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Abstract

A proper coloring of the vertices of a graph is called a star coloring if
at least three colors are used on every 4-vertex path. We show that all
outerplanar bipartite graphs can be star colored using only five colors and
construct the smallest known example that requires five colors.
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1. Introduction

A proper r-coloring of a graph G is an assignment of labels from {1, 2, . . . , r} to
the vertices of G so that adjacent vertices receive distinct colors. The minimum
r so that G has a proper r-coloring is called the chromatic number of G, denoted
by χ(G). The chromatic number is one of the most studied parameters in graph
theory, and by convention, the term coloring of a graph is usually used instead
of proper coloring. In 1973, Grünbaum [5] considered proper colorings with the
additional constraint that the subgraph induced by every pair of color classes
is acyclic, i.e., contains no cycles. He called such colorings acyclic colorings,
and the minimum r such that G has an acyclic r-coloring is called the acyclic

chromatic number of G, denoted by a(G). In introducing the notion of an acyclic
coloring, Grünbaum noted that the condition that the union of any two color
classes induces a forest can be generalized to other bipartite graphs. Among
other problems, he suggested requiring that the union of any two color classes
induces a star forest, i.e., a proper coloring avoiding 2-colored paths with four
vertices. We call such a coloring a star coloring and the minimum r such that G
has an r-star coloring is called the star chromatic number of G.
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Fertin, Raspaud and Reed [4] in 2001 and Nešetřil and Ossona de Mendez [7]
in 2003 studied star colorings extensively. In 2004, Albertson, Chappell, Kier-
stead, Kündgen and Ramamurthi [1] presented further results and questions on
the star chromatic number of graphs. In particular, for planar graphs, they
proved an upper bound on the star chromatic number of 20 and constructed a
planar graph with star chromatic number 10. By restricting the family to bipar-
tite planar graphs, Kierstead, Kündgen and Timmons [6] were able to improve
the upper bound to 14, and they also gave an example of a planar bipartite graph
requiring 8 colors to star color. In general, determining the exact minimum num-
ber of colors required to star color a family of graphs is a challenging problem.
Recently Chen, Raspaud and Wang [3] gave an intricate proof that graphs with
maximum degree 3 can be star colored with 6 colors. This is best possible since
the 3-regular Möbius ladder obtained by joining opposite vertices of an 8-cycle
requires 6 colors [4].

This paper investigates star colorings of outerplanar graphs. Both Fertin,
Raspaud and Reed [4] and Albertson et al. [1] separately established a bound of
six on the star chromatic number of an outerplanar graph, and gave constructions
showing that the result is best possible. We show that when restricted to the
family of outerplanar bipartite graphs, the star chromatic number is at most 5
and that this is best possible (see also [8, 9]) by constructing an example of an
outerplanar bipartite graphs that requires 5 colors. Our example has only 30
vertices, making it the smallest known construction that achieves the bound.

In Section 2, we collect some basic definitions and results from previous
works that we will use in later sections. In Section 3, we make some observations
about the structure of outerplanar bipartite graphs and prove that they are 5-star
colorable. In Section 4, we define a family of graphs called the outerplanar grid,
OGn and show that for n ≥ 7, any star coloring of OGn requires 5 colors.

2. Definitions and Preliminaries

All graphs considered in this paper are loopless. The general terminology and
definitions used in this paper follow West [10]. For terminology related to star
colorings, we follow the paper of Albertson et al. [1]. In this section, we collect
some definitions and results from that paper as well as from the work of Fertin,
Raspaud and Reed [4].

Recall that a star is a graph isomorphic to K1,t for some t ≥ 0 and a graph,
all of whose components are stars, is called a star forest. In a proper coloring
that avoids a 2-colored P4, the union of any two color classes cannot induce a
cycle since every even cycle contains P4 as a subgraph. Hence the union induces
a star forest (every component must be a star, since otherwise it would contain
a 2-colored P4).
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Definition 2.1. An r-coloring of G is called a star coloring if there are no 2-
colored paths on 4 vertices. The minimum r such that G has a star coloring using
r colors is called the star chromatic number of G and is denoted by χ

s
(G).

To study star coloring an equivalent digraph coloring notion was introduced
in [1].

Definition 2.2. A proper coloring of an orientation of a graph G is called an
in-coloring if within every 2-colored P3 in G, the edges are directed towards the
middle vertex. We call such a P3 an in-P3. A coloring of G is an in-coloring if it
is an in-coloring of some orientation of G.

The following simple lemma from [1] asserts that to star color G, it suffices
to in-color a suitable orientation of G.

Lemma 2.3. A coloring of a graph G is a star coloring if and only if it is an

in-coloring of some orientation of G.

For general graphs, the star chromatic number can be bounded in terms of
the acyclic chromatic number. Albertson et al. [1] proved that χs(G) ≤ a(2a−1),
where a is the acyclic chromatic number of G. Borodin proved that planar graphs
are acyclically 5-colorable [2], which yields a bound of 45. Albertson et al. [1] also
used Lemma 2.3 to prove more directly that χS(G) ≤ 20 when G is planar. For
special classes of planar graphs, however, it is possible to get the exact answer.
For them×n grid graph Gm,n, Fertin, Raspaud and Reed [4] proved the following.

Theorem 2.4. χs(Gm,n) = 5 when m,n ≥ 4.

They state that their proof to show χ
s
(G4,4) ≥ 5, and hence χ

s
(Gm,n) ≥ 5 for

min{m,n} ≥ 4, was the result of a rather tedious case by case analysis that was
confirmed by computer. For the upper bound, the coloring obtained by assigning
to a vertex with coordinates (a, b) the color (a + 2b) mod 5 can be easily seen
to be a proper coloring with the additional property that any two vertices that
are distance at most 2 apart receive different colors. Thus, there are no 2-colored
P3’s and hence, there can be no 2-colored P4’s.

In this paper, we restrict our attention to outerplanar graphs. Outerplanar
graphs are a special class of planar graphs with many interesting structural prop-
erties. An outerplanar graph is characterized by the fact that it has an embedding
so that every vertex lies on the outer face. Every simple outerplanar graph has
a vertex of degree at most 2, hence outerplanar graphs are 2-degenerate. It fol-
lows that they are 3-colorable. In 1973, Grünbaum [5] observed that outerplanar
graphs are acyclically 3-colorable. The following theorem was proved by Fertin,
Raspaud and Reed [4] and separately by Albertson et al. [1].

Theorem 2.5. If G is outerplanar, then χs(G) ≤ 6 and this is best possible.
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It seems natural to ask if the bound in Theorem 2.5 can be tightened if the
family under consideration is restricted to a subset of outerplanar graphs. In
the next section, we prove that indeed outerplanar bipartite graphs are 5-star
colorable. In Section 4 we give a construction to show that this is best possible.

3. 5-Star Coloring Outerplanar Bipartite Graphs

For the purpose of this paper a weak quadrangulation is a 2-connected outerplanar
bipartite graph with an embedding in the plane such that every face except,
possibly, the outer face has length four. Detailed proofs of the following basic
facts can be found in [8]. Every bipartite outerplanar graph is the subgraph of a
weak quadrangulation. Every weak quadrangulation has two adjacent vertices of
degree 2 whose removal yields a weak quadrangulation (consider a face that is a
leaf in the tree obtained from the dual of the weak quadrangulation by ignoring
the outer face). Thus it follows by induction that every weak quadrangulation
has an even number of vertices.

To prove that the vertices of any outerplanar bipartite graph can be 5-star
colored it thus suffices to prove the following theorem.

Theorem 3.1. Every weak quadrangulation G has an orientation D of maximum

out-degree at most 2 such that D can be in-colored with 5 colors.

Proof. We will prove this result by induction on the number of vertices of G,
n. For the base case n = 4, G is a 4-cycle which can be arbitrarily oriented to
obtain D since we can chose a different color for each vertex.

Since nmust be even, we may now assume that n ≥ 6, and let u, v be adjacent
vertices of degree 2 inG. Since u, v must be on the same faces, it follows that there
is a facial 4-cycle u, v, x, y, u. Since G′ = G − {u, v} is a weak quadrangulation
on n− 2 vertices, it has an orientation D′ of maximum out-degree 2, and we can
assume without loss of generality that the edge xy is oriented so that its tail is
at x. D′ can be extended to the desired orientation D of G by orienting vx and
uv away from v and uy away from u. Observe that this does not change the
outdegree of any vertex in D′ and that u, v have outdegrees 1 and 2 respectively.

It remains to see that D can be in-colored with 5 colors. By the induction
hypothesis we may assume that D′ is in-colored with 5 colors. Next we color
u, avoiding the colors of x, y and the (at most two) outneighbors of y. Finally
color v, avoiding the colors of u, x, y and the at most 1 outneighbor of x that is
different from y. It can be easily verified that this yields an in-coloring of D.

Corollary 3.2. If G is a bipartite outerplanar graph, then G is 5 star-colorable.
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Figure 1. Extending the in-coloring to u and v.

Proof. By the remarks from the first paragraph of this section we know that
G is the subgraph of a weak quadrangulation G′. By Theorem 3.1 G′ can be
in-colored using only the colors 1, 2, 3, 4, 5. By Lemma 2.3 this is a star-coloring
with 5 colors for G′, and thus for G.

Remark 3.3. The proofs above do not change if we color each vertex from a
list of size 5, rather than using some 5 fixed colors. Thus without additional
effort we obtain the more general result that the vertices of every outerplanar
bipartite graph can be star-colored from lists of size 5, that is these graphs are
5-star-choosable.

4. A Lower Bound Construction

In this section, we give the construction of a bipartite outerplanar graph, similar
to the 4× n grid, that requires 5 colors to star color.

Definition 4.1. The n-rung outerplanar grid OGn is the outerplanar bipartite
graph shown in Figure 2. It can be constructed in the following manner.

We begin with a ladder on n rungs, that is a 2× n grid, consisting of two n

vertex paths x1, . . . , xn and y1, . . . , yn called the rails and n edges of the form xiyi,
called the rungs of the ladder. Extend each edge xixi+1 to a 4-cycle by adding
new vertices u′i and ui+1 and edges xiu

′

i, u
′

iui+1, xi+1ui+1. Similarly extend each
edge yiyi+1 to a 4-cycle yi, yi+1, vi+1, v

′

i by adding 2 new vertices.
The resulting graph OGn is bipartite and outerplanar, and we call the n−1

faces xixi+1yi+1yi the ladder faces. The four faces of length 4 containing u′1, un, v
′

1,
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vn respectively, are the corner faces, and every face of length 4 that is not a cor-
ner or ladder face is a side face. The reduced grid OG−

n is OGn with the corner
faces removed, i.e. OGn − {u′1, v

′

1, u2, v2, u
′

n−1, v
′

n−1, un, vn}.

x xxx
1 2 3 4

1 2 3 4
y yyy
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Figure 2. OGn.
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Figure 3. A star coloring of OG6 with 4 colors.

The main aim of this section is to prove that Theorem 3.1 is best possible by
establishing the lower bound in the following theorem.

Theorem 4.2. χs(OG−

7
) = 5.

Figure 3 shows that OGn for n ≤ 6 requires at most 4 colors. We will
prove Theorem 4.2 by contradiction, assuming that there is a star coloring c :
V (OG−

7
) → {1, 2, 3, 4}, via a series of lemmas.

Lemma 4.3. A 4-star coloring of OG−

7
has no ladder face in which a color is

repeated.
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Proof. Aiming for a contradiction, consider a possible 4-star coloring of OG−

7

in which some ladder face has a repeated color. Such an OG−

7
would contain a

4-colored subgraph isomorphic to OG−

5
in which there is a repeated color on the

first ladder face. Without loss of generality we may assume that here c(x1) =
c(y2) = 1, c(x2) = 2 and c(y1) = 3. In order to avoid a 2-colored P4 involving
these vertices it follows that y3 does not have color 2 or 3, and in order to avoid
adjacent vertices of color 1 it follows that y3 does not have color 1, and thus
c(y3) = 4. Similarly c(v′2) = 4. Since x3 has neighbors of color 2 and 4, and
to avoid a 2-colored P4 v′2y2y3x3 we conclude c(x3) = 3. Similar reasoning now
implies that c(v3) = 2 and thus c(v′3) = 3 = c(y4). Next it follows that c(x4) = 1
and then c(v4) = 2. The coloring up to this point is shown in Figure 4. Now
none of the 4 available colors can be used on y5 without creating a 2-colored P4

or adjacent vertices of the same color.

1 2 3

43 1

uu u‘u‘

vv v‘v‘

1 x

3 y

2

2 33

33 4

4

5

5
x
1 x

2 x
3

x
4

y
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y
2

y
3

y
4

4 2 23

Figure 4. A partial coloring of OG−

5
.

Lemma 4.4. A 4-star coloring of OG−

7
has no side face in which a color is

repeated.

Proof. If a side face has two vertices of the same color we can assume without
loss of generality that OG−

7
contains a subgraph isomorphic to OG−

4
with c(x3) =

c(u′2) = 1, c(x2) = 2 and c(u3) = 3. To avoid a 2-colored P4 we now need
c(y3) = 4 = c(x4), contradicting the fact that no ladder face has a repeated color.

Lemma 4.5. There is no 4-star coloring of OG−

7
in which a rail contains a

2-colored P3.

Proof. Aiming for a contradiction, we may suppose that OG−

7
contains a 4-

star colored OG−

5
such that x1 and x3 receive the same color. Without loss of

generality, we may assume that c(x1) = c(x3) = 1 and c(x2) = 2. By Lemma 4.3
we conclude that y1 and y2 must use colors 3 and 4, say y1 has color 3 and y2
color 4. Lemma 4.3 now also implies c(y3) = 3, and that x4, y4 must use colors 2
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and 4. To avoid a P4 in colors 1 and 2 it follows that c(x4) = 4 and c(y4) = 2.
Figure 5 shows the coloring of this OG5 we have argued to this point.
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Figure 5. A partial coloring of OG−

5
.

As every side face must be 4-colored, u′3 must have color 2 or 3. If c(u′3) = 2,
then x1, x2, x3, u

′

3 would be a 2-colored P4. Thus c(u′3) = 3. Similarly we can
argue that c(v′3) = 1, so that u′3, x3, y3, v

′

3 is a 2-colored P4.

The previous three lemmas imply that we can assume without loss of gen-
erality that the rails are colored as in Figure 6, and in the next lemma we show
that the remaining vertices also have the indicated colors.
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Figure 6. A partial coloring of OG−

7
.

Lemma 4.6. In a 4-star coloring of OG−

7
, c(u4) 6= c(y4) and c(v4) 6= c(x4).

Proof. We will use the coloring of the rails shown in Figure 6 as the starting
point of our proof by contradiction. By symmetry, it suffices to consider the case
c(u4) = c(y4) = 2. By Lemma 4.4, u′3 now has color 1, and the color of v′4 must
be 1 or 4. Since c(v′4) = 4 would imply that v′4, y4, x4, u4 is 2-colored, it follows
that c(v′4) = 1. By Lemma 4.4, v3 must be assigned color 2 or color 3. However,
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v3 is adjacent to the ends of two 2-colored P3’s using the colors 1,2 and color 1,3.
Hence, there is no color available for v3.

Since Lemma 4.4 implies that u4 has color 1 or 2, and that v4 has color 3 or
4, it now follows from Lemma 4.6 that the coloring is as shown in Figure 6. To
complete the proof of Theorem 4.2 we observe that u′5 must have color 3 or 4 by
Lemma 4.4, but color 4 would cause a 2-colored P4 ending in u4. Thus c(u

′

5) = 3,
and a similar argument shows that c(v′5) = 1, so that u′5, x5, y5, v

′

5 is 2-colored,
the final contradiction.

5. Concluding Remarks

Several questions remain regarding star-colorings of outerplanar bipartite graphs.

Problem 5.1. Find a characterization for outerplanar bipartite graphs that are

4-star-colorable.

Apart from potentially providing smaller graphs than those in the previous
section, a characterization would shed light on the question if determining if an
outerplanar bipartite graph is 4-star-colorable is NP-complete. Since only star-
forests are 2-star-colorable, the corresponding 2-colorability dedision problem can
be solved in linear time. The following problem seems more tractable.

Problem 5.2. Is there a polynomial time algorithm for deciding if an outerplanar

bipartite graph is 3-star-colorable?
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helping to write this paper.

References

[1] M.O. Albertson, G.C. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi,
Coloring with no 2-colored P4’s, Electron. J. Combin. 11 (2004) #R26.

[2] O. V. Borodin,On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211–
236.
doi:10.1016/0012-365X(79)90077-3

[3] M. Chen, A. Raspaud and W. Wang, 6-star-coloring of subcubic graphs, J. Graph
Theory 72 (2013) 128–145.
doi:10.1002/jgt.21636

http://dx.doi.org/10.1016/0012-365X\(79\)90077-3
http://dx.doi.org/10.1002/jgt.21636


908 R. Ramamurthi and G. Sanders

[4] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47

(2004) 163–182.
doi:10.1002/jgt.20029
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