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Abstract

The undirected circulant graph C,(+1,£2,...,+t) consists of vertices
Vg, V1, .-.,Vp—1 and undirected edges v;v;4j, where 0 <i <n—-1,1<5<¢
(2 <t < %), and the directed circulant graph C,(1,t) consists of vertices
Vo, V1, - - ., Up—1 and directed edges v;v;41, V;vi4e, where 0 <i<n—1 (2 <
t < n—1), the indices are taken modulo n. Results on the metric dimension of
undirected circulant graphs C,,(£1, +t) are available only for special values
of t. We give a complete solution of this problem for directed graphs C, (1, )
for every t > 2 if n > 2t2. Grigorious et al. [On the metric dimension of
circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47-54] pre-
sented a conjecture saying that dim(Cn(:I:I,:I:2, . .,:I:t)) =t+p-—1 for
n = 2tk +t + p, where 3 < p < t+ 1. We disprove it by showing that
dim(C’n(:I:I, +2,..., :I:t)) <t+ % for n = 2tk +t + p, where t > 4 is even,
pisodd, 1 <p<t+1andk>1.
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1. INTRODUCTION

Let V(G) be vertex set of a connected (undirected or directed) graph G. The dis-
tance d(u,v) between two vertices u,v in an undirected graph is the number of
edges in a shortest path between u and v. In a directed graph G the distance
d(u,v) from a vertex u € V(G) to a vertex v € V(G) is the length of a shortest
directed path from u to v.
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A vertex w resolves two vertices u and v if d(u, w) # d(v,w). For an ordered
set of vertices W = {wy,ws,...,w,}, the representation of distances of v with
respect to W is the ordered z-tuple

r(v|W) = (d(v,w1),d(v,ws),...,d(v,w.)).

A set W C V(G) is a resolving set of G if every two distinct vertices of G have
different representations of distances with respect to W (if every two vertices of
G are resolved by some vertex in W). The metric dimension of G is the number
of vertices in a smallest resolving set and it is denoted by dim(G). The i-th
coordinate in 7 (v|WW) is 0 if and only if v = w;. Thus in order to prove that W
is a resolving set of G, it suffices to show that r (u|W) # r (v|W) for every two
different vertices u,v € V(G) \ W.

The metric dimension is an invariant, which has applications in robot naviga-
tion [9], pharmaceutical chemistry [2], pattern recognition and image processing
[10]. It has been extensively studied. For example, Imran [5] studied barycentric
subdivisions of Cayley graphs and Saputro et al. [12] gave bounds on the metric
dimension of the lexicographic product of graphs

Let n,m and aq,as,...,a, be positive integers such that 1 < a; < as <
-+ < @y < 4. The undirected circulant graph C,(+ar, +as,...,+a,,) consists
of the vertices vg, v1,...,v,_1 and undirected edges ViVita, where 0 <7 <n—1,
1 < 57 < m; the indices are taken modulo n.

For generators ay, ao, ..., a,, suchthat 1 <ay <ag <--- < a,, < n—1, the di-
rected circulant graph Cy, (a1, ag, ..., an) consists of the vertices v, v1,...,Un—1
and directed edges ViVita, where 0 < i < n—1,1 < j < m; the indices are
taken modulo n. The directed circulant graph C,(—ai, —ag, ..., —a,,) contains
the directed edges ViVi—q;-

Circulant graphs form an important family of Cayley graphs. The metric
dimension of undirected circulant graphs C, (41, £¢) was studied for special val-
ues of t. Javaid, Rahim and Ali [8] proved that if n = 0,2,3 (mod 4), then
dim(Cy(£1,£2)) = 3. Borchert and Gosselin [1] showed that if n = 1 (mod 4),
then dim(Cn(:lzl,:l:2)) = 4. The undirected circulant graphs C,,(+1,£3) were
considered in [7] and the graphs Cy,(£1,%%) for even n were investigated in [11].
We study the metric dimension for directed circulant graphs with 2 generators.
We give a complete solution of this problem for directed graphs C,(1,t) for every
t>2ifn > 22

Exact values of the metric dimension of undirected graphs Cn( + 1,42, :|:3)
were given in [1] and [6]. Grigorious et al. [4] showed that ¢ + 1 vertices
Vo, V1, ..., v resolve the graph C,(£1,+2,...,+t) if n = r (mod 2t), where
2 < r < t+ 2 and they gave the bound dim(Cn(il,iZ...,it)) <r-1
if n = r (mod 2t), where t +3 < r < 2t + 1. They presented a conjecture
saying that dim(Cn(il,iQ, . ,it)) =t+p—1for n = 2tk +t + p, where
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3 < p<t+ 1. We disprove it for even ¢ > 4 and odd p > 5 by showing that
dim(C’n(:lzl, +2,... ,:i:t)) < t—i—% for n = 2tk+t+p where t > 4 is even, p is odd,
1<p<t+1andk > 1. Note that Chau and Gosselin [3] recently proved that
dim(Cp(£1,42,...,+t)) =t+1if n =2 (mod 2t) and n =t +1 (mod 2t). They
also showed that dim(Cp(+1,%2,...,4t)) = dim(Cpyo(£l,+2,...,4t)) for
large n, which implies that the metric dimension of the graphs C),(£1,+2,. .., +t)
is completely determined by the congruence class of n modulo 2t.

2. DIRECTED CIRCULANT GRAPHS

We study the metric dimension of directed circulant graphs C,,(1,¢). It is easy to
see that the graph C,,(1,t) is isomorphic to the graph C),(—1, —t) for 2 < ¢t < n—1.
We present Theorems 1 and 2 for the graph C,(—1, —t), because it is easier to
express distances from vertices in a graph to vertices in chosen resolving sets if
we consider Cy,(—1, —t) (especially in the proof of Theorem 2).

The distance from the vertex v; to the vertex v; in Cy,(—1, —t), where 4, j €
{0,1,...,n—1},is

0 I p=Geamean, itz
d(vj,vi) i
2) V*ihp, p=(n+j—i) (modt), ifj<i,

where 0 < p <t —1.
Theorem 1. Lett > 2 and n > 2t*. Then dim(Cr(—1,—t)) > t.

Proof. We prove the result by contradiction. Assume that dim(Cn(—l, —t)) <
t —1. Let W = {v;,,viy,...,v;, ,} be a resolving set of Cp(—1,—t), where
0<i; <ig<---<4;_q. Since we have at most ¢t — 1 different vertices in W and
the graph C,(—1,—t) has at least 2t? vertices, Cp,(—1, —t) contains a set of 2t

consecutive vertices V' = {vj,vj41,...,vj42-1}, where 0 < j < n — 1, such that
no vertex of W is in V'. Without loss of generality we can assume that j = n—2t,
which means that V' = {v,—2t, vp—2t41,- - -, Un—1} and ;1 < n — 2t.

Since |W| <t—1, thereis a k € {0,1,...,t— 1}, such that no vertex v; € W
satisfies i = k (mod t). So we can write any vertex of W in the form v, where
0<s<t—1,s#kandr>0.

Let v; be any vertex in the set of t vertices {vn—2¢, Un—2¢4+1, - - -, Un—t—1}, such
that | = k (mod ¢). Then we can write | = tx + k, where 0 < k < ¢ —1. We
show that the vertices vy, Vizskit—1 € V' are not resolved by W. Note that
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tx +k > tr+s. By (1) we have

[ ks = [ ks

=z — k— if k> s,
d(Vtz1k, Vtrts) = . th ° ' y

z—r+ [ +k—s+t

=xz—r+k—s+t—1 if kK <s,

to+k+t—1—(tr+s)
{£4474LAl+k_1_3

. :x_r_'_k_s lfk>$,
Ad(Vigthti—1, Virts) = k-1
rHl—rt [P k-l s
=z—r+k—s+t—1 itk <s.

Since d(Vigtk, Vir+s) = d(Vtptktt—1,Vir+s) for any vertex vys € W, the graph
Cpn(—1,—t) is not resolved by W. A contradiction. |

Let us present an upper bound on the metric dimension of directed circulant
graphs with 2 generators.

Theorem 2. Let 2 <t <n. Then dim(Cp(—1,-t)) <.

Proof. We prove that W = {vg,v1,...,v—1} is a resolving set of C,(—1,—t).
First we find all vertices v; (1 < j <n—1) of Cp(—1,—t) such that d(v;,v) =
for any z > 1. We can write j = tr + p where r > 0 and 0 < p <t — 1. Since
by (1), d(vtr4p,v0) = r + p, we have r +p = x. Thus r =z — p (> 0) and then
Vy(z—p)4p for 0 <p <t—Tand 1 <t(z—p)+p < n—1 are the vertices of Cy,(1,7)
such that d(vt(x_p)ﬂ,, vo) = .

It remains to show that these vertices are resolved by v;, 1 = 1,2,...,¢t — 1.
It suffices to consider only those vertices vy(;_p)4, Which are not in W, so we can
assume that t(x —p) +p>i. Fori=1,2,...,t—1, by (1),

x—p+VT_iJ+p—i:x—i if p >4,
(3) d(vt(m—p)+pavi): .
z—p+ [p%J tp—itt=x+t—1—i ifp<i.

We know that the first entry of r(vt(x_p)+p\W) is z. From (3) it follows that the
next p entries (where 0 < p < ¢ — 1) are z — i and the last ¢t — 1 — p entries of
r(vt(x_p)+p|W) are v+t —1—1.

So if p = 0 (and if vy, exists), the first entry of r(vi|W) is « and the
other entries are z +t — 1 — ¢ which means that r(vm|W) = (:zr,x +t—-2,z+
t—3,...,x+t—1—(t— 1)) If p = 1, the first entry of r(vt(x_l)H]W) is x,
the second entry is x —1 and the other entries are x+t—1—1, so T(Ut(mfl)+1 |W) =
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(z,x—lo+t—=3,x+t—4,...,.x+t—1—(t—1)). Similarly r(vyz_2)12|W) =
(ZC,$ —l,x—2,x+t—4,...,c4+t—1— (t - 1))7"'7T(Ut(:t—(t—1))+(t—1)|W) =
(m,x—l,x—Q,...,m—(t—l)).

Since all vertices vj, 1 < j < n — 1, such that d(vj,vyg) = x are resolved by
W, we have dim(Cyp(—1,—t)) < |[W|=t. |

From Theorems 1 and 2 we obtain Corollary 3.
Corollary 3. Lett > 2 and n > 2t*>. Then dim(Cr(—1,-t)) =t.

Since the graphs C,,(—1, —t) and C),(1,t) are isomorphic, we get the following
corollary.

Corollary 4. Let t > 2 and n > 2t>. Then dim(Cy(1,t)) = t.

3. UNDIRECTED CIRCULANT GRAPHS

We give an upper bound on the metric dimension of undirected circulant graphs
Cp(£1,£2,...,4t) for n = r (mod 2t), where r = land r = t+1,¢+3,...,2t—1.

The distance between two vertices v; and v; in Cp(£1,£2,...,£t), where
0<i<j<mn,is

" ﬂwmﬁme{F;”L[n_g_ﬂw}

This equation can be simplified as

(5) {j_ﬂ f0<j—i<t
o d(vi,vj) = Flt(il)-‘ if 2 <j—i<n.

Theorem 5. Let n = 2tk +t+p wheret > 4 is even, p is odd, 1 <p <t+1 and

k>1. Then

dim (Cp(£1,£2,..., +1)) <t + ]%1

Proof. Let n =2tk+t+pwherek > 1,t>4isevenand p=1,3,...,t+ 1. Let
Wi = {vo,v2,...,v1—2}, Wa={v4_1,011,...,v2-3},
W3 = {Vthtt—1, Vtktt41, - - » Vthtt4p—2}-

We have |Wq| = [Wa| = L and |[W3| = pT Let us prove that W = W3 UWo U W3

is a resolving set of the graph C,(1,2,...,1t).
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We divide the vertex set of Cy,(£1,+£2,...,£t) into four disjoint sets:

‘/1 :{/U07/U17"'71}t}7 ‘/2 :{vt+17vt+27"‘7vtk+t}7
V3 = {Utk+t+1a Utk+t+25 - - - 7Utk:+t+p—1}7 Vi = {Utk+t+pa Utk+t+p+1s- -+ J)nfl}-

First we prove that any two vertices of V5 have different representations
of distances with respect to W. For x = 1,2,...,k—1; 7 = 1,2,...,t; 1 =
0,2,...,t —2, we have v; € Wj and by (5),

j—1 x+1 ifi<y,
d(Vegr i, v) = + =
() { ! 1 {x ifi >

and if x = k; 7 =1,2,...,t, by (4), we get

s ) :min{ {(tkﬂ) - ﬂ [n— [(th + j) —z’]-‘ }

t t

¢ t 2 if i > j.

Since j (where 1 < j < t) is greater than [4] elements from the set {0,2, ...,t—2},

the first [%W entries of r(vtm+j|Wl) forz =1,2,...,k are equal to x + 1 and the
other £ — [] entries are z; r(vip4j|W1) = (x+1,...,z + 1,z,...,z). Therefore
the only vertices in V5 with the same representations of distances with respect
to W1 are the pairs (vei1, vet2), (Ve4s, Vegd)s -« (Vgktt—1, Vigae). But since for
r=1,2,...,kand j =1,3,...,t — 3, we obtain v;4; € Wy and by (5),

1
d(Vigtj, Ve4j) = — 1, d(Vgrj1,V45) =7 — 1+ [J =,

and for v;_1 € W, we have
1
d(Vizyi—1,0t-1) = 2, d(Vizyt,ve-1) = T+ ==+ 1,

vertices in W5 resolve the pairs (vi41, Vet2), (Ve+3, Veta), - - - (Vgktt—1, Vtk+t¢)- Thus
no two vertices in V5 have the same representations of distances with respect to
W.

Let us study representations of distances of the vertices in V4. For z =
1,2,...,k—1;j=0,1,...,t —1;i=0,2,...,t — 2; we have v; € W and by (6),

n—[(n—tz+j)—i i—7 x iti <y,
d(Vn—tatj, Vi) = = =
(Vn-ta+j, vi) [ t T c+1 ifi>j,
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and if x = k, we get

i) = mm{ [(n - tk:;rj) - ﬂ [n — [(n - z;k +3) - iw }

/ t k+1 ifi> ]

Since j (where 0 < j < t — 1) is greater than or equal to L%J + 1 elements
from the set {0,2,...,¢t — 2}, the first L%J + 1 entries of r(vp—tz1j|W1) (for z =
1,2,...,k) are equal to x and the other entries are x + 1. The only vertices in
V4 with the same representations of distances with respect to Wi are the pairs
(Vn—ths Un—tk+1) (Un—tk+2, Un—tk+3),- - -5 (Un—2,Vn—1). We show that most of these
pairs are resolved by vertices in Ws. Forx =1,2,...)k—land 5 =1,3,...,t—3,
we have vi4; € Wy and by (6),

d(Vp—tatj Vi4j) = T+ 1, d(Un—totj—1,045) =z + 1+ [}] =2+ 2,
and for v,_; € Wy, x =1,2,...,k, by (6),
d(Vn—to4t—1,0-1) = T, d(Vp—tatt—2,0-1) =+ [1| =z +1,

so vertices of Wy resolve all pairs of vertices (vn—tktt—2, Un—thtt—1)s (Un—tkit,

Un—thtt41),--+» (Un—2, Un—1), which are the pairs (viki2t1p-2, Viki2t4p-1),
(Vth2t4ps Vtk+2t4pt1)s-- > (Un—2, Un—1). It remains to resolve the pairs (Vgis4p,
'Utk+t+p+1)a (Utk+t+P+2a 'Utk+t+p+3)a cees ('Utk+2t+p74a vtk+2t+p—3)-

For j =0,2,...,t —p— 3, we have vy1,; € Wy and by (5),

A(Vthtt4p+js Vitpts) = Ky d(Vthttaptjrt, Vevpts) =k + (ﬂ =k+1,
so the pairs (Viktt4p: Vtktttpt1)s -« - > (Vth2t—3, Veht2t—2) are resolved by Wa.

Forj=t—p—-1,t—p+1,...,t—4, we have vy4,y; € W3 and by (5),

A(Vthtttptis Vektpts) = L A(Uthitsptitt Vtkaprs) = 1+ [$] =2,
so the pairs (Vigyor—1,Vekt2t), - - > (Vtht2t4p—a, Vtht2t+p—3) are resolved by Wi.
Thus all pairs of vertices in Vj are resolved by W.

A vertex v € V5 and a vertex in V4 can have the same representations of dis-
tances with respect to Wy only if all entries of r(v|WW7) are the same numbers. For
x=1,2,...,k, we have Vtgat—1, Vtzt+t € V5 and T(Utx+t_1|W1) = T(Utx+t’W1) =
(x+1,...,2+1). For vp_tz4t-2,Vn—tatt—1 € Vi we have r(vy_ipqi—2|W1) =
r(Un—tz4t—1|W1) = (z,...,z), which implies that for x = 1,2,...,k — 1, we ob-
tain 7(vipe—1|W1) = 7(Vie4t)lWh) = 7(Vn—ta—2|W1) = 7(vn—tx—1|W1). Since for
var—3 € Wa, by (5),

d(”taz—&—t—la U?t—S) =z—1+ {%—‘ =, d(vm_;_t,’UQt_g) =xr—1+ [%-‘ =z,
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and by (6),
d(vnft:pf% fU2t73) =zr+2+ ’V_T1—| =z+2, d(vnft:pfla fU2t73) =z+2+ (_TQ] =z+2,

any vertex in V5 and any vertex in Vy have different representations of distances
with respect to W.

We study representations of the vertices in V3. For j = 1,2,...,p— 1 and
i=0,2,...,t—2, we have v; € W and by (4),

d(Vihtt4j, Vi) = min{k—i— 1+ P%ﬂ Jk+ [%W} =k+1,

thus 7(veg4e45|W1) = (E+1,...,k+1). The only vertices in VoUV} with the same
representations of distances with respect to Wy are vyp4p—1 and vy

Let us prove that any two vertices in V3 U {vgyt—1,vek4e} have different
representations with respect to W. It suffices to consider the vertices in V' =
(V3 U {vthtt—1, Vikre }) \W3 = {Vtkyt, Ve rt425 - - Vtktip-1}- Forj =0,2,... p—
landi=1,3,...,t — 3, we have v.y; € W5 and by (5)

. ift >3

donarspon =t ] = {5112
Since j (for j <t — 2) is greater than % elements from the set {1,3,...,t — 3},
the first £ entries of r(vgy1;|W3) where Wh = Wa \ {v;_1} are equal to k + 1
and the other % — % — 1 entries are k. If p = t+ 1 and j = t, we obtain
r(vthrHj]Wé) = r(vtk+2t|Wé) = (k+1,...,k+1). It follows that the only vertices
of V'’ having the same representations of distances with respect to W3 are vy
and vyior— 9 if p =1 4+ 1. These vertices are resolved by vy4:—1 € W3, since by
(5), d(vikt2t, Vekge—1) = 1+ {ﬂ = 2 and d(vgpq2t—2, Vikpe—1) = 1+ [‘71} = L
Thus all vertices of V3 are resolved by W.

We consider the vertices in V;. For j =1,3,...,t—1andt¢;i=0,2,...,t—2,
we have v; € Wi and d(vj,v;) = {@W = 1, thus r(v;|W1) = (1,...,1) for
vj € V1 \ Wi. From the previous part of this proof we know that the only vertices
in V52 U V3 UV} having the representation with respect to Wi equal to (1,...,1)
are v,_o and v,_1. Since v;,_1 € Ws, it remains to resolve all pairs of vertices in
the set V" = {v1,vs,...,04_3; V¢, Un—2,Up—1}-

We study their representations with respect to Wy, For j =1, 3,...,t — 3
and i = —1,1,...,t — 3, we have vy; € W5 and by (5),

o 1 ifi<j
d(v;, Vi :1—1—{—1_3—‘: -
(0 ve:) ! 2 ifi> .
0 # elements from the set {—1,1,...,¢t — 3},

the first % entries of r(vj|Ws) are equal to 1 and the other 5 — % entries

Since j is greater than or equal t
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are 2. The first two entries of r(v;|W3) are always 1. For v; and any v;y; € Wa,
d(ve, Vi) = {%—‘ = 1, therefore r(v|[Wa) = (1,...,1).
Fori=-1,1,...,t =3, by (6),

1 ifi=—1,

d(vn—1,v144) = 1+ [FH] = {2 ifi>1

s0 r(vp—1|Wa) = (1,2,...,2). We have d(vp—2,v4;) = 1+ [22] = 2, thus
’I“(Un_2|W2) = (27 sy 2)

The only pair of vertices in V" having the same representations with respect
to Wy is (v¢—3,v¢), which is resolved by w1 € W3, since by (5) we have
d(’l)t_g, Uthrtfl) =k+ |V%—| =k+1 and d(vt,’l)thrt,l) =k+ [%1] =k.

Every two distinct vertices of the graph C)(%1,42,...,4t) have different
representations of distances with respect to W, thus W is a resolving set of
Cp(£1,£2, ..., £t). Hence dim(Cp(£1,£2,...,£t)) < [W| =t + EEL. =

4. CONCLUSION

We studied the metric dimension of undirected and directed circulant graphs.
Results on the metric dimension of undirected circulant graphs C, (%1, +t) are
available only for special values of ¢. In Section 2 we found exact values of
the metric dimension for directed circulant graphs C,(1,¢) by showing that if
t > 2 and n > 2%, then dim(Cy(1,t)) =t¢.

In Section 3 we presented a bound on the metric dimension of undirected
circulant graphs. We proved that for n = 2tk 4+t + p, where ¢t > 4 is even, p is
odd, 1 <p < t+1and k > 1, dim(Cp(£1,£2,...,%t)) <t + 2. Note that
by [13], dim(Cn(:tl,j:Q, .. .,it)) <t+Lift and p are even, 2 < p < t, thus we
have dim(Cn(:Izl, +2,..., :I:t)) <t+ (%1 for n = 2tk 4+t + p, where t > 4 is even,
1<p<t+4+1landk>1,
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