Discussiones Mathematicae Graph Theory 40 (2020) 67–76 doi:10.7151/dmgt.2110

ON THE METRIC DIMENSION OF DIRECTED AND UNDIRECTED CIRCULANT GRAPHS

Tomáš Vetrík

Department of Mathematics and Applied Mathematics University of the Free State Bloemfontein, South Africa

e-mail: vetrikt@ufs.ac.za

Abstract

The undirected circulant graph $C_n(\pm 1, \pm 2, \ldots, \pm t)$ consists of vertices $v_0, v_1, \ldots, v_{n-1}$ and undirected edges $v_i v_{i+j}$, where $0 \le i \le n-1, 1 \le j \le t$ $(2 \le t \le \frac{n}{2})$, and the directed circulant graph $C_n(1,t)$ consists of vertices $v_0, v_1, \ldots, v_{n-1}$ and directed edges $v_i v_{i+1}, v_i v_{i+t}$, where $0 \le i \le n-1$ $(2 \le t \le n-1)$, the indices are taken modulo n. Results on the metric dimension of undirected circulant graphs $C_n(\pm 1, \pm t)$ are available only for special values of t. We give a complete solution of this problem for directed graphs $C_n(1,t)$ for every $t \ge 2$ if $n \ge 2t^2$. Grigorious *et al.* [On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54] presented a conjecture saying that $\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + p - 1$ for n = 2tk + t + p, where $3 \le p \le t + 1$. We disprove it by showing that $\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \le t + \frac{p+1}{2}$ for n = 2tk + t + p, where $t \ge 4$ is even, p is odd, $1 \le p \le t + 1$ and $k \ge 1$.

Keywords: metric dimension, resolving set, circulant graph, distance.

2010 Mathematics Subject Classification: 05C35, 05C12.

1. INTRODUCTION

Let V(G) be vertex set of a connected (undirected or directed) graph G. The distance d(u, v) between two vertices u, v in an undirected graph is the number of edges in a shortest path between u and v. In a directed graph G the distance d(u, v) from a vertex $u \in V(G)$ to a vertex $v \in V(G)$ is the length of a shortest directed path from u to v. A vertex w resolves two vertices u and v if $d(u, w) \neq d(v, w)$. For an ordered set of vertices $W = \{w_1, w_2, \dots, w_z\}$, the representation of distances of v with respect to W is the ordered z-tuple

$$r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_z)).$$

A set $W \subset V(G)$ is a resolving set of G if every two distinct vertices of G have different representations of distances with respect to W (if every two vertices of G are resolved by some vertex in W). The metric dimension of G is the number of vertices in a smallest resolving set and it is denoted by dim(G). The *i*-th coordinate in r(v|W) is 0 if and only if $v = w_i$. Thus in order to prove that Wis a resolving set of G, it suffices to show that $r(u|W) \neq r(v|W)$ for every two different vertices $u, v \in V(G) \setminus W$.

The metric dimension is an invariant, which has applications in robot navigation [9], pharmaceutical chemistry [2], pattern recognition and image processing [10]. It has been extensively studied. For example, Imran [5] studied barycentric subdivisions of Cayley graphs and Saputro *et al.* [12] gave bounds on the metric dimension of the lexicographic product of graphs

Let n, m and a_1, a_2, \ldots, a_m be positive integers such that $1 \leq a_1 < a_2 < \cdots < a_m \leq \frac{n}{2}$. The undirected circulant graph $C_n(\pm a_1, \pm a_2, \ldots, \pm a_m)$ consists of the vertices $v_0, v_1, \ldots, v_{n-1}$ and undirected edges $v_i v_{i+a_j}$, where $0 \leq i \leq n-1$, $1 \leq j \leq m$; the indices are taken modulo n.

For generators a_1, a_2, \ldots, a_m such that $1 \le a_1 < a_2 < \cdots < a_m \le n-1$, the directed circulant graph $C_n(a_1, a_2, \ldots, a_m)$ consists of the vertices $v_0, v_1, \ldots, v_{n-1}$ and directed edges $v_i v_{i+a_j}$, where $0 \le i \le n-1$, $1 \le j \le m$; the indices are taken modulo n. The directed circulant graph $C_n(-a_1, -a_2, \ldots, -a_m)$ contains the directed edges $v_i v_{i-a_j}$.

Circulant graphs form an important family of Cayley graphs. The metric dimension of undirected circulant graphs $C_n(\pm 1, \pm t)$ was studied for special values of t. Javaid, Rahim and Ali [8] proved that if $n \equiv 0, 2, 3 \pmod{4}$, then $dim(C_n(\pm 1, \pm 2)) = 3$. Borchert and Gosselin [1] showed that if $n \equiv 1 \pmod{4}$, then $dim(C_n(\pm 1, \pm 2)) = 4$. The undirected circulant graphs $C_n(\pm 1, \pm 3)$ were considered in [7] and the graphs $C_n(\pm 1, \pm \frac{n}{2})$ for even n were investigated in [11]. We study the metric dimension for directed circulant graphs with 2 generators. We give a complete solution of this problem for directed graphs $C_n(1, t)$ for every $t \geq 2$ if $n \geq 2t^2$.

Exact values of the metric dimension of undirected graphs $C_n(\pm 1, \pm 2, \pm 3)$ were given in [1] and [6]. Grigorious *et al.* [4] showed that t + 1 vertices v_0, v_1, \ldots, v_t resolve the graph $C_n(\pm 1, \pm 2, \ldots, \pm t)$ if $n \equiv r \pmod{2t}$, where $2 \leq r \leq t + 2$ and they gave the bound $\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq r - 1$ if $n \equiv r \pmod{2t}$, where $t + 3 \leq r \leq 2t + 1$. They presented a conjecture saying that $\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + p - 1$ for n = 2tk + t + p, where $3 \leq p \leq t+1$. We disprove it for even $t \geq 4$ and odd $p \geq 5$ by showing that $dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2}$ for n = 2tk+t+p where $t \geq 4$ is even, p is odd, $1 \leq p \leq t+1$ and $k \geq 1$. Note that Chau and Gosselin [3] recently proved that $dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t+1$ if $n \equiv 2 \pmod{2t}$ and $n \equiv t+1 \pmod{2t}$. They also showed that $dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = dim(C_{n+2t}(\pm 1, \pm 2, \ldots, \pm t))$ for large n, which implies that the metric dimension of the graphs $C_n(\pm 1, \pm 2, \ldots, \pm t)$ is completely determined by the congruence class of n modulo 2t.

2. Directed Circulant Graphs

We study the metric dimension of directed circulant graphs $C_n(1,t)$. It is easy to see that the graph $C_n(1,t)$ is isomorphic to the graph $C_n(-1,-t)$ for $2 \le t \le n-1$. We present Theorems 1 and 2 for the graph $C_n(-1,-t)$, because it is easier to express distances from vertices in a graph to vertices in chosen resolving sets if we consider $C_n(-1,-t)$ (especially in the proof of Theorem 2).

The distance from the vertex v_j to the vertex v_i in $C_n(-1, -t)$, where $i, j \in \{0, 1, \ldots, n-1\}$, is

(1)
(1)
(2)

$$d(v_j, v_i) = \begin{cases} \left\lfloor \frac{j-i}{t} \right\rfloor + p, & p \equiv (j-i) \pmod{t}, & \text{if } j \ge i, \\ \left\lfloor \frac{n+j-i}{t} \right\rfloor + p, & p \equiv (n+j-i) \pmod{t}, & \text{if } j < i, \end{cases}$$

where $0 \le p \le t - 1$.

Theorem 1. Let $t \ge 2$ and $n \ge 2t^2$. Then $dim(C_n(-1, -t)) \ge t$.

Proof. We prove the result by contradiction. Assume that $dim(C_n(-1, -t)) \leq t - 1$. Let $W = \{v_{i_1}, v_{i_2}, \ldots, v_{i_{t-1}}\}$ be a resolving set of $C_n(-1, -t)$, where $0 \leq i_1 \leq i_2 \leq \cdots \leq i_{t-1}$. Since we have at most t - 1 different vertices in W and the graph $C_n(-1, -t)$ has at least $2t^2$ vertices, $C_n(-1, -t)$ contains a set of 2t consecutive vertices $V' = \{v_j, v_{j+1}, \ldots, v_{j+2t-1}\}$, where $0 \leq j \leq n - 1$, such that no vertex of W is in V'. Without loss of generality we can assume that j = n - 2t, which means that $V' = \{v_{n-2t}, v_{n-2t+1}, \ldots, v_{n-1}\}$ and $i_{t-1} < n - 2t$.

Since $|W| \le t-1$, there is a $k \in \{0, 1, \ldots, t-1\}$, such that no vertex $v_i \in W$ satisfies $i \equiv k \pmod{t}$. So we can write any vertex of W in the form v_{tr+s} , where $0 \le s \le t-1$, $s \ne k$ and $r \ge 0$.

Let v_l be any vertex in the set of t vertices $\{v_{n-2t}, v_{n-2t+1}, \ldots, v_{n-t-1}\}$, such that $l \equiv k \pmod{t}$. Then we can write l = tx + k, where $0 \leq k \leq t - 1$. We show that the vertices $v_{tx+k}, v_{tx+k+t-1} \in V'$ are not resolved by W. Note that

T. Vetrík

tx + k > tr + s. By (1) we have

$$d(v_{tx+k}, v_{tr+s}) = \begin{cases} \left\lfloor \frac{tx+k-(tr+s)}{t} \right\rfloor + k - s = x - r + \left\lfloor \frac{k-s}{t} \right\rfloor + k - s \\ = x - r + k - s & \text{if } k > s, \\ x - r + \left\lfloor \frac{k-s}{t} \right\rfloor + k - s + t \\ = x - r + k - s + t - 1 & \text{if } k < s, \end{cases}$$

$$d(v_{tx+k+t-1}, v_{tr+s}) = \begin{cases} \left\lfloor \frac{tx+k+t-1-(tr+s)}{t} \right\rfloor + k - 1 - s \\ = x - r + k - s & \text{if } k > s, \\ x + 1 - r + \left\lfloor \frac{k-1-s}{t} \right\rfloor + k - 1 - s + t \\ = x - r + k - s + t - 1 & \text{if } k < s. \end{cases}$$

Since $d(v_{tx+k}, v_{tr+s}) = d(v_{tx+k+t-1}, v_{tr+s})$ for any vertex $v_{tr+s} \in W$, the graph $C_n(-1, -t)$ is not resolved by W. A contradiction.

Let us present an upper bound on the metric dimension of directed circulant graphs with 2 generators.

Theorem 2. Let $2 \le t < n$. Then $dim(C_n(-1, -t)) \le t$.

Proof. We prove that $W = \{v_0, v_1, \ldots, v_{t-1}\}$ is a resolving set of $C_n(-1, -t)$. First we find all vertices v_j $(1 \le j \le n-1)$ of $C_n(-1, -t)$ such that $d(v_j, v_0) = x$ for any $x \ge 1$. We can write j = tr + p where $r \ge 0$ and $0 \le p \le t - 1$. Since by (1), $d(v_{tr+p}, v_0) = r + p$, we have r + p = x. Thus r = x - p (≥ 0) and then $v_{t(x-p)+p}$ for $0 \le p \le t - 1$ and $1 \le t(x-p) + p \le n - 1$ are the vertices of $C_n(1,t)$ such that $d(v_{t(x-p)+p}, v_0) = x$.

It remains to show that these vertices are resolved by v_i , i = 1, 2, ..., t - 1. It suffices to consider only those vertices $v_{t(x-p)+p}$ which are not in W, so we can assume that t(x-p) + p > i. For i = 1, 2, ..., t - 1, by (1),

(3)
$$d(v_{t(x-p)+p}, v_i) = \begin{cases} x - p + \left\lfloor \frac{p-i}{t} \right\rfloor + p - i = x - i & \text{if } p \ge i, \\ x - p + \left\lfloor \frac{p-i}{t} \right\rfloor + p - i + t = x + t - 1 - i & \text{if } p < i. \end{cases}$$

We know that the first entry of $r(v_{t(x-p)+p}|W)$ is x. From (3) it follows that the next p entries (where $0 \le p \le t-1$) are x-i and the last t-1-p entries of $r(v_{t(x-p)+p}|W)$ are x+t-1-i.

So if p = 0 (and if v_{tx} exists), the first entry of $r(v_{tx}|W)$ is x and the other entries are x + t - 1 - i which means that $r(v_{tx}|W) = (x, x + t - 2, x + t - 3, ..., x + t - 1 - (t - 1))$. If p = 1, the first entry of $r(v_{t(x-1)+1}|W)$ is x, the second entry is x - 1 and the other entries are x + t - 1 - i, so $r(v_{t(x-1)+1}|W) = 0$

 $(x, x-1, x+t-3, x+t-4, \dots, x+t-1-(t-1)). \text{ Similarly } r(v_{t(x-2)+2}|W) = (x, x-1, x-2, x+t-4, \dots, x+t-1-(t-1)), \dots, r(v_{t(x-(t-1))+(t-1)}|W) = (x, x-1, x-2, \dots, x-(t-1)).$

Since all vertices v_j , $1 \le j \le n-1$, such that $d(v_j, v_0) = x$ are resolved by W, we have $dim(C_n(-1, -t)) \le |W| = t$.

From Theorems 1 and 2 we obtain Corollary 3.

Corollary 3. Let $t \ge 2$ and $n \ge 2t^2$. Then $dim(C_n(-1, -t)) = t$.

Since the graphs $C_n(-1, -t)$ and $C_n(1, t)$ are isomorphic, we get the following corollary.

Corollary 4. Let $t \ge 2$ and $n \ge 2t^2$. Then $dim(C_n(1,t)) = t$.

3. UNDIRECTED CIRCULANT GRAPHS

We give an upper bound on the metric dimension of undirected circulant graphs $C_n(\pm 1, \pm 2, \ldots, \pm t)$ for $n \equiv r \pmod{2t}$, where r = 1 and $r = t+1, t+3, \ldots, 2t-1$.

The distance between two vertices v_i and v_j in $C_n(\pm 1, \pm 2, \dots, \pm t)$, where $0 \le i < j < n$, is

(4)
$$d(v_i, v_j) = \min\left\{ \left\lceil \frac{j-i}{t} \right\rceil, \left\lceil \frac{n-(j-i)}{t} \right\rceil \right\}.$$

This equation can be simplified as

(5)
(6)

$$d(v_i, v_j) = \begin{cases} \left\lceil \frac{j-i}{t} \right\rceil & \text{if } 0 \le j-i \le \frac{n}{2}, \\ \left\lceil \frac{n-(j-i)}{t} \right\rceil & \text{if } \frac{n}{2} < j-i < n. \end{cases}$$

Theorem 5. Let n = 2tk + t + p where $t \ge 4$ is even, p is odd, $1 \le p \le t + 1$ and $k \ge 1$. Then

$$\dim \left(C_n(\pm 1, \pm 2, \dots, \pm t) \right) \le t + \frac{p+1}{2}.$$

Proof. Let n = 2tk + t + p where $k \ge 1, t \ge 4$ is even and $p = 1, 3, \ldots, t + 1$. Let

$$W_1 = \{v_0, v_2, \dots, v_{t-2}\}, \quad W_2 = \{v_{t-1}, v_{t+1}, \dots, v_{2t-3}\}, \\ W_3 = \{v_{tk+t-1}, v_{tk+t+1}, \dots, v_{tk+t+p-2}\}.$$

We have $|W_1| = |W_2| = \frac{t}{2}$ and $|W_3| = \frac{p+1}{2}$. Let us prove that $W = W_1 \cup W_2 \cup W_3$ is a resolving set of the graph $C_n(1, 2, \dots, t)$.

We divide the vertex set of $C_n(\pm 1, \pm 2, \dots, \pm t)$ into four disjoint sets:

$$V_1 = \{v_0, v_1, \dots, v_t\}, \qquad V_2 = \{v_{t+1}, v_{t+2}, \dots, v_{tk+t}\}, \\ V_3 = \{v_{tk+t+1}, v_{tk+t+2}, \dots, v_{tk+t+p-1}\}, \quad V_4 = \{v_{tk+t+p}, v_{tk+t+p+1}, \dots, v_{n-1}\}.$$

First we prove that any two vertices of V_2 have different representations of distances with respect to W. For x = 1, 2, ..., k - 1; j = 1, 2, ..., t; i = 0, 2, ..., t - 2, we have $v_i \in W_1$ and by (5),

$$d(v_{tx+j}, v_i) = x + \left\lceil \frac{j-i}{t} \right\rceil = \begin{cases} x+1 & \text{if } i < j, \\ x & \text{if } i \ge j, \end{cases}$$

and if x = k; j = 1, 2, ..., t, by (4), we get

$$d(v_{tk+j}, v_i) = \min\left\{ \left\lceil \frac{(tk+j) - i}{t} \right\rceil, \left\lceil \frac{n - [(tk+j) - i]}{t} \right\rceil \right\},\$$
$$= \min\left\{ k + \left\lceil \frac{j - i}{t} \right\rceil, k + 1 + \left\lceil \frac{p + i - j}{t} \right\rceil \right\} = \left\{ \begin{matrix} k+1 & \text{if } i < j, \\ k & \text{if } i \ge j. \end{matrix} \right\}$$

Since j (where $1 \le j \le t$) is greater than $\left\lceil \frac{j}{2} \right\rceil$ elements from the set $\{0, 2, \ldots, t-2\}$, the first $\left\lceil \frac{j}{2} \right\rceil$ entries of $r(v_{tx+j}|W_1)$ for $x = 1, 2, \ldots, k$ are equal to x + 1 and the other $\frac{t}{2} - \left\lceil \frac{j}{2} \right\rceil$ entries are x; $r(v_{tx+j}|W_1) = (x + 1, \ldots, x + 1, x, \ldots, x)$. Therefore the only vertices in V_2 with the same representations of distances with respect to W_1 are the pairs $(v_{t+1}, v_{t+2}), (v_{t+3}, v_{t+4}), \ldots, (v_{tk+t-1}, v_{tk+t})$. But since for $x = 1, 2, \ldots, k$ and $j = 1, 3, \ldots, t - 3$, we obtain $v_{t+j} \in W_2$ and by (5),

$$d(v_{tx+j}, v_{t+j}) = x - 1, \ d(v_{tx+j+1}, v_{t+j}) = x - 1 + \left\lceil \frac{1}{t} \right\rceil = x,$$

and for $v_{t-1} \in W_2$, we have

$$d(v_{tx+t-1}, v_{t-1}) = x, \ d(v_{tx+t}, v_{t-1}) = x + \left\lceil \frac{1}{t} \right\rceil = x+1,$$

vertices in W_2 resolve the pairs $(v_{t+1}, v_{t+2}), (v_{t+3}, v_{t+4}), \ldots, (v_{tk+t-1}, v_{tk+t})$. Thus no two vertices in V_2 have the same representations of distances with respect to W.

Let us study representations of distances of the vertices in V_4 . For $x = 1, 2, \ldots, k-1$; $j = 0, 1, \ldots, t-1$; $i = 0, 2, \ldots, t-2$; we have $v_i \in W_1$ and by (6),

$$d(v_{n-tx+j}, v_i) = \left\lceil \frac{n - \left[(n - tx + j) - i \right]}{t} \right\rceil = x + \left\lceil \frac{i - j}{t} \right\rceil = \begin{cases} x & \text{if } i \le j, \\ x + 1 & \text{if } i > j, \end{cases}$$

and if x = k, we get

$$d(v_{n-tk+j}, v_i) = \min\left\{ \left\lceil \frac{(n-tk+j)-i}{t} \right\rceil, \left\lceil \frac{n-\left[(n-tk+j)-i\right]}{t} \right\rceil \right\}$$
$$= \min\left\{ k+1 + \left\lceil \frac{p+j-i}{t} \right\rceil, k+\left\lceil \frac{i-j}{t} \right\rceil \right\} = \left\{ \begin{matrix} k & \text{if } i \le j, \\ k+1 & \text{if } i > j. \end{matrix} \right\}$$

Since j (where $0 \le j \le t-1$) is greater than or equal to $\lfloor \frac{j}{2} \rfloor + 1$ elements from the set $\{0, 2, \ldots, t-2\}$, the first $\lfloor \frac{j}{2} \rfloor + 1$ entries of $r(v_{n-tx+j}|W_1)$ (for $x = 1, 2, \ldots, k$) are equal to x and the other entries are x + 1. The only vertices in V_4 with the same representations of distances with respect to W_1 are the pairs $(v_{n-tk}, v_{n-tk+1}), (v_{n-tk+2}, v_{n-tk+3}), \ldots, (v_{n-2}, v_{n-1})$. We show that most of these pairs are resolved by vertices in W_2 . For $x = 1, 2, \ldots, k-1$ and $j = 1, 3, \ldots, t-3$, we have $v_{t+j} \in W_2$ and by (6),

$$d(v_{n-tx+j}, v_{t+j}) = x + 1, d(v_{n-tx+j-1}, v_{t+j}) = x + 1 + \left|\frac{1}{t}\right| = x + 2,$$

and for $v_{t-1} \in W_2$, $x = 1, 2, \dots, k$, by (6),

$$d(v_{n-tx+t-1}, v_{t-1}) = x, \ d(v_{n-tx+t-2}, v_{t-1}) = x + \left\lceil \frac{1}{t} \right\rceil = x+1,$$

so vertices of W_2 resolve all pairs of vertices $(v_{n-tk+t-2}, v_{n-tk+t-1}), (v_{n-tk+t}, v_{n-tk+t+1}), \ldots, (v_{n-2}, v_{n-1}),$ which are the pairs $(v_{tk+2t+p-2}, v_{tk+2t+p-1}), (v_{tk+2t+p}, v_{tk+2t+p+1}), \ldots, (v_{n-2}, v_{n-1}).$ It remains to resolve the pairs $(v_{tk+t+p+1}, v_{tk+t+p+2}, v_{tk+t+p+3}), \ldots, (v_{tk+2t+p-4}, v_{tk+2t+p-3}).$

For
$$j = 0, 2, ..., t - p - 3$$
, we have $v_{t+p+j} \in W_2$ and by (5),

 $d(v_{tk+t+p+j}, v_{t+p+j}) = k, \ d(v_{tk+t+p+j+1}, v_{t+p+j}) = k + \lfloor \frac{1}{t} \rfloor = k+1,$

so the pairs $(v_{tk+t+p}, v_{tk+t+p+1}), \ldots, (v_{tk+2t-3}, v_{tk+2t-2})$ are resolved by W_2 .

For $j = t - p - 1, t - p + 1, \dots, t - 4$, we have $v_{tk+p+j} \in W_3$ and by (5),

$$d(v_{tk+t+p+j}, v_{tk+p+j}) = 1, \ d(v_{tk+t+p+j+1}, v_{tk+p+j}) = 1 + \left\lceil \frac{1}{t} \right\rceil = 2,$$

so the pairs $(v_{tk+2t-1}, v_{tk+2t}), \ldots, (v_{tk+2t+p-4}, v_{tk+2t+p-3})$ are resolved by W_3 . Thus all pairs of vertices in V_4 are resolved by W.

A vertex $v \in V_2$ and a vertex in V_4 can have the same representations of distances with respect to W_1 only if all entries of $r(v|W_1)$ are the same numbers. For $x = 1, 2, \ldots, k$, we have $v_{tx+t-1}, v_{tx+t} \in V_2$ and $r(v_{tx+t-1}|W_1) = r(v_{tx+t}|W_1) =$ $(x + 1, \ldots, x + 1)$. For $v_{n-tx+t-2}, v_{n-tx+t-1} \in V_4$ we have $r(v_{n-tx+t-2}|W_1) =$ $r(v_{n-tx+t-1}|W_1) = (x, \ldots, x)$, which implies that for $x = 1, 2, \ldots, k-1$, we obtain $r(v_{tx+t-1}|W_1) = r(v_{tx+t}|W_1) = r(v_{n-tx-2}|W_1) = r(v_{n-tx-1}|W_1)$. Since for $v_{2t-3} \in W_2$, by (5),

 $d(v_{tx+t-1}, v_{2t-3}) = x - 1 + \left\lceil \frac{2}{t} \right\rceil = x, \quad d(v_{tx+t}, v_{2t-3}) = x - 1 + \left\lceil \frac{3}{t} \right\rceil = x,$

T. Vetrík

and by (6),

$$d(v_{n-tx-2}, v_{2t-3}) = x+2+\left\lceil \frac{-1}{t} \right\rceil = x+2, \ d(v_{n-tx-1}, v_{2t-3}) = x+2+\left\lceil \frac{-2}{t} \right\rceil = x+2,$$

any vertex in V_2 and any vertex in V_4 have different representations of distances

with respect to W.

We study representations of the vertices in V_3 . For j = 1, 2, ..., p - 1 and i = 0, 2, ..., t - 2, we have $v_i \in W_1$ and by (4),

$$d(v_{tk+t+j}, v_i) = \min\left\{k+1 + \left\lceil \frac{j-i}{t} \right\rceil, k + \left\lceil \frac{p+i-j}{t} \right\rceil\right\} = k+1,$$

thus $r(v_{tk+t+j}|W_1) = (k+1, \ldots, k+1)$. The only vertices in $V_2 \cup V_4$ with the same representations of distances with respect to W_1 are v_{tk+t-1} and v_{tk+t} .

Let us prove that any two vertices in $V_3 \cup \{v_{tk+t-1}, v_{tk+t}\}$ have different representations with respect to W. It suffices to consider the vertices in $V' = (V_3 \cup \{v_{tk+t-1}, v_{tk+t}\}) \setminus W_3 = \{v_{tk+t}, v_{tk+t+2}, \ldots, v_{tk+t+p-1}\}$. For $j = 0, 2, \ldots, p-1$ and $i = 1, 3, \ldots, t-3$, we have $v_{t+i} \in W_2$ and by (5)

$$d(v_{tk+t+j}, v_{t+i}) = k + \left\lceil \frac{j-i}{t} \right\rceil = \begin{cases} k & \text{if } i \ge j, \\ k+1 & \text{if } i < j. \end{cases}$$

Since j (for $j \leq t-2$) is greater than $\frac{j}{2}$ elements from the set $\{1, 3, \ldots, t-3\}$, the first $\frac{j}{2}$ entries of $r(v_{tk+t+j}|W'_2)$ where $W'_2 = W_2 \setminus \{v_{t-1}\}$ are equal to k+1and the other $\frac{t}{2} - \frac{j}{2} - 1$ entries are k. If p = t+1 and j = t, we obtain $r(v_{tk+t+j}|W'_2) = r(v_{tk+2t}|W'_2) = (k+1,\ldots,k+1)$. It follows that the only vertices of V' having the same representations of distances with respect to W'_2 are v_{tk+2t} and $v_{tk+2t-2}$ if p = t+1. These vertices are resolved by $v_{tk+t-1} \in W_3$, since by (5), $d(v_{tk+2t}, v_{tk+t-1}) = 1 + \lfloor \frac{1}{t} \rfloor = 2$ and $d(v_{tk+2t-2}, v_{tk+t-1}) = 1 + \lfloor \frac{-1}{t} \rfloor = 1$. Thus all vertices of V_3 are resolved by W.

We consider the vertices in V_1 . For j = 1, 3, ..., t-1 and t; i = 0, 2, ..., t-2, we have $v_i \in W_1$ and $d(v_j, v_i) = \left\lceil \frac{|j-i|}{t} \right\rceil = 1$, thus $r(v_j|W_1) = (1, ..., 1)$ for $v_j \in V_1 \setminus W_1$. From the previous part of this proof we know that the only vertices in $V_2 \cup V_3 \cup V_4$ having the representation with respect to W_1 equal to (1, ..., 1)are v_{n-2} and v_{n-1} . Since $v_{t-1} \in W_2$, it remains to resolve all pairs of vertices in the set $V'' = \{v_1, v_3, ..., v_{t-3}; v_t, v_{n-2}, v_{n-1}\}$.

We study their representations with respect to W_2 . For $j = 1, 3, \ldots, t - 3$ and $i = -1, 1, \ldots, t - 3$, we have $v_{t+i} \in W_2$ and by (5),

$$d(v_j, v_{t+i}) = 1 + \left\lceil \frac{i-j}{t} \right\rceil = \begin{cases} 1 & \text{if } i \le j, \\ 2 & \text{if } i > j. \end{cases}$$

Since j is greater than or equal to $\frac{j+3}{2}$ elements from the set $\{-1, 1, \ldots, t-3\}$, the first $\frac{j+3}{2}$ entries of $r(v_j|W_2)$ are equal to 1 and the other $\frac{t}{2} - \frac{j+3}{2}$ entries

74

are 2. The first two entries of $r(v_j|W_3)$ are always 1. For v_t and any $v_{t+i} \in W_2$, $d(v_t, v_{t+i}) = \left\lceil \frac{|i|}{t} \right\rceil = 1$, therefore $r(v_t|W_2) = (1, \dots, 1)$. For $i = -1, 1, \dots, t-3$, by (6),

$$d(v_{n-1}, v_{t+i}) = 1 + \left\lceil \frac{i+1}{t} \right\rceil = \begin{cases} 1 & \text{if } i = -1, \\ 2 & \text{if } i \ge 1, \end{cases}$$

so $r(v_{n-1}|W_2) = (1, 2, ..., 2)$. We have $d(v_{n-2}, v_{t+i}) = 1 + \lfloor \frac{i+2}{t} \rfloor = 2$, thus $r(v_{n-2}|W_2) = (2, ..., 2)$.

The only pair of vertices in V'' having the same representations with respect to W_2 is (v_{t-3}, v_t) , which is resolved by $v_{tk+t-1} \in W_3$, since by (5) we have $d(v_{t-3}, v_{tk+t-1}) = k + \lfloor \frac{2}{t} \rfloor = k + 1$ and $d(v_t, v_{tk+t-1}) = k + \lfloor \frac{-1}{t} \rfloor = k$.

Every two distinct vertices of the graph $C_n(\pm 1, \pm 2, \dots, \pm t)$ have different representations of distances with respect to W, thus W is a resolving set of $C_n(\pm 1, \pm 2, \dots, \pm t)$. Hence $dim(C_n(\pm 1, \pm 2, \dots, \pm t)) \leq |W| = t + \frac{p+1}{2}$.

4. Conclusion

We studied the metric dimension of undirected and directed circulant graphs. Results on the metric dimension of undirected circulant graphs $C_n(\pm 1, \pm t)$ are available only for special values of t. In Section 2 we found exact values of the metric dimension for directed circulant graphs $C_n(1,t)$ by showing that if $t \ge 2$ and $n \ge 2t^2$, then $dim(C_n(1,t)) = t$.

In Section 3 we presented a bound on the metric dimension of undirected circulant graphs. We proved that for n = 2tk + t + p, where $t \ge 4$ is even, p is odd, $1 \le p \le t + 1$ and $k \ge 1$, $dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \le t + \frac{p+1}{2}$. Note that by [13], $dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \le t + \frac{p}{2}$ if t and p are even, $2 \le p \le t$, thus we have $dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \le t + \lceil \frac{p}{2} \rceil$ for n = 2tk + t + p, where $t \ge 4$ is even, $1 \le p \le t + 1$ and $k \ge 1$,

Acknowledgments

This work has been supported by the National Research Foundation of South Africa; grant numbers: 112122, 90793.

References

- A. Borchert and S. Gosselin, The metric dimension of circulant graphs and Cayley hypergraphs, Util. Math. 106 (2018) 125–147.
- [2] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113. doi:10.1016/S0166-218X(00)00198-0

- K. Chau and S. Gosselin, The metric dimension of circulant graphs and their Cartesian products, Opuscula Math. 37 (2017) 509–534. doi:10.7494/OpMath.2017.37.4.509
- [4] C. Grigorious, P. Manuel, M. Miller, B. Rajan and S. Stephen, On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54. doi:10.1016/j.amc.2014.09.045
- M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sin. Eng. Ser. 32 (2016) 1067–1072. doi:10.1007/s10255-016-0627-0
- M. Imran, A.Q. Baig, S.A. Ul. Hag Bokhary and I. Javaid, On the metric dimension of circulant graphs, Appl. Math. Lett. 25 (2012) 320–325. doi:10.1016/j.aml.2011.09.008
- [7] I. Javaid, M.N. Azhar and M. Salman, Metric dimension and determining number of Cayley graphs, World Appl. Sci. J. 18 (2012) 1800–1812.
- [8] I. Javaid, M.T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008) 21–33.
- S. Khuller, B. Raghavachari and A. Rosenfeld, *Landmarks in graphs*, Discrete Appl. Math. **70** (1996) 217–229. doi:10.1016/0166-218X(95)00106-2
- R.A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Vision Graphics Image Process. 25 (1984) 113–121. doi:10.1016/0734-189X(84)90051-3
- [11] M. Salman, I. Javaid and M.A. Chaudhry, Resolvability in circulant graphs, Acta Math. Sin. Eng. Ser. 28 (2012) 1851–1864. doi:10.1007/s10114-012-0417-4
- [12] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman and M. Bača, *The metric dimension of the lexicographic product* of graphs, Discrete Math. **313** (2013) 1045–1051. doi:10.1016/j.disc.2013.01.021
- [13] T. Vetrík, The metric dimension of circulant graphs, Canad. Math. Bull. 60 (2017) 206–216. doi:10.4153/CMB-2016-048-1

Received 25 May 2017 Revised 23 January 2018 Accepted 23 January 2018