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Abstract

Given a graph G = (V,E) with no isolated vertex, a subset S of V is
called a total dominating set of G if every vertex in V has a neighbor in
S. A total dominating set S is called a locating-total dominating set if
for each pair of distinct vertices u and v in V \ S, N(u) ∩ S 6= N(v) ∩ S.
The minimum cardinality of a locating-total dominating set of G is the
locating-total domination number, denoted by γL

t
(G). We show that, for

a tree T of order n ≥ 3 and diameter d, d+1
2 ≤ γL

t
(T ) ≤ n − d−1

2 , and
if T has l leaves, s support vertices and s1 strong support vertices, then

γL
t
(T ) ≥ max

{

n+l−s+1
2 − s+s1

4 , 2(n+1)+3(l−s)−s1

5

}

. We also characterize the

extremal trees achieving these bounds.
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1. Introduction

In [5, 8], the authors introduced the concept of a locating-total dominating set
in a graph. Locating-total dominating set has been studied, for example, in
[1, 2, 3, 4, 9] and elsewhere. The problem of placing monitoring devices in a system
such that every site (including the monitors themselves) in the system is adjacent
to a monitor can be modelled by total domination in graphs. Applications where
it is also important that if there is a problem in a device, its location can be
uniquely identified by the set of monitors, can be modelled by a combination
of total dominating sets and locating sets in graphs. In this paper, we consider
locating-total domination in trees.

For notation and graph theory terminology in general we follow [6, 7]. Let
G = (V,E) be a graph with n vertices. For a vertex v in G, the set N(v) =
{u ∈ V : uv ∈ E} is called the open neighborhood of v and N [v] = N(v) ∪ {v}
is the closed neighborhood of v. The degree of v in G, denoted by d(v), is equal
to |N(v)|. A vertex of degree one is a leaf and the edge incident with a leaf is a
pendent edge. A vertex adjacent to a leaf is a support vertex and a support vertex
adjacent to at least two leaves is a strong support vertex. We will use L(G), S(G)
and S1(G) to denote the set of leaves, support vertices and strong support vertices
of G, respectively. The distance between two vertices u and v, denoted by d(u, v),
is the number of edges in a shortest path joining u and v. The diameter of G,
denoted by diam(G), is the maximum distance over all pairs of vertices of G. For
two disjoint subsets A and B of V , let [A,B] = {uv ∈ E(G) : u ∈ A, v ∈ B}.
Suppose G and H are two disjoint graphs, then the disjoint union of G and
H, denoted by G + H, is the graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H). If G1

∼= · · · ∼= Gk, we simply write kG1 for G1 + · · ·+Gk.

For a subset S ⊆ V , let G[S] be the subgraph induced by S. The open

neighborhood of S is N(S) =
⋃

v∈S N(v) and the closed neighborhood of S is
N [S] = N(S) ∪ S. S is called a total dominating set (TDS) of G if N(S) = V .
A TDS S is a locating-total dominating set (LTDS) if for each pair of distinct
vertices u and v in V \ S, N(u) ∩ S 6= N(v) ∩ S. The minimum cardinality of an
LTDS of G is the locating-total domination number of G, denoted by γLt (G). An
LTDS of cardinality γLt (G) is called a γLt (G)-set.

Let Pn and Sn be a path of order n and a star of order n, respectively. A
double star Sp,q is a tree obtained from Sp+2 and Sq+1 by identifying a leaf of
Sp+2 with the center of Sq+1, where p, q ≥ 1.

Locating-total domination in trees has been studied in [2, 4, 8]. In this paper,
we continue the study of it. We show that, for a tree T of order n ≥ 3 and diameter
d, d+1

2 ≤ γLt (T ) ≤ n− d−1
2 , and if T has l leaves, s support vertices and s1 strong

support vertices, then γLt (T ) ≥ max
{

n+l−s+1
2 − s+s1

4 , 2(n+1)+3(l−s)−s1
5

}

. We also

characterize the extremal trees achieving these bounds.
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2. Lower Bounds on the Locating-Total Domination Number in

Trees

The locating-total domination number of Pn was given in [8].

Theorem 1 [8]. For n ≥ 2, γLt (Pn) =
⌊

n
2

⌋

+
⌈

n
4

⌉

−
⌊

n
4

⌋

.

In [9], a lower bound of γLt (G) involving diameter was given.

Theorem 2 [9]. If G is a connected graph of order at least 2, then γLt (G) ≥
diam(G)+1

2 .

If G is a tree, we characterize all trees which achieve the lower bound.

Corollary 3. Suppose T is a tree of order at least 2, then γLt (T ) ≥ diam(T )+1
2

and the equality holds if and only if T = Pn, where n ≡ 0 (mod 4).

Proof. Let d = diam(T ). From Theorem 2, γLt (T )≥
d+1
2 . If T =Pn, where n ≡ 0

(mod 4), then by Theorem 1, we have γLt (Pn) =
n
2 = d+1

2 .

Now assume T is a tree of order n ≥ 2 and γLt (T ) =
d+1
2 . From the proof of

Theorem 2, we have d+ 1 ≡ 0 (mod 4).

If d = 3, then T = Sa,b for some a, b ≥ 1. Since γLt (Sa,b) = n − 2 and
γLt (T ) =

d+1
2 = 2, we have n = 4 and T = P4. Thus, we may assume d ≥ 7.

Let D be a γLt (T )-set of T that contains a minimum number of leaves. Then
for every support vertex v, exactly one leaf adjacent to v is not in D. Suppose
x, y ∈ V (T ) with d(x, y) = d and P = v0v1 · · · vd is the unique path joining x
and y, where v0 = x and vd = y. Then d(x) = d(y) = 1. For i = 1, 2, . . . , d+1

4 ,

let Ti be the component of T \
⋃(d−3)/4

i=1 {v4i−1, v4i} containing the vertex v4i−1

and let V (Ti) = Di. Then |D ∩ Di| ≥ 2 because {v4i−3, v4i−2} ⊆ N(D). Thus,

|D| ≥ 2(d+1)
4 = d+1

2 . Since |D| = γLt (T ) = d+1
2 , we obtain |Di ∩ D| = 2 for

i = 1, 2, . . . , d+1
4 . Obviously, we have v1, vd−1 ∈ D.

Fact 1. d(v1) = 2.

Proof of Fact 1. Suppose d(v1) ≥ 3, then v1 is a strong support vertex which
is adjacent to exactly two leaves because |D1 ∩ D| = 2. Let z be the other leaf
adjacent to v1. Thus we may assume D ∩D1 = {z, v1}. Now, for v0, v2 /∈ D, we
have N(v0) ∩D = N(v2) ∩D = {v1}, a contradiction.

Fact 2. D =
⋃(d+1)/4

i=1 {v4i−3, v4i−2}.

Proof of Fact 2. By Fact 1, we have D ∩ D1 = {v1, v2} in order to totally
dominate v1.
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Suppose v4 ∈ D. Then D∩D2 = {v4, v5} in order to totally dominate v4 and

v6. Consequently, we have D = {v1, v2}∪ (
⋃(d+1)/4

i=2 {v4i−4, v4i−3}), which induces
vd /∈ N(D), a contradiction. Thus, v4 /∈ D.

Suppose v5 /∈ D. In order to totally dominate v4, there must be two vertices
z1, z2 ∈ (V (T ) \ V (P ))∩D with z1 ∈ N(v4) and z2 ∈ N(z1). Since |D2 ∩D| = 2,
we have v6 /∈ N(D), a contradiction. Thus, we have v5 ∈ D.

Suppose v6 /∈ D. In order to totally dominate v5, there must be a vertex
z ∈ N(v5)∩D\V (P ). Then D∩D2 = {v5, z} and N(v4)∩D = N(v6)∩D = {v5},
a contradiction. Thus, v6 ∈ D and D2 ∩D = {v5, v6}.

By induction on i, we have D ∩ Di = {v4i−3, v4i−2} for i = 2, 3, . . . , d+1
4 .

Thus, D =
⋃(d+1)/4

i=1 {v4i−3, v4i−2}.

Fact 3. V (T ) = V (P ).

Proof of Fact 3. Suppose V (T ) \ V (P ) 6= ∅. Since Di ∩D = {v4i−3, v4i−2} for
i = 1, 2, . . . , d+1

4 , there are no vertices in V (T ) \V (P ) adjacent to v4i−1 or v4i for

i = 1, 2, . . . , d+1
4 .

Suppose there is z ∈ V (T )\V (P ) with zv ∈ E(T ), where v ∈ Di∩D. Without
loss of generality, we may assume that z ∈ N(v4i−3) for some i ∈

{

1, 2, . . . , d+1
4

}

.
Then N(v4i−4) ∩D = N(z) ∩D = {v4i−3}, a contradiction.

Thus, T = P = Pn, where n = d+ 1 ≡ 0 (mod 4).

Let F be the family of trees obtained from t disjoint copies of P4 and P3 by
first adding t − 1 edges in such a way that they are incident only with support
vertices and the resulting graph is connected, and then subdividing each new
edge exactly once. Let ξ be the family of trees T that can be obtained from
any tree T ′ by first attaching at least two leaves to each vertex of T ′, and then
subdividing each edge of T ′ exactly once if T ′ is nontrivial.

Theorem 4 [2]. If T is a tree of order n ≥ 3, |L(T )| = l and |S(T )| = s, then

γLt (T ) ≥
2(n+ l − s+ 1)

5
,

with equality if and only if T ∈ F .

Theorem 5 [4]. If T is a tree of order n ≥ 3 with l leaves and s support vertices,

then γLt (T ) ≥
n+l+1

2 − s and the equality holds if and only if T ∈ ξ.

In the following, we give two new lower bounds on the locating-total dom-
ination number in trees. We also characterize the trees achieving those lower
bounds. First, we need the following lemma. Let T = (V,E) be a tree of order
n ≥ 3. Let L(T ) = L, S(T ) = S, S1(T ) = S1, S\S1 = S2 and A be a γLt (T )-set of
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T that contains a minimum number of leaves. Then S ⊆ A and for every v ∈ S,
exactly one leaf adjacent to v is not in A. Let B = {v /∈ A : |N(v) ∩A| = 1} and
C = {v /∈ A : |N(v) ∩A| ≥ 2}. Let L1 = L ∩ A, Q1 = A \ (L1 ∪ S), L2 = L \ L1

and Q2 = B \L2. Then A = L1 ∪S ∪Q1, B = L2 ∪Q2, V = A∪B ∪C. We have
the following lemma.

Lemma 6. Let |L| = l, |S| = s and |S1| = s1. Then

(1) |[A,B ∪ C]| ≥ |B|+ 2|C| = 2n− 2|A| − |B|;

(2) |[A,B ∪ C]| = n− 1− |E(T [A])| − |E(T [Q2 ∪ C])|;

(3) |L1| = l − s, |L2| = s, |Q1| = |A| − l, |Q2| = |B| − s;

(4) |Q2| ≤ |Q1|, |B| ≤ |A| − l + s;

(5) |E(T [Q2 ∪ C])| ≥ |Q2|
2 and the equality holds if and only if T [Q2 ∪ C] ∼=

|Q2|
2 K2 + |C|K1 and C is an independent set in T [Q2 ∪ C];

(6) |E(T [S ∪ Q1])| ≥
1
2(s − s1 + |A| − l) and the equality holds if and only if

T [S ∪Q1] ∼= s1K1 +
|S2∪Q1|

2 K2 and S1 is an independent set in T [S ∪Q1];

(7) |E(T [A])| ≥ |A|
2 and the equality holds if and only if T [A] ∼=

|A|
2 K2.

Proof. (1)–(5) and (7) can be obtained by applying an argument similar to that
of Lemma 3 we gave in [11] and can also be seen in [10].

(6) For every v ∈ S2∪Q1, N(v)∩ (S ∪Q1) 6= ∅ by the definition of an LTDS.
Thus,

|E(T [S ∪Q1])| ≥
1

2

∑

v∈S2∪Q1

dT [S∪Q1](v) ≥
1

2
|S2 ∪Q1| =

1

2
(s− s1 + |A| − l),

and the equality holds if and only if T [S ∪Q1] ∼= s1K1 +
|S2∪Q1|

2 K2 and S1 is an
independent set in T [S ∪Q1].

Let T1 denote the set {P4} ∪ {Sa : a ≥ 3}. Let F1 be the family of trees
obtained from r disjoint copies of trees in T1 by first adding r − 1 edges so that
they are incident only with support vertices and the resulting graph is connected,
and then subdividing each new edge exactly once.

Theorem 7. Suppose T is a tree of order n ≥ 3, |L(T )| = l, |S(T )| = s and

|S1(T )| = s1. Then

γLt (T ) ≥
2(n+ 1) + 3(l − s)− s1

5
,

with equality if and only if T ∈ F1.



30 K. Wang , W. Ning and M. Lu

Proof. From Lemma 6(1) and (4), we obtain |[A,B∪C]| ≥ 2n−3|A|+ l− s. By
Lemma 6(2), (3) and (6), |[A,B∪C]| ≤ n−1−|E(T [A])| = n−1−|L1|−|E(T [S∪

Q1])| ≤ n− 1− (l− s)− 1
2(s− s1+ |A|− l). Thus γLt (T ) = |A| ≥ 2(n+1)+3(l−s)−s1

5 .

The equality γLt (T ) =
2(n+1)+3(l−s)−s1

5 holds if and only if |E(T [Q2∪C])| = 0,

|N(v)∩A| = 2 for every vertex v ∈ C, |Q1| = |Q2|, T [S∪Q1] ∼= s1K1+
|S2∪Q1|

2 K2

and S1 is an independent set in T [S∪Q1]. The equality |E(T [Q2∪C])| = 0 implies
|Q1| = |Q2| = 0 by Lemma 6(5). Thus, A = L1 ∪ S and T [S] ∼= s1K1 +

s−s1
2 K2.

Consequently, every connected component of T [A ∪ B] is either a P4, or a Sa,
where a ≥ 3. Thus, we have T ∈ F1.

Remark 8. The lower bound in Theorem 7 is no less than the lower bound in
Theorem 4 because 2(n+1)+3(l−s)−s1

5 − 2(n+l−s+1)
5 = l−s−s1

5 ≥ 0. Note that we
have the fact F ⊂ F1.

Now let T2 denote the set {Sa : a ≥ 3}∪{Pb : b ≥ 4 and b ≡ 0 (mod 4)}. For
every T ∈ T2, if T = Pb = v1v2 · · · vb for some b ≥ 4 and b ≡ 0 (mod 4), then

we define DT =
⋃b/4

i=1 {v4i−2, v4i−1}; if T = Sa for some a ≥ 3, then we define
DT = S(Sa). Let F2 be the family of trees obtained from r disjoint copies of trees
in T2 by first adding r − 1 edges so that they are only incident with vertices in
⋃

T∈T2
DT and the resulting graph is connected, and then subdividing each new

edge exactly once.

Theorem 9. Suppose T is a tree of order n ≥ 3, |L(T )| = l, |S(T )| = s and

|S1(T )| = s1. Then

γLt (T ) ≥
n+ l − s+ 1

2
−

s+ s1
4

,

with equality if and only if T ∈ F2.

Proof. From Lemma 6(1), we obtain |[A,B ∪ C]| ≥ 2n − 2|A| − |B|. On the
other hand,

|[A,B ∪ C]| = n− 1− |E (T [A]) | − |E (T [Q2 ∪ C]) | by Lemma 6(2)

≤ n− 1− |E (T [A]) | −
|Q2|

2
by Lemma 6(5)

= n− 1−
|B| − s

2
− (|L1|+ |E (T [S ∪Q1]) |) by Lemma 6(3)

≤ n− 1−
|B| − s

2
− ((l − s) +

1

2
(s− s1 + |A| − l)) by Lemma 6(6).

Combining this with |[A,B ∪ C]| ≥ 2n− 2|A| − |B|, we have

3

2
|A| ≥ n+ 1−

|B|

2
− s+

l

2
−

s1
2
.
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By Lemma 6(4), we have 2|A| ≥ n + 1 + l − s − s+s1
2 , which implies γLt (T ) =

|A| ≥ n+l−s+1
2 − s+s1

4 .

The equality holds if and only if |Q1| = |Q2|, T [Q2 ∪ C] ∼=
|Q2|
2 K2 + |C|K1

and C is an independent set in T [Q2 ∪ C], T [S ∪ Q1] ∼= s1K1 +
|S2∪Q1|

2 K2 and
S1 is an independent set in T [S ∪ Q1], and |N(u2) ∩ A| = 2 for every u2 ∈ C.
For every u1 ∈ Q2 ⊆ B, N(u1) ∩ A ⊆ Q1 by the definition of an LTDS and
|N(u1) ∩Q1| = 1.

If |Q2| = 0, then T ∈ F1 (by the same argument as that in the proof of
Theorem 7) and therefore T ∈ F2 as F1 ⊂ F2.

Now we consider the case |Q1| = |Q2| 6= 0. Let T1, T2, . . . , Tω1
be the compo-

nents of T [Q1 ∪Q2 ∪ S2]. Note that T is a tree. Then for i = 1, 2, . . . , ω1, Ti is a
path of order ai with two leaves in S2 and the other vertices in Q1 ∪Q2, where
ai ≡ 2 (mod 4). Thus, every component of T [A∪B] is in T2. SupposeX1, X2, . . . ,
Xω2

are the components of T [A∪B]. For every Xj , if Xj = Pbj = v1v2 · · · vbj for

some bj ≥ 4 and bj ≡ 0 (mod 4), then we define DXj
=

⋃bj/4
i=1 {v4i−2, v4i−1}, but

if Xj = Saj for some aj ≥ 3, then we define DXj
= S(Xj). Thus we have S∪Q1 =

⋃ω2

j=1DXj
. Note that for every vertex u ∈ C, |N(u)∩A| = |N(u)∩ (S ∪Q1)| = 2

and T is a tree. Thus, T ∈ F2.

Remark 10. The lower bound in Theorem 9 is not less than the lower bound
in Theorem 5 because n+l−s+1

2 − s+s1
4 − (n+l+1

2 − s) = s−s1
4 ≥ 0. We also have

ξ ⊂ F2, where ξ is defined in Theorem 5. On the other hand, if n > 3s+2l−s1−2
2 ,

the lower bound in Theorem 9 is better than the lower bound in Theorem 7.

3. Upper Bounds on the Locating-Total Domination Number in

Trees

The next theorem gives an upper bound on γLt (T ) of a tree of fixed order and
diameter.

Theorem 11. Suppose T is a tree of order n ≥ 3 and diameter d ≥ 2. Then

γLt (T )≤n−d−1
2 and the equality holds if and only if T = Pn, where n ≡ 2 (mod 4).

Proof. We first use an induction on the order n of T to show that γLt (T ) ≤
n − d−1

2 . If n = 3, then γLt (T ) = 2 < n − d−1
2 . Next we assume that every tree

T ′ of order 3 ≤ n′ < n and diameter d′ ≥ 2 satisfies γLt (T
′) ≤ n′ − d′−1

2 . Let T
be a tree of order n > 3 and diameter d ≥ 2.

Let P = v0v1v2 · · · vd be a path of length d in T . If T = P , then d = n−1 and
γLt (T ) ≤ n− d−1

2 by Theorem 1. Now suppose T 6= P . Then there is a vertex v
of P with d(v) ≥ 3. Let u be a vertex of T \V (P ) such that d(u, v) is maximum.
Then u ∈ L(T ). Let N(u) = {w}, T ′ = T −u and D be a γLt (T

′)-set of T ′. Then
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n′ = n−1 and d′ = d. By the inductive hypothesis, γLt (T
′) ≤ n′− d′−1

2 . If w 6= v,
then w ∈ L(T ′) and D ∪{w} is an LTDS of T ; if w = v and v ∈ D, then D ∪{u}
is an LTDS of T ; if w = v and v /∈ D, then D ∪ {v} is an LTDS of T . In each
case, we can find an LTDS of T with no more than γLt (T

′) + 1 elements. Thus,
γLt (T ) ≤ γLt (T

′) + 1 ≤ n′ − d′−1
2 + 1 = n − d−1

2 . This completes the proof of

γLt (T ) ≤ n− d−1
2 .

By Theorem 1, if T = Pn, where n ≥ 4 and n ≡ 2 (mod 4), then γLt (T ) =
n+2
2 = n − d−1

2 . Conversely, suppose T is a tree with γLt (T ) = n − d−1
2 , then

d ≥ 4 and d is odd. In order to prove T = Pn, where n ≥ 4 and n ≡ 2 (mod 4),
we proceed by induction on n. If n ≤ 6, then T = P6. Assume every tree T ′ of
order 6 ≤ n′ < n and diameter d′ ≥ 2 with γLt (T

′) = n′ − d′−1
2 satisfies T ′ = Pn′ ,

where n′ ≥ 4 and n′ ≡ 2 (mod 4).

If T has a strong support vertex v, let T ′ = T − y, where y is a leaf adjacent
to v. Then n′ = n−1, d′ = d, γLt (T ) ≤ γLt (T

′)+1 ≤ n′− d′−1
2 +1 = n− d−1

2 . Since

γLt (T ) = n − d−1
2 , we have γLt (T

′) = n′ − d′−1
2 . By induction, T ′ = Pn′ , where

n′ ≥ 4 and n′ ≡ 2 (mod 4). Suppose T ′ = Pn′ = v1v2 · · · vn′ , where v2 = v. Then

{v1, v2} ∪ (
⋃⌊n′/4⌋

i=1 {v4i, v4i+1}) is an LTDS of T . Thus, γLt (T ) ≤ 2 + 2 ·
⌊

n
4

⌋

=

n′ − d′−1
2 < n− d−1

2 , a contradiction. Therefore, every support vertex in T is not
strong.

Let P = v0v1v2 · · · vd be a path of length d in T . We root T at the vertex v0.
Then we have the following two facts.

Fact 1. d(v2) = 2.

Proof of Fact 1. Suppose d(v2) ≥ 3. If v2 has a child b 6= v1 which is a support
vertex, let T ′ = T \ {v0, v1}. Then n′ = n− 2 and d′ = d. Let D′ be a γLt (T

′)-set
of T ′ that contains a minimum number of leaves. Then v2, b ∈ D′ and D′ ∪ {v1}
is an LTDS of T . Thus, γLt (T ) ≤ γLt (T

′) + 1 ≤ n′ − d′−1
2 + 1 = n − 1 − d−1

2 <

n − d−1
2 , a contradiction. Therefore, every child of v2 except v1 is a leaf. Since

T has no strong support vertices, d(v2) = 3. Let c be a leaf adjacent to v2 and
T ′ = T \ {v0, v1, v2, c}, then n′ = n − 4 ≥ 3 and d − 3 ≤ d′ ≤ d. Let D′ be a
γLt (T

′)-set of T ′, then D′∪{v1, v2} is an LTDS of T . Thus, γLt (T ) ≤ γLt (T
′)+2 ≤

n′ − d′−1
2 + 2 ≤ n′ − d−4

2 + 2 = n− d
2 < n− d−1

2 , a contradiction.

Fact 2. d(v3) = 2.

Proof of Fact 2. Suppose d(v3)≥ 3. Let T ′ = T \ {v0, v1, v2}, then n′ = n−3
and d−2≤ d′ ≤ d. Let D′ be a γLt (T

′)-set of T ′, then D′ ∪ {v1, v2} is an LTDS
of T . Therefore, γLt (T ) ≤ γLt (T

′) + 2 ≤ n′ − d′−1
2 + 2 ≤ n − 1 − d−3

2 = n − d−1
2 .

Since γLt (T ) = n− d−1
2 , we have n′ = n−3, d′ = d−2, γLt (T

′) = n− d′−1
2 and

v3 is a support vertex in T . By induction, T ′ = Pn′ , where n′ ≥ 4 and n′ ≡ 2
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(mod 4). Now the set {v1, v2, v3}
⋃(d−3)/4

i=1 {v4i+1, v4i+2} is a γ
L
t (T )-set of T . Thus,

γLt (T ) = γLt (T
′) + 1 = n+1

2 < n+3
2 = n− d−1

2 , a contradiction.

Now let T ′ = T \ {v0, v1, v2, v3}. Then n′ = n − 4 ≥ 3 and d − 4 ≤ d′ ≤ d.
Let D′ be a γLt (T

′)-set of T ′, then D′ ∪ {v1, v2} is an LTDS of T . Thus, γLt (T ) ≤
γLt (T

′) + 2 ≤ n′ − d′−1
2 + 2 ≤ n− 2− d−5

2 = n− d−1
2 . Since γLt (T ) = n− d−1

2 , we

have n′ = n − 4, d′ = d − 4, γLt (T
′) = n′ − d′−1

2 and dT (v4) = 2. By induction,
T ′ = Pn′ = Pn−4, where n′ ≥ 4 and n′ ≡ 2 (mod 4). Therefore, T = Pn, where
n ≡ 2 (mod 4).
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