ON THE INDEPENDENCE NUMBER OF TRACEABLE 2-CONNECTED CLAW-FREE GRAPHS

Shipeng Wang ${ }^{1}$ and Liming Xiong ${ }^{1,2}$
${ }^{1}$ School of Mathematics and Statistics
Beijing Institute of Technology
Beijing 100081, P.R. China
${ }^{2}$ Beijing Key Laboratory on MCAACI
Beijing Institute of Technology
Beijing 100081, P.R. China
e-mail: spwang22@yahoo.com
lmxiong@bit.edu.cn

Abstract

A well-known theorem by Chvátal-Erdős [A note on Hamilton circuits, Discrete Math. 2 (1972) 111-135] states that if the independence number of a graph G is at most its connectivity plus one, then G is traceable. In this article, we show that every 2 -connected claw-free graph with independence number $\alpha(G) \leq 6$ is traceable or belongs to two exceptional families of welldefined graphs. As a corollary, we also show that every 2-connected claw-free graph with independence number $\alpha(G) \leq 5$ is traceable.

Keywords: traceability, independence number, matching number, trail, closure.
2010 Mathematics Subject Classification: 05C38, 05C69, 05C70.

1. Introduction

We consider finite simple undirected graphs $G=(V(G), E(G))$, and for concepts and notations not defined here we refer to [1]. The circumference of G, denoted by $c(G)$, is the length of a longest cycle of G. For $x \in V(G), N_{G}(x)$ denotes the neighborhood of x, for $F \subset G$, we denote $N_{F}(x)=N_{G}(x) \cap V(F)$, and for $H \subset G$, we denote $N_{F}(H)=\bigcup_{v \in V(H)} N_{F}(v)$. We denote by $\alpha(G), \alpha^{\prime}(G)$ and $\kappa(G)$ the independence number, the maximum matching number and the connectivity of a graph G, respectively.

For $X \subset V(G),\langle X\rangle_{G}$ denotes the induced subgraph on X in G. For a subgraph C of G and for two vertices $x_{1}, x_{2} \in V(C)$, we use $\operatorname{dist}_{C}(x, y)$ to denote the length of a shortest path between x and y in C. A pendant vertex of a graph is a vertex of degree 1 , and a pendant edge is an edge having a pendant vertex as an end vertex. For a subgraph X of a graph G, by shrink X we understand to delete all edges between vertices of X and then identify the vertices of X into a single vertex, we denote it by G / X. The core of a graph G, denoted by G_{0}, is obtained by recursively deleting the pendant vertices in G. We define $\Lambda(G)$ to be the set of the vertices in G which are also vertices in G_{0} and adjacent to a pendant vertex in G.

A graph is called Hamiltonian if it contains a Hamilton cycle, i.e., a cycle containing all its vertices. A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. A trail in a graph G is a sequence $W=v_{0} e_{1} v_{l} \cdots v_{l-1} e_{l} v_{l}$, whose terms are alternately vertices (not necessarily distinct) and distinct edges of G, such that v_{i-1} and v_{i} are ends of $e_{i}, 1 \leq i$ $\leq l$. For convenience, we sometimes abbreviate the term of $v_{0} e_{1} v_{l} \cdots v_{l-1} e_{l} v_{l}$ to $v_{0} v_{l} \cdots v_{l-1} v_{l}$. A spanning trail of a graph G is a trail that contains all the vertices of G.

Chvátal and Erdős proved the following result.
Theorem 1 (Chvátal and Erdős [4]). Every connected graph G of order at least three with $\alpha(G) \leq \kappa(G)+1(\alpha(G) \leq \kappa(G)$, respectively) is traceable (Hamiltonian, respectively).

Now, we focus our attention on claw-free graphs, i.e., $K_{1,3}$-free graphs. Clawfree graphs have been extensively studied for more than four decades. In particular, finding sufficient conditions for the Hamiltonicity of 2-connected claw-free graphs have been the subject of many papers (see for example the survey [5]). Ryjáček [10] introduced the closure of a claw-free graph G, which becomes a useful tool in investigating Hamiltonian properties of claw-free graphs. A vertex $x \in V(G)$ is locally connected if the neighborhood of x induces a connected subgraph in G. For $x \in V(G)$, the graph G_{x}^{\prime} obtained from G by adding the edges $\left\{y z: y, z \in N_{G}(x)\right.$ and $\left.y z \notin E(G)\right\}$ is called the local completion of G at x. The closure of a claw-free graph G, denoted by $c l(G)$, is obtained from G by recursively performing local completions at any locally connected vertex with non-complete neighborhood, as long as it is possible. If H is a graph, then the line graph of H, denoted $L(H)$, is the graph with $E(H)$ as vertex set, in which two vertices are adjacent if and only if the corresponding edges have a vertex in common.

The following theorem provides fundamental properties of the closure operator.

Theorem 2 (Ryjáček [10]). Let G be a claw-free graph. Then
(i) $\operatorname{cl}(G)$ is uniquely determined,
(ii) G and $c l(G)$ have the same circumference,
(iii) $\operatorname{cl}(G)$ is the line graph of a triangle-free graph.

Our results are motivated by the following results which involve the independence number for Hamiltonicity of 2 or 3 -connected claw-free graphs.
Theorem 3 (Xu, Li, Miao, Wang and Lai [12]). Let G be a claw-free graph with $\kappa(G) \geq 2$ and $\alpha(G) \leq 3$. Then G is Hamiltonian if and only if the Ryjáček's closure of G is not isomorphic to the line graph of a member of $\left\{K_{2,3}^{s_{1}, s_{2}, s_{3}}: s_{1} \geq\right.$ $\left.s_{2} \geq s_{3}>0\right\}$, where $K_{2,3}^{s_{1}, s_{2}, s_{3}}$ is obtained from $K_{2,3}$ by attaching s_{i} pendant vertices adjacent to each vertex of degree two.

Theorem 4 (Flandrin and Li [6]). Every claw-free graph G with $\kappa(G) \geq 3$ and $\alpha(G) \leq 2 \kappa(G)$ is Hamiltonian.

Theorem 5 (Chen [3]). Let H be a 3-connected claw-free graph with $\alpha(H) \leq 7$. Then H is Hamiltonian or $\operatorname{cl}(H)=L(G)$ where G is a graph with $\alpha^{\prime}(G)=7$ that is obtained from the Petersen graph P by adding some pendant edges or subdividing some edges of P.

It is natural to ask what upper bound on the independence number of a 2 -connected claw-free graph would guarantee its traceability. In this paper we prove Theorem 6 below by using our recent result from [11] (Theorem 10 in this paper), which allows us to avoid some possible case by case analysis (see our concluding remarks).

Before stating our main result, we need to define two families of graphs.
$\mathcal{C}_{1}=\left\{H: H\right.$ is obtained from G_{1} shown in Figure 1, by adding at least one pendant edge to each vertex of degree two $\}$,
$\mathcal{C}_{2}=\left\{H: H\right.$ is obtained from G_{2} shown in Figure 1, by adding at least one pendant edge to each vertex of degree two $\}$.
Theorem 6. Let G be a 2-connected claw-free graph with independence number $\alpha(G) \leq 6$. Then G is traceable if and only if its Ryjáček's closure cl $(G)=L(H)$ where $H \in \mathcal{C}_{1} \cup \mathcal{C}_{2}$.

Note that each graph G in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ has matching number 6 , it follows that $\alpha(L(G))=6$ and we then obtain the following result immediately.
Corollary 7. Every 2-connected claw-free graph with independence number $\alpha(G)$ ≤ 5 is traceable.

In the next section, we will present some basic results and useful definitions from [11]. In Section 3, we will prove Theorem 6, and in the finial section we give some concluding remarks.

Figure 1. Two graphs of order 10 that have no spanning trail.

2. Preliminaries and Basic Results

An edge cut X of G is essential if $G \backslash X$ has at least two nontrivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge-cut X with $|X|<k$. Note that a graph G is essentially k-edge-connected if and only if $L(G)$ is k-connected or complete.

Theorem 8 (Brandt, Favaron and Ryjáček [2]). Let G be a claw-free graph. Then G is traceable if and only if $\operatorname{cl}(G)$ is traceable.

A subgraph H of a graph G is dominating if every edge of G has at least one end in H. A subgraph H of a graph G is even if every vertex of H has even degree. Harary and Nash-Williams [7] showed that for a graph H with $|E(H)| \geq 3, L(H)$ is Hamiltonian if and only if H has a dominating connected even subgraph, i.e., dominating closed trail. Similarly to this, there is also a close relationship between dominating subgraph in a graph and the property of being traceable for its line graph.

Theorem 9 (Li, Lai and Zhan [8]). Let G be a graph with $|E(G)| \geq 3$. Then the line graph $L(G)$ is traceable if and only if G has a dominating connected subgraph, i.e., dominating trail.

In what follows we use the concepts and notation introduced in [11].
Let G be a 2 -connected graph and let C be a cycle of G. Then any component D of $G-V(C)$ has at least two distinct neighbors on C. For any path P in D, if the two ends (possibly only one if P is a vertex) of P have two distinct neighbors x_{1}, x_{2} on C, then P is called a 2-attaching path of C in D, and these two vertices x_{1}, x_{2} are called a 2-attaching pair of P on C. Furthermore, if D has a longest 2-attaching path P of order k, then D is called a k-component of $G-V(C)$. Let G be an essentially 2-edge-connected graph and let $B_{1}, \ldots, B_{i}, \ldots, B_{t}$ be all the blocks of the core G_{0} of G and let $H_{i}=B_{i} \cup\{e: e$ is a pendant edge of G and
e has one end in $\left.V\left(B_{i}\right) \cap \Lambda(G)\right\}$. Then H_{i} is called a super-block of G. If H_{i} contains at least two cut vertices of G_{0}, then H_{i} is called an inner-super-block of G; otherwise, H_{i} is called an outer-super-block of G.

The following result was proved in [11] which will be applied to prove Theorem 6.

Lemma 10 (Wang and Xiong [11]). Let G be a 2 -connected graph with circumference $c(G)$ and let C be a longest cycle of G. Then
(i) if D is a k-component of $G-V(C)$, then $k \leq\left\lfloor\frac{c(G)}{2}\right\rfloor-1$,
(ii) every 2 -component of $G-V(C)$ is a star,
(iii) if $c(G) \leq 5$, then G has a spanning trail starting from any vertex,
(iv) if $c(G) \leq 7$, then G has a spanning trail.

Lemma 11 (Niu and Xiong [9]). Let G be a 2 -edge-connected graph of order at most ten. Then G has a spanning trail or $G \in\left\{G_{1}, G_{2}\right\}$, where G_{1}, G_{2} are shown in Figure 1.

3. The Proof of Theorem 6

In order to prove Theorem 6, we first need to prove the following result.
Theorem 12. Let G be a 2 -connected graph of order 11 and circumference $c(G)=$ 9 and let C be a longest cycle of G such that $G-V(C)$ has two 1-components. If G has no spanning trail, then $G \in\left\{G_{3}, G_{4}, G_{5}\right\}$, where G_{3}, G_{4}, G_{5} are shown in Figure 2.

Figure 2. Three graphs of order 11 that have no spanning trail.
Proof. Let $C=v_{0} v_{1} \cdots v_{8} v_{0}$ be a longest cycle such that u_{1} and u_{2} are the two 1 -components of $G-V(C)$. Since G has no spanning trail and is 2 -connected, it is easy to see that a vertex on C can have at most one neighbour in $\left\{u_{1}, u_{2}\right\}$ and no two consecutive vertices on C have neighbours in $\left\{u_{1}, u_{2}\right\}$. Hence $\left\{u_{1}, u_{2}\right\}$ has
at most four neighbours on C. Since G is 2 -connected, $\left\{u_{1}, u_{2}\right\}$ has exactly four neighbours on C. We may assume that $v_{0}, v_{2}, v_{4}, v_{6}$ are the neighbours of $\left\{u_{1}, u_{2}\right\}$ on C. Let G^{\prime} be the graph obtained from C and two additional vertices u_{1}, u_{2}, i.e., $G^{\prime}=\left\langle V(C) \cup\left\{u_{1}, u_{2}\right\}\right\rangle_{G}$. Then G^{\prime} is isomorphic to those graphs shown in Figure 2. Now it is easy to check that adding any chord to C will yield a spanning trail and therefore $G=G^{\prime}$. The proof is complete.

The following result is the foundation of Theorem 6.
Theorem 13. Let G be a connected triangle-free graph such that $\kappa(L(G)) \geq 2$ and $\alpha(L(G)) \leq 6$. Then $L(G)$ is traceable if and only if $G \notin \mathcal{C}_{1} \cup \mathcal{C}_{2}$.

Note that the core of an essentially 2 -edge-connected graph is 2 -edge-connected, the proof of Theorem 13 can be deduced from the following two results.

Theorem 14. Let G be a connected triangle-free graph such that its core G_{0} is 2 -connected and $\kappa(L(G)) \geq 2$ and $\alpha(L(G)) \leq 6$. Then $L(G)$ is traceable if and only if $G \notin \mathcal{C}_{1} \cup \mathcal{C}_{2}$.

Theorem 15. Let G be a connected triangle-free graph such that its core G_{0} has connectivity one and $\kappa(L(G)) \geq 2$ and $\alpha(L(G)) \leq 6$, then $L(G)$ is traceable.

Now, we may finish the proof of Theorem 6.
Proof of Theorem 6. Suppose that G is non-traceable, then by Theorem 8, $c l(G)$ is also non-traceable. By Theorem 2(iii), there exists a triangle-free graph H such that $c l(G)=L(H)$. As adding any edge to a graph does not increase the independence number α and does not decrease the connectivity κ, both $\kappa(L(H))=\kappa(c l(G)) \geq \kappa(G) \geq 2$ and $\alpha(L(H))=\alpha(c l(G)) \leq \alpha(G) \leq 6$ hold. Then by Theorem 13, $\operatorname{cl}(G)=L(H)$ is traceable if and only if $H \notin \mathcal{C}_{1} \cup \mathcal{C}_{2}$.

Proof of Theorem 14. Since a maximum independent set in $L(G)$ corresponds to a maximum matching in $G, \alpha^{\prime}(G)=\alpha(L(G)) \leq 6$. Suppose that $L(G)$ is not traceable, it suffices to show that $G \in \mathcal{C}_{1} \cup \mathcal{C}_{2}$. By Theorem $9, G$ has no dominating trail. Let $C=v_{1} v_{2} \cdots v_{c(G)} v_{1}$ be a longest cycle of G. Since the core G_{0} of G is a 2-connected graph that has no spanning trail, $c(G) \geq 8$ by Lemma 10(iv). Since C is not a dominating trail of $G, E(G-V(C)) \neq \emptyset$. Similarly $G-V(C)$ is not a star. Hence $\alpha^{\prime}(G-V(C))>1$. It follows that $c(G) \leq 9$ since otherwise $\alpha^{\prime}(C) \geq 5$, so $\alpha^{\prime}(G-V(C)) \leq \alpha^{\prime}(G)-\alpha^{\prime}(C) \leq 6-5=1$, a contradiction.

Claim 16. $\alpha^{\prime}(D) \leq 2$ for every component D of $G-V(C)$.
Proof. Since $8 \leq c(G) \leq 9, \alpha^{\prime}(C)=4$. Since $\alpha^{\prime}(G) \leq 6, \alpha^{\prime}(G-V(C)) \leq$ $\alpha^{\prime}(G)-\alpha^{\prime}(C) \leq 6-4=2$. Hence $\alpha^{\prime}(D) \leq \alpha^{\prime}(G-V(C)) \leq 2$ for every component D of $G-V(C)$. This proves Claim 16.

It follows immediately from Claim 16 that $\mid \Lambda(G) \backslash V(C)) \mid \leq 2$.
Claim 17. Every nontrivial component of $G-V(C)$ has a dominating path P such that one of the end vertices of P is adjacent to C.

Proof. Suppose, by contradiction, that there exists a component D of $G-V(C)$ such that D has no dominating path such that one of its end vertices is adjacent to C. Since $8 \leq|V(C)| \leq 9$ and by Lemma $10(\mathrm{i}), D \cap G_{0}$ is a k-component of $G_{0}-V(C)$ with $1 \leq k \leq 3$, then $2 \leq k \leq 3$; otherwise, $D \cap G_{0}$ is a vertex v_{0}, then clearly v_{0} is adjacent to C.

Suppose first that $k=2$, then by Lemma $10(\mathrm{ii}), D \cap G_{0}$ is a star with the center x and leaves $y_{1}, y_{2}, \ldots, y_{s}$. Since G_{0} is 2 -connected, $N_{G_{0}}\left(y_{i}\right) \cap V(C) \neq \emptyset$ for each $i \in\{1, \ldots, s\}$. Since $\mid \Lambda(G) \backslash V(C))\left|\leq 2,\left|\left\{y_{1}, \ldots, y_{s}\right\} \cap \Lambda(G)\right| \leq 2\right.$. Then $s \geq 2$; otherwise $x y_{1}$ is a dominating path of D such that y_{1} is adjacent to C, a contradiction. Without loss of generality, we may assume that $\left(\left\{y_{1}, \ldots, y_{s}\right\} \cap\right.$ $\Lambda(G)) \subseteq\left\{y_{1}, y_{2}\right\}$, then $y_{1} x y_{2}$ is a dominating path of D such that y_{1} is adjacent to C, a contradiction.

Now consider $k=3$. Let $x_{1} x_{2} x_{3}$ be a 2 -attaching path of C in $D \cap G_{0}$. Then $E\left(D-\left\{x_{1}, x_{2}, x_{3}\right\}\right) \neq \emptyset$, since otherwise $x_{1} x_{2} x_{3}$ is a dominating path of D such that x_{1} is adjacent to C. Thus $\alpha^{\prime}\left(D-\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 1$. Also by Claim 16, $1 \leq \alpha^{\prime}\left(D-\left\{x_{1}, x_{2}, x_{3}\right\}\right) \leq \alpha^{\prime}(D)-\alpha^{\prime}\left(x_{1} x_{2} x_{3}\right) \leq 2-1=1$, this implies that $D-\left\{x_{1}, x_{2}, x_{3}\right\}$ is also a star D^{\prime} with the center y and leaves z_{1}, \ldots, z_{t}. Since D is connected, we need to consider all possible connections between $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $V\left(D^{\prime}\right)$.
(a) The center y in D^{\prime} is adjacent to some vertex in $\left\{x_{1}, x_{2}, x_{3}\right\}$. If $y x_{1} \in$ $E(G)$, then $y x_{1} x_{2} x_{3}$ is a dominating path of D such that x_{3} is adjacent to C, a contradiction. Hence $y x_{1} \notin E(G)$, up to symmetry, we have $y x_{3} \notin E(G)$ and hence $y x_{2} \in E(G)$. Then x_{1} is not adjacent to any vertex in $D-\left\{x_{2}, y, z_{1}\right\}$; otherwise, there exists a vertex u in $D-\left\{x_{2}, y, z_{1}\right\}$ such that $u x_{1} \in E(G)$, then $\left\{x_{1} u, x_{2} x_{3}, y z_{1}\right\}$ is matching of D of size 3 , contradicting Claim 16. Hence $z_{1} y x_{2} x_{3}$ is a dominating path in D such that x_{3} is adjacent to C, a contradiction.
(b) The center of D^{\prime} is not adjacent to any vertex in $\left\{x_{1}, x_{2}, x_{3}\right\}$. It means that $\left\{y x_{1}, y x_{2}, y x_{3}\right\} \cap E(G)=\emptyset$ and $t \geq 2$. Since D is connected, there exists a vertex in $\left\{z_{1}, \ldots, z_{t}\right\}$, say z_{1}, that is adjacent to one of $\left\{x_{1}, x_{2}, x_{3}\right\}$. We have $x_{1} z_{1} \notin E(G)$, since otherwise $\left\{x_{1} z_{1}, x_{2} x_{3}, y z_{2}\right\}$ is a matching of D of size 3 . By symmetry, we also have $x_{3} z_{1} \notin E(G)$. The above facts imply that $x_{2} z_{1} \in E(G)$. Again, by Claim 16, x_{1} is not adjacent to any vertex in $D-\left\{x_{2}, y, z_{1}\right\}$, then $y z_{1} x_{2} x_{3}$ is a dominating path of D such that x_{3} is adjacent to C. This proves Claim 17.

Since G has no dominating trail and by Claim 17, $G-V(C)$ should have at least two nontrivial components. Since $8 \leq|V(C)| \leq 9$ and $\alpha^{\prime}(G) \leq 6$,
$\alpha^{\prime}(G-V(C)) \leq 2$. This implies that $G-V(C)$ has exactly two nontrivial components D_{1}, D_{2} and $\alpha^{\prime}\left(D_{i}\right)=1$, then D_{i} is a star. This implies that any edge in $D_{i} \cap G_{0}$ is a 2-attaching path of C in $D_{i} \cap G_{0}$ dominating all edges of D_{i}. Thus $D_{i} \cap G_{0}$ contains a dominating path of D_{i} starting from any vertex in $D_{i} \cap G_{0}$. Therefore, since G has no dominating trail, the following fact is easy.

Claim 18. For any pair of vertices v_{i}, v_{j} with $v_{i} \in N_{G_{0}}\left(D_{1}\right) \cap V(C)$ and $v_{j} \in$ $N_{G_{0}}\left(D_{2}\right) \cap V(C)$, it holds that $v_{i} \neq v_{j}$ and $v_{i} v_{j} \notin E(C)$.

Claim 19. For $i \in\{1,2\}, D_{i} \cap G_{0}$ is a 1-component of $G_{0}-V(C)$.
Proof. By contradiction, suppose, without loss of generality, that $D_{1} \cap G_{0}$ is a k-component of $G_{0}-V(C)$ with $k \geq 2$. Let $x_{1} \cdots x_{k}$ be a longest 2 -attaching path of C in $D_{1} \cap G_{0}$ with a 2 -attaching pair $v_{i^{\prime}}, v_{i^{\prime \prime}}$. Since C is a longest cycle of G, we have $3 \leq \operatorname{dist}_{C}\left(v_{i^{\prime}}, v_{i^{\prime \prime}}\right) \leq 4$. Suppose that $\operatorname{dist}_{C}\left(v_{i^{\prime}}, v_{i^{\prime \prime}}\right)=4$, then, assume without loss of generality that $v_{i^{\prime}}=v_{1}, v_{i^{\prime \prime}}=v_{5}$. Therefore, by Claim 18, $N_{G_{0}}\left(D_{2}\right) \cap\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, v_{c(G)}\right\}=\emptyset$ and hence $N_{G_{0}}\left(D_{2}\right) \cap V(C) \subseteq$ $\left\{v_{3}, v_{7}, v_{c(G)-1}\right\}$. Since C is a longest cycle of $G, N_{G_{0}}\left(D_{2}\right) \cap V(C)=\left\{v_{3}, v_{7}\right\}$ or $N_{G_{0}}\left(D_{2}\right) \cap V(C)=\left\{v_{3}, v_{8}\right\}$. Without loss of generality, we may assume that $N_{G_{0}}\left(D_{2}\right) \cap V(C)=\left\{v_{3}, v_{7}\right\}$, then there exists a 2-attaching path P of C in $D_{2} \cap G_{0}$ with v_{3}, v_{7} as its 2 -attaching pair, hence $v_{1} x_{1} \cdots x_{k} v_{5} v_{4} v_{3} P v_{7} \cdots v_{c(G)} v_{1}$ is a cycle of length at least $c(G)+1$, a contradiction.

Hence we have $\operatorname{dist}_{C}\left(v_{i^{\prime}}, v_{i^{\prime \prime}}\right)=3$. Without loss of generality, assume that $v_{i^{\prime}}=v_{1}, v_{i^{\prime \prime}}=v_{4}$, then by Claim 18, $N_{G_{0}}\left(D_{2}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{c(G)}\right\}=\emptyset$ and then $N_{G_{0}}\left(D_{2}\right) \cap V(C) \subseteq\left\{v_{6}, v_{7}, v_{c(G)-1}\right\}$. If $c(G)=8$, then $N_{G_{0}}\left(D_{2}\right) \cap V(C)=$ $\left\{v_{6}, v_{7}\right\}$, this yields a cycle of length at least 9 , a contradiction. Hence we have $c(G)=9$, then $N_{G_{0}}\left(D_{2}\right) \cap V(C) \subseteq\left\{v_{6}, v_{7}, v_{8}\right\}$ and thus $N_{G_{0}}\left(D_{2}\right) \cap V(C)=$ $\left\{v_{6}, v_{8}\right\}$. Therefore, since C is a longest cycle of $G, D_{2} \cap G_{0}$ is a 1-component v of $G_{0}-V(C)$. Since D_{2} is nontrivial, we may take a pendant edge $v z_{1}$ of G. Then v_{5} has no neighbor in $G-V(C)$; otherwise, assume that v_{5} has a neighbor z_{2} in $G-V(C)$, then $\left\{x_{1} x_{2}, v z_{1}, v_{5} z_{2}, v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{8} v_{9}\right\}$ is a matching of G, of size 7, contradicting $\alpha^{\prime}(G) \leq 6$. Hence $v v_{6} v_{7} v_{8} v_{9} v_{1} v_{2} v_{3} v_{4} x_{k} \cdots x_{1}$ is a dominating trail of G, a contradiction. This proves Claim 19.

Let $V_{2}\left(G_{0}\right)$ be the set of all vertices of degree of 2 in G_{0}. Recall that G_{0} has no spanning trail.

Case 1. $|V(C)|=9$. By Claim 19, $\left|V\left(G_{0}\right)\right|=11$. Hence by Theorem 12 , $G_{0} \in\left\{G_{3}, G_{4}, G_{5}\right\}$, where G_{3}, G_{4}, G_{5} are shown in Figure 2, and thus $\left|V_{2}\left(G_{0}\right)\right|=$ 7. By $\alpha^{\prime}(G) \leq 6$, we have $\left|\Lambda(G) \cap V_{2}\left(G_{0}\right)\right| \leq 6$. If $\left|\Lambda(G) \cap V_{2}\left(G_{0}\right)\right| \leq 4$, then G has a dominating trail. If $\left|\Lambda(G) \cap V_{2}\left(G_{0}\right)\right|=6$, then there exists an edge in $G_{0}-\Lambda(G) \cap V_{2}\left(G_{0}\right)$. This implies that $\alpha^{\prime}(G) \geq 7$, a contradiction.

Hence we have $\left|\Lambda(G) \cap V_{2}\left(G_{0}\right)\right|=5$. If there exists a pair of vertices $u_{1}, u_{2} \in$ $\Lambda(G) \cap V_{2}\left(G_{0}\right)$ such that $u_{1} u_{2} \in E(C)$, then one can easily check that G has a
dominating trail. Thus for any pair of vertices $u_{1}, u_{2} \in \Lambda(G) \cap V_{2}\left(G_{0}\right)$, it holds that $u_{1} u_{2} \notin E(C)$. This implies that $G-\Lambda(G) \cap V_{2}\left(G_{0}\right)$ contains a P_{4} and then $\alpha^{\prime}\left(G-\Lambda(G) \cap V_{2}\left(G_{0}\right)\right)=2$, hence $\alpha^{\prime}(G)=7$, a contradiction.

Case 2. $|V(C)|=8$. By Claim 19, $\left|V\left(G_{0}\right)\right|=10$. Hence by Lemma 11, $G_{0} \in\left\{G_{1}, G_{2}\right\}$, where G_{1}, G_{2} are shown in Figure 1 . Since G has no dominating trail and $\alpha^{\prime}(G) \leq 6, V_{2}\left(G_{0}\right)=\Lambda(G)$ and hence $G \in \mathcal{C}_{1} \cup \mathcal{C}_{2}$. The proof is complete.

Proof of Theorem 15. By contradiction, suppose that G is a counterexample to the theorem such that the number of super-blocks is minimized. By Theorem 9, G has no dominating trail.

Claim 20. For any outer-super-block F of G, and for any cycle C of F containing a cut vertex v of G_{0}, it holds that $E(F-V(C)) \neq \emptyset$ and $\alpha^{\prime}(F-V(C)) \geq 1$.

Proof. By contradiction, suppose that $E(F-V(C))=\emptyset$. Let H be the graph obtained from G by adding one pendant edge to v. Then $\alpha^{\prime}(H / F) \leq \alpha^{\prime}(G)-2+$ $1 \leq 6-2+1=5$.

Note that the number of super-blocks of H / F is less than G and $\kappa((H / F) \cap$ $\left.G_{0}\right) \leq 2$. Also note that $\alpha(L(H / F)) \leq 5$ and $\kappa(L(H / F)) \geq 2$. Then H / F has a dominating trail T; otherwise by the choice of G, the connectivity of $(H / F) \cap G_{0}$ is at least two, by Theorem 14, $(H / F) \in \mathcal{C}_{1} \cup \mathcal{C}_{2}$ and hence $\alpha^{\prime}(H / F)=6$, contradicting $\alpha^{\prime}(H / F) \leq 5$. This implies that $v \in V(T)$ and then $T \cup C$ is a dominating trail of G, a contradiction. This proves Claim 20.

Note that G is triangle-free, $\alpha^{\prime}(C) \geq 2$ for any cycle C of G.
Claim 21. $\alpha^{\prime}(F) \geq 3$ for any outer-super-block F of G.
Proof. Let v be a cut vertex in G_{0} in F and let C be a cycle of F that contains v. By Claim 20, $\alpha^{\prime}(F-V(C)) \geq 1$, then $\alpha^{\prime}(F) \geq \alpha^{\prime}(C)+\alpha^{\prime}(F-V(C)) \geq 2+1=3$. This proves Claim 21.

Since $\kappa\left(G_{0}\right)=1, G$ has at least two outer-super-blocks. Furthermore, we have the following fact.

Claim 22. G has exactly two outer-super-blocks.
Proof. Suppose, to the contrary, that G has at least three outer-super-blocks F_{1}, F_{2} and F_{3}, then by Claim 21, $\alpha^{\prime}\left(F_{1} \cup F_{2} \cup F_{3}\right) \geq \alpha^{\prime}\left(F_{1} \cup\left(F_{2} \cup F_{3}-V\left(F_{2} \cap F_{3}\right)\right)\right)=$ $\alpha^{\prime}\left(F_{1} \cup\left(F_{2}-V\left(F_{2} \cap F_{3}\right)\right) \cup\left(F_{3}-V\left(F_{2} \cap F_{3}\right)\right)\right) \geq \alpha^{\prime}\left(F_{1}\right)+\alpha^{\prime}\left(F_{2}-V\left(F_{2} \cap F_{3}\right)\right)+$ $\alpha^{\prime}\left(F_{3}-V\left(F_{2} \cap F_{3}\right)\right) \geq 3+(3-1)+(3-1)=7$, a contradiction. This proves Claim 22.

By Claim 22, we may let F_{1} and F_{2} be all the outer-super-blocks of G such that v_{i} is a cut vertex of G_{0} in F_{i}. In the following, we need to distinguish two cases to obtain our desired contradiction.

Case 1. G has at least two cut vertices. We claim that G has exactly one inner-super-block. Otherwise, assume that there exist two inner-super-blocks F_{3} and F_{4} of G such that $F_{1} \cap F_{3} \neq \emptyset$ and $F_{2} \cap F_{4} \neq \emptyset$, then $F_{1} \cap F_{3}=\left\{v_{1}\right\}$ and $F_{2} \cap F_{4}=\left\{v_{2}\right\}$. By Claim 21, $\alpha^{\prime}\left(F_{1} \cup F_{2} \cup F_{3} \cup F_{4}\right)=\alpha^{\prime}\left(F_{1} \cup F_{2} \cup\left(F_{3} \cup F_{4}-\right.\right.$ $\left.\left.\left\{v_{1}, v_{2}\right\}\right)\right) \geq \alpha^{\prime}\left(F_{1}\right)+\alpha^{\prime}\left(F_{2}\right)+\alpha^{\prime}\left(F_{3} \cup F_{4}-\left\{v_{1}, v_{2}\right\}\right) \geq 3+3+1=7$, a contradiction.

Let F be the only one inner-super-block of G. Then $F_{1} \cap F=\left\{v_{1}\right\}$ and $F_{2} \cap F=\left\{v_{2}\right\}$. Let P be a path in F joining v_{1} and v_{2}. Then P dominates all the edges of F; otherwise, $\alpha^{\prime}(F-V(P)) \geq 1$, then by Claim 21, $\alpha^{\prime}(G)=\alpha^{\prime}\left(F_{1} \cup F \cup\right.$ $\left.F_{2}\right) \geq \alpha^{\prime}\left(F_{1} \cup(F-V(P)) \cup F_{2}\right)=\alpha^{\prime}\left(F_{1}\right)+\alpha^{\prime}(F-V(P))+\alpha^{\prime}\left(F_{2}\right) \geq 3+1+3=7$, a contradiction.

Claim 23. For each $i \in\{1,2\}, c\left(F_{i}\right) \leq 5$.
Proof. Assume, without loss of generality, that $c\left(F_{1}\right) \geq 6$. Let C be a longest cycle of F_{1}. Then $\alpha^{\prime}(C) \geq 3$. If $v_{1} \in V(C)$, then by Claim $20, \alpha^{\prime}\left(F_{1}-V(C)\right) \geq 1$, thus $\alpha^{\prime}\left(F_{1}\right) \geq \alpha^{\prime}(C)+\alpha^{\prime}\left(F_{1}-V(C)\right) \geq 3+1=4$. By Claim 21, $\alpha^{\prime}(G)=$ $\alpha^{\prime}\left(F_{1} \cup F \cup F_{2}\right) \geq \alpha^{\prime}\left(F_{1}\right)+\alpha^{\prime}\left(F_{2}\right) \geq 4+3=7$, a contradiction. If $v_{1} \notin V(C)$, then $\alpha^{\prime}\left(F_{1}-v_{1}\right) \geq \alpha^{\prime}(C) \geq 3$. By Claim 21, $\alpha^{\prime}\left(F_{2}-v_{2}\right) \geq 3-1=2$, then $\alpha^{\prime}(G)=\alpha^{\prime}\left(F_{1} \cup F \cup F_{2}\right)=\alpha^{\prime}\left(\left(F_{1}-v_{1}\right) \cup F \cup\left(F_{2}-v_{2}\right)\right) \geq \alpha^{\prime}\left(F_{1}-v_{1}\right)+\alpha^{\prime}(F)+$ $\alpha^{\prime}\left(F_{2}-v_{2}\right) \geq 3+2+2=7$, a contradiction. This proves Claim 23.

Note that $F \cap G_{0}$ is 2-connected for any super-block of G. By Claim 23 and Lemma 10(iii), $F_{i} \cap G_{0}$ has a spanning trail T_{i} starting from v_{i} for $i \in\{1,2\}$, then $T_{1} \cup P \cup T_{2}$ is a dominating trail of G, a contradiction.

Case 2. G has only one cut vertex v. Then $F_{1} \cap F_{2}=\{v\}$.
Claim 24. For each $i \in\{1,2\}, \alpha^{\prime}\left(F_{i}-v\right) \leq 3$.
Proof. By contradiction, assume without loss of generality that $\alpha^{\prime}\left(F_{1}-v\right) \geq 4$. By Claim 21, $\alpha^{\prime}\left(F_{2}\right) \geq 3$ and then $\alpha^{\prime}(G) \geq \alpha^{\prime}\left(F_{1}-v\right)+\alpha^{\prime}\left(F_{2}\right) \geq 4+3=7$, a contradiction. This proves Claim 24.

Claim 25. For each $i \in\{1,2\}$, if $c\left(F_{i}\right) \geq 6$, then F_{i} has a dominating trail that starts at v.

Proof. Without loss of generality, we may assume that $c\left(F_{1}\right) \geq 6$. It suffices to show that F_{1} has a dominating trail starting from v. Let $C=u_{0} u_{1} \cdots u_{c\left(F_{1}\right)-1} u_{0}$ be a longest cycle of F_{1}. If $E\left(F_{1}-V(C)\right)=\emptyset$, then $v \in V(C)$ or v is adjacent to C, thus $\langle\{v\} \cup V(C)\rangle_{G}$ contains a dominating trail of F_{1} starting from v.

Hence we assume that $F_{1}-V(C)$ has a nontrivial component D. Furthermore, D is the only one nontrivial component of $F_{1}-V(C)$; otherwise $\alpha^{\prime}\left(F_{1}-V(C)\right) \geq 2$. Since $|V(C)| \geq 6, \alpha^{\prime}(C) \geq 3$, then $\alpha^{\prime}\left(F_{1}\right) \geq \alpha^{\prime}\left(F_{1}-V(C)\right)+\alpha^{\prime}(C) \geq 2+3=5$. By Claim 21, $\alpha^{\prime}\left(F_{2}-v\right) \geq 3-1=2$, then $\alpha^{\prime}(G) \geq \alpha^{\prime}\left(F_{1} \cup F_{2}\right)=\alpha^{\prime}\left(F_{1} \cup\left(F_{2}-v\right)\right) \geq$ $\alpha^{\prime}\left(F_{1}\right)+\alpha^{\prime}\left(F_{2}-v\right) \geq 5+2=7$, a contradiction.

If $|V(C)| \geq 7$, then $v \notin V(C)$, since otherwise $\alpha^{\prime}\left(F_{1}-v\right) \geq \alpha^{\prime}(C-v)+\alpha^{\prime}(D) \geq$ $3+1=4$, contradicting Claim 24. Let P be a longest path in F_{1} connecting v and C. Since $|V(C)| \geq 7$ and by Claim 24, P is an edge and $E\left(F_{1}-V(C) \cup\{v\}\right)=\emptyset$, then $\langle\{v\} \cup V(C)\rangle_{G}$ contains a dominating trail of F_{1} starting from v.

Hence we assume that $|V(C)|=6$, then $\alpha^{\prime}(C)=3$. Let $D \cap G_{0}$ be a k component of $F_{1} \cap G_{0}-V(C)$. Since C is a longest cycle of F_{1} and by Lemma 10(i), $k \leq 2$. Now we need to consider the following two possibilities.
(a) $k=1$. It means that $D \cap G_{0}$ is a vertex w, then w dominates all edges of D. Since D is nontrivial, we may take a pendant edge $w w^{\prime}$ of G. Suppose first that $v \notin V(C)$. Since $\alpha^{\prime}(C)=3$ and by Claim 24, $E\left(F_{1}-V(C) \cup\{v\}\right)=\emptyset$. Therefore, since D is the only one nontrivial component of $F_{1}-V(C), v \in V(D)$. Furthermore, since v is the cut vertex of G_{0}, we have $v=w$, hence $\langle\{v\} \cup V(C)\rangle_{G}$ contains a dominating trail of F_{1} starting from v.

Now suppose that $v \in V(C)$. Without loss of generality, we may let $v=u_{0}$. If $\left\{w u_{0}, w u_{1}, w u_{5}\right\} \cap E(G) \neq \emptyset$, then $\langle\{w\} \cup V(C)\rangle_{G}$ contains a dominating trail of F_{1} starting from v. Hence we assume that $\left\{w u_{0}, w u_{1}, w u_{5}\right\} \cap E(G)=\emptyset$, then $N_{G_{0}}(w) \cap V(C) \subseteq\left\{u_{2}, u_{3}, u_{4}\right\}$. Since $F_{1} \cap G_{0}$ is 2-connected, w has at least two neighbors on C, then $\left|N_{G_{0}}(w) \cap\left\{u_{2}, u_{3}, u_{4}\right\}\right| \geq 2$. Since C is a longest cycle of F_{1}, u has exactly two neighbors in $\left\{u_{2}, u_{3}, u_{4}\right\}$ and it should be u_{2}, u_{4}. Furthermore, u_{1} has no neighbour in $F_{1}-V(C)$; otherwise, assume that u_{1} has a neighbor z in $F_{1}-V(C)$, then $\left\{u_{1} z, u_{2} u_{3}, u_{4} u_{5}, w w^{\prime}\right\}$ is a matching of $F_{1}-v$ of size 4, contradicting Claim 24. Therefore, $u_{0} u_{5} u_{4} u_{3} u_{2} w$ is a dominating trail of F_{1} starting from u_{0}.
(b) $k=2$. By Lemma $10(\mathrm{ii}), D \cap G_{0}$ is a star with center x and leaves y_{1}, \ldots, y_{s}. Suppose first that $v \in V(C)$. Without loss of generality, we may let $v=u_{0}$. Since $|V(C)|=6, \alpha^{\prime}(C-v)=2$. Therefore, by Claim 24, $\left|\Lambda(G) \cap\left\{y_{1}, \ldots, y_{s}\right\}\right| \leq 1$. Without loss of generality, we may assume that $\Lambda(G) \cap$ $\left\{y_{1}, \ldots, y_{s}\right\} \subseteq\left\{y_{1}\right\}$, then $x y_{1}$ dominates all the edges of D. If $\left\{x u_{0}, x u_{1}, x u_{5}, y_{1} u_{0}\right.$, $\left.y_{1} u_{1}, y_{1} u_{5}\right\} \cap E(G) \neq \emptyset$, then $\left\langle\left\{x, y_{1}\right\} \cup V(C)\right\rangle_{G}$ contains a dominating trail of F_{1} starting from v. Hence we assume that $\left\{x u_{0}, x u_{1}, x u_{5}, y_{1} u_{0}, y_{1} u_{1}, y_{1} u_{5}\right\} \cap E(G)=$ \emptyset, then $N_{G_{0}}(x) \cap V(C) \subseteq\left\{u_{2}, u_{3}, u_{4}\right\}$ and $N_{G_{0}}\left(y_{1}\right) \cap V(C) \subseteq\left\{u_{2}, u_{3}, u_{4}\right\}$, this yields a cycle of length at least 7 in F_{1}, contradicting $c\left(F_{1}\right)=6$.

Now suppose that $v \notin V(C)$. Since $\alpha^{\prime}(C)=3$ and by Claim 24, $E\left(F_{1}-V(C) \cup\right.$ $\{v\})=\emptyset$. Therefore, since D is the only one nontrivial component of $F_{1}-V(C)$, $v \in V(D)$. Furthermore, since v is the cut vertex of $G_{0}, v \in\left\{x, y_{1}, \ldots, y_{s}\right\}$. Note that $E(D-v)=\emptyset$, we have $\left|\left\{y_{1}, \ldots, y_{s}\right\} \cap \Lambda(G)\right| \leq 1$. Without loss of generality, we may assume that $\left\{y_{2}, \ldots, y_{s}\right\} \cap \Lambda(G)=\emptyset$, then $x y_{1}$ dominates all edges of D. If $v=x$, then clearly $\left\langle\left\{x, y_{1}\right\} \cup V(C)\right\rangle_{G}$ contains a dominating trail of F_{1} starting from v. Hence we assume that $v \in\left\{y_{1}, \ldots, y_{s}\right\}$, then by $E(D-v)=\emptyset$, we have $s=1$ and hence $v=y_{1}$, thus $\left\langle\left\{x, y_{1}\right\} \cup V(C)\right\rangle_{G}$ contains a dominating trail of F_{1} starting from v. This proves Claim 25.

Note that $F \cap G_{0}$ is 2 -connected for any super-block of G. Claim 25 and Lemma 10 (iii) imply that F_{i} has dominating trail T_{i} starting from v for $i \in\{1,2\}$, then $T_{1} \cup T_{2}$ is a dominating trail of G. The proof is complete.

4. Concluding Remarks

In [3], in order to show Theorem 5, Chen proved a more general result that if H is k-connected claw-free graph with $\alpha(H) \leq r$, then H is Hamiltonian or its Ryjáček's closure $c l(H)=L(G)$ where G can be contracted a k-edge-connected K_{3}-free graph G_{0}^{\prime} with $\alpha\left(G_{0}^{\prime}\right) \leq r$ and $\left|V\left(G_{0}^{\prime}\right)\right| \leq \max \{3 r-5,2 r+1\}$ if $k \geq 3$ or $\left|V\left(G_{0}^{\prime}\right)\right| \leq \max \{4 r-5,2 r+1\}$ if $k=2$. Note that the Hamiltonian property is stronger than the traceable property, so Chen's result would be also a traceable version. Therefore, one possible way of the proofs is to show Theorem 6 by using Chen's result (the traceable version). Then we have to characterize all such graphs G_{0}^{\prime} of order at most 19 that have no spanning trail, which would be very complicated. In our proof, we avoid to use Chen's idea and use Lemma 10 instead.

In this paper, we give a sufficient condition on the independence number for a 2-connected claw-free graph to be traceable. Lemma 10 allows us to avoid many cases discussion. A similar problem is to consider 3-connected claw-free traceable graphs by using the same condition. However, our proof indicates that it becomes very complicated and it would need a new tool.

Acknowledgements

The work is supported by the Natural Science Funds of China (No:11471037, 11671037).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate in Mathematics (Springer, 2008).
[2] S. Brandt, O. Favaron and Z. Ryjáček, Closure and stable Hamiltonian properties in claw-free graphs, J. Graph Theory 34 (2000) 30-41. doi:10.1002/(SICI)1097-0118(200005)34:1 (30::AID-JGT4) 3.0.CO;2-R
[3] Z. Chen, Chvátal-Erdős type conditions for Hamiltonicity of claw-free graphs, Graphs Combin. 32 (2016) 2253-2266.
doi:10.1007/s00373-016-1716-9
[4] V. Chvátal and P. Erdős, A note on Hamilton circuits, Discrete Math. 2 (1972) 111-113.
doi:10.1016/0012-365X(72)90079-9
[5] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs-A survey, Discrete Math. 164 (1997) 87-147. doi:10.1016/S0012-365X(96)00045-3
[6] E. Flandrin and H. Li, Further result on neighbourhood intersections, Report de Recheche, L.R.I. 416, Univ. Paris-Sud, Orsay (1989).
[7] F. Harary and C. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710. doi:10.4153/CMB-1965-051-3
[8] D. Li, H. Lai and M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422-428. doi:10.1016/j.dam.2004.04.005
[9] Z. Niu, L. Xiong and S. Zhang, Smallest 2-edge-connected graphs without a spanning trail, Util. Math. 88 (2012) 381-397.
[10] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
doi:10.1006/jctb.1996.1732
[11] S. Wang and L. Xiong, Forbidden pairs for traceability of 2-connected graphs, submitted.
[12] J. Xu, P. Li, Z. Miao, K. Wang and H. Lai, Supereulerian graphs with small matching number and 2-connected Hamiltonian claw-free graphs, Int. J. Comput. Math. 91 (2014) 1662-1672.
doi:10.1080/00207160.2013.858808

