1, y1u5}∩E(G) =
∅, then NG0

(x) ∩ V (C) ⊆ {u2, u3, u4} and NG0
(y1) ∩ V (C) ⊆ {u2, u3, u4}, this

yields a cycle of length at least 7 in F1, contradicting c(F1) = 6.
Now suppose that v /∈ V (C). Since α′(C) = 3 and by Claim 24, E(F1−V (C)∪

{v}) = ∅. Therefore, since D is the only one nontrivial component of F1 −V (C),
v ∈ V (D). Furthermore, since v is the cut vertex of G0, v ∈ {x, y1, . . . , ys}. Note
that E(D− v) = ∅, we have |{y1, . . . , ys}∩Λ(G)| ≤ 1. Without loss of generality,
we may assume that {y2, . . . , ys} ∩Λ(G) = ∅, then xy1 dominates all edges of D.
If v = x, then clearly 〈{x, y1}∪V (C)〉G contains a dominating trail of F1 starting
from v. Hence we assume that v ∈ {y1, . . . , ys}, then by E(D − v) = ∅, we have
s = 1 and hence v = y1, thus 〈{x, y1}∪V (C)〉G contains a dominating trail of F1

starting from v. This proves Claim 25.
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Note that F ∩ G0 is 2-connected for any super-block of G. Claim 25 and
Lemma 10(iii) imply that Fi has dominating trail Ti starting from v for i ∈ {1, 2},
then T1 ∪ T2 is a dominating trail of G. The proof is complete.

4. Concluding Remarks

In [3], in order to show Theorem 5, Chen proved a more general result that if
H is k-connected claw-free graph with α(H) ≤ r, then H is Hamiltonian or its
Ryjáček’s closure cl(H) = L(G) where G can be contracted a k-edge-connected
K3-free graph G′

0 with α(G′

0) ≤ r and |V (G′

0)| ≤ max{3r − 5, 2r + 1} if k ≥ 3 or
|V (G′

0)| ≤ max{4r − 5, 2r + 1} if k = 2. Note that the Hamiltonian property is
stronger than the traceable property, so Chen’s result would be also a traceable
version. Therefore, one possible way of the proofs is to show Theorem 6 by
using Chen’s result (the traceable version). Then we have to characterize all
such graphs G′

0 of order at most 19 that have no spanning trail, which would be
very complicated. In our proof, we avoid to use Chen’s idea and use Lemma 10
instead.

In this paper, we give a sufficient condition on the independence number
for a 2-connected claw-free graph to be traceable. Lemma 10 allows us to avoid
many cases discussion. A similar problem is to consider 3-connected claw-free
traceable graphs by using the same condition. However, our proof indicates that
it becomes very complicated and it would need a new tool.
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