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Abstract

A total Roman dominating function on a graph G is a labeling f :
V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with
label 2 and the subgraph of G induced by the set of all vertices of positive
weight has no isolated vertex. The minimum weight of a total Roman domi-
nating function on a graph G is called the total Roman domination number
of G. The total Roman reinforcement number rtR (G) of a graph G is the
minimum number of edges that must be added to G in order to decrease the
total Roman domination number. In this paper, we investigate the proper-
ties of total Roman reinforcement number in graphs, and we present some
sharp bounds for rtR (G). Moreover, we show that the decision problem for
total Roman reinforcement is NP-hard for bipartite graphs.
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1. Introduction

Throughout this paper, G denotes a simple graph without isolated vertex, with
vertex set V = V (G) and edge set E = E (G). The order |V | of G is denoted
by n = n (G). For every vertex v ∈ V , the open neighborhood NG (v) = N (v)
is the set {u ∈ V (G) : uv ∈ E (G)} and the closed neighborhood of v is the
set N [v] = N (v) ∪ {v}. The open neighborhood of a set S ⊆ V is the set
N (S) =

⋃

v∈S N (v), and the closed neighborhood of S is the set N [S] = N(S)∪S.
An S-external private neighbor of a vertex v ∈ S is a vertex u ∈ V \ S which
is adjacent to v but to no other vertex of S. The set of all S-external private
neighbors of v ∈ S is called the S-external private neighborhood of v and is
denoted by epn (v, S). The degree of a vertex v ∈ V is d(v) = |N(v)|. A leaf

is a vertex of degree 1, and a support vertex is a vertex adjacent to a leaf. The
minimum and maximum degree of a graph G are denoted by δ = δ(G) and
∆ = ∆(G), respectively.

We write Kn for the complete graph of order n, Pn for the path of order
n, Cn for the cycle of length n, and G for the complement graph of G. A tree
obtained from a star on at least three vertices by subdividing every edge exactly
once is called a subdivided star. A tree containing exactly two vertices that are
not leaves (which are necessarily adjacent) is called a double star. A double star
with respectively p and q leaves attached at each support vertex is denoted by
DSp,q. The corona of a graph H, denoted cor(H) or H ◦K1 in the literature, is
the graph obtained from H by adding a pendant edge to each vertex of H. The
complete bipartite graph with partite sets A, B such that |A| = p and |B| = q is
denoted by Kp,q.

A total dominating set, abbreviated TD-set, of a graph G without isolated
vertex is a set S of vertices such that every vertex in V (G) is adjacent to at least
one vertex in S. The total domination number of G, denoted by γt (G), is the
minimum cardinality of a TD-set of G. The literature on the subject of total
domination in graphs has been surveyed and detailed in the recent book [12]. A
previous survey on total domination in graphs can also be found in [10]. The
total reinforcement number rt (G) of a graph G with no isolated vertex is the
minimum cardinality of all sets E′ ⊆ E

(

G
)

for which γt (G+ E′) < γt (G). In
the case that there is no subset of edges E′ such that γt (G+ E′) < γt (G), we
define rt (G) = 0. The concept of total reinforcement in graphs was introduced
by Sridharan et al. [19] and has been studied by several authors [11].

A Roman dominating function on a graph G, abbreviated RD-function, is a
function f :V (G) → {0, 1, 2} satisfying the condition that every vertex u for which
f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight,
ω (f), of f is defined as f (V (G)) =

∑

v∈V (G) f (v). The Roman domination

number, denoted γR (G), is the minimum weight among all RD-functions in G.
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An RD-function with minimum weight γR (G) in G is called a γR (G)-function.
For an RD-function f , let Vi = {v ∈ V (G) : f (v) = i} for i = 0, 1, 2. Since these
three sets determine f , we can equivalently write f = (V0, V1, V2). Note that
ω (f) = |V1|+2|V2|. The concept of Roman dominating function was first defined
by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [7] and was motivated by Ian
Stewart [20]. Roman domination in graphs is now well studied [8, 14, 15, 17, 18,
21].

A total Roman dominating function of a graph G with no isolated vertex,
abbreviated TRD-function, is a Roman dominating function f on G with the
additional property that the subgraph of G induced by the set of all vertices
of positive weight under f has no isolated vertex. The total Roman domination

number γtR (G) is the minimum weight of a TRD-function on G. A TRD-function
with minimum weight γtR (G) in G is called a γtR (G)-function. The concept of
total Roman domination in graphs was introduced by Liu and Chang [16] and
has been studied in [1, 2, 3, 4, 5].

The total Roman reinforcement number rtR (G) of a graph G with no isolated
vertex is the minimum cardinality of all sets E′ ⊆ E (G) for which γtR (G+ E′) <
γtR (G). In the case that there is no such a subset of edges, we define rtR (G) = 0.
A subset E′ ⊆ E

(

G
)

is called an rtR (G)-set if |E′| = rtR (G) and γtR (G+ E′) <
γtR (G) . The following observation is therefore clear and immediate.

Observation 1. Let G be a graph of order n. If ∆(G) = n−1, then rtR (G) = 0.

Our purpose in this paper is to initiate a study of total Roman reinforcement
number in graphs. We first investigate basic properties and bounds for the total
Roman reinforcement number of a graph. In the last section, we will show that
the decision problem associated to the total Roman reinforcement problem is
NP-hard even when restricted to bipartite graphs.

We make use of the following results.

Proposition 2 [2]. If G is a graph with no isolated vertex, then

γt (G) ≤ γtR (G) ≤ 2γt (G) .

Let G be the family of graphs that can be obtained from a 4-cycle (v1v2v3v4)
by adding k1+k2 ≥ 1 vertex-disjoint paths P2 and joining v1 to the end of k1 such
paths and joining v2 to the end of k2 such paths (possibly, k1 = 0 or k2 = 0). Let
H be the family of graphs that can be obtained from a double star by subdividing
each pendant edge once and subdividing the non-pendant edge r ≥ 0 times.

Proposition 3 [2]. Let G be a connected graph of order n ≥ 2. Then γtR (G) = n
if and only if one of the following holds.

(1) G is a path or a cycle.
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(2) G is a corona, cor (F ), of some connected graph F .

(3) G is a subdivided star.

(4) G ∈ G ∪H.

Proposition 4 [2]. If G is a graph with no isolated vertex, then there exists a

γtR (G)-function f = (V0, V1, V2) such that either V2 is a dominating set in G, or

the set S of vertices not dominated by V2 satisfies G[S] = kK2 for some k ≥ 1,
where S ⊆ V1 and NG(S) \ S ⊆ V0.

Proposition 5 [2]. Let G be a connected graph of order at least 3 and let f =
(V0, V1, V2) be a γtR (G)-function. If x is a leaf and y a support vertex in G, then

x /∈ V2 and y /∈ V0.

Proposition 6. For a graph G of order n ≥ 4, γtR (G) = 4 if and only if

G = 2K2 or ∆(G) = n − 2 or there are two adjacent vertices u, v ∈ V (G) such

that N [u] ∪N [v] = V (G).

Proof. ⇒ Let f = (V0, V1, V2) be a γtR-function on G with γtR (G) = 4. Clearly
|V2| ≤ 2. If ∆ (G) = n − 1, then γtR (G) = 3 which is a contradiction. Hence
∆ (G) ≤ n− 2. Assume first that V2 = ∅. Then |V1| = 4 and thus n = 4. Since G
is nonempty and 1 ≤ ∆(G) ≤ n−2 = 2, we have ∆ (G) = n−2 = 2 or G = 2K2.
Now assume that |V2| = 1, say V2 = {v}. Then |V1| = 2. Since v is adjacent to all
V0 and at least one vertex of V1, we deduce that n − 2 ≤ d (v) ≤ ∆(G) ≤ n − 2
and so we have ∆ (G) = n − 2. Finally, assume that |V2| = 2, say V2 = {u, v}.
Clearly V1 = ∅, uv ∈ E (G) and N [u] ∪N [v] = V (G).

⇐ Obviously, if G = 2K2, then γtR (G) = 4. Also, it is easy to see that if
∆ (G) ≤ n − 2, then γtR (G) ≥ 4. If ∆ (G) = n − 2, then let x be a vertex of
maximum degree, y be the non-neighbor of x and z be a common neighbor of x
and y. Define f : V (G) → {0, 1, 2} by f (x) = 2, f (y) = f (z) = 1 and f (s) = 0
otherwise. Clearly, f is a TRD-function of G with weight 4 and so γtR (G) = 4.
Likewise, if there are two adjacent vertices u, v ∈ V (G) such that N [u] ∪N [v] =
V (G), then define a TRD-function on G as follows: f = (V (G)\{u, v}, ∅, {u, v}).
Since ω (f) = 4, we deduce that γtR (G) = 4.

2. Graphs G with Small rtR (G)

In this section, we study graphs with total Roman reinforcement number at most
two.

Lemma 7. If G is a connected graph of order n ≥ 4 with γtR (G) = n, then

rtR (G) = 1.
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Proof. Since γtR (G) = n, G satisfies one of the four conditions (1)–(4) in the
statement of Proposition 3. If G is a cycle, then let G = (v1, v2, . . . , vn); if
G is a path, then let G = v1, v2, . . . , vn; if G ∈ H or G is a subdivided star,
then let v1v2v3 · · · vk be a diametrical path in G, and if G = cor (F ) , then let
v2 ∈ V (F ) whose removal from F leaves F connected, v3 ∈ NF (v2) and v1
the leaf adjacent to v2. Then the function f : V (G) → {0, 1, 2} defined by
f (v3) = 2, f (v1) = f (v2) = 0 and f (x) = 1 otherwise, is a TRD-function of
G+ {v1v3} of weight n− 1 and this implies that rtR (G) = 1.

Theorem 8. Let G be a connected graph of order n ≥ 4. Then rtR (G) = 1 if and

only if γtR (G) = n or there exists a function f : V (G) → {0, 1, 2} with partition

(V0, V1, V2) of weight less than γtR (G) such that one of the following conditions

holds.

(i) V2 dominates V0 and G[V1 ∪ V2] has at most two isolated vertices.

(ii) G[V1 ∪ V2] has no isolated vertices and exactly one vertex of V0 is not domi-

nated by V2.

Proof. If γtR (G) = n, then rtR (G) = 1 by Lemma 7. Assume that γtR (G) ≤
n − 1, and let f = (V0, V1, V2) be a function on G with weight less than γtR (G)
satisfying (i) or (ii). Since ω (f) ≤ n − 2, we have V2 6= ∅. If f satisfies (ii)
and u ∈ V0 is the vertex not dominated by V2, then f is a TRD-function of
G + uv, where v ∈ V2. Next, assume that f satisfies (i). If G[V1 ∪ V2] has two
isolated vertices u, v, then f is a TRD-function of G+ {uv} and if G[V1 ∪V2] has
exactly one isolated vertex, say u, then f is a TRD-function of G+ {uv}, where
v ∈ V1 ∪ V2. This implies that rtR (G) = 1.

Conversely, assume that rtR (G) = 1, and let F = {e = xy} be an rtR (G)-
set. If γtR (G) = n, then we are done. Hence assume that γtR (G) < n and let
f = (V0, V1, V2) be a γtR (G+ e)-function. If x, y ∈ V1 ∪ V2, then f satisfies item
(i) and if x ∈ V0 or y ∈ V0, then f satisfies item (ii). This complete the proof.

Proposition 9. Let G be a graph. If there exists a γtR (G)-function f = (V0, V1,
V2) such that

(
⋃

u∈V2
epn (u, V2)

)

∩ V1 6= ∅, then rtR (G) ≤ 1.

Proof. Let f=(V0, V1, V2) be a γtR (G)-function such that
(
⋃

u∈V2
epn (u, V2)

)

∩
V1 6= ∅. Let v be a vertex of V1 ∩ epn (u, V2) for some u ∈ V2. Thus u is the
unique neighbor of v in V2. Let I = N (v) ∩ V1. Suppose first that I = ∅. If
V2 = {u}, then either ∆ (G) = n − 1 and so rtR (G) = 0 (by Observation 1), or
∆ (G) < n−1 and thus the function g : V (G) → {0, 1, 2} defined by g (v) = 0 and
g (y) = f (y) otherwise, is a TRD-function of G+uz of weight γtR (G)− 1, where
z ∈ V1 \ {v}. Therefore rtR (G) ≤ 1. Hence we can assume that |V2| ≥ 2. Then
V2 contains a vertex, say s, such that us /∈ E, for otherwise reassigning to v a 0
instead of 1 provides a TRD-function with weight less than γtR (G) . Hence the
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function g : V (G) → {0, 1, 2} defined by g (v) = 0 and g (y) = f (y) otherwise, is
a TRD-function of G+ us of weight γtR (G)− 1, and thus rtR (G) = 1.

Secondly, assume that I 6= ∅. Clearly, G[I ∪ {u}] contains an isolated vertex
for otherwise reassigning a 0 to v provides a TRD-function of G with weight less
than γtR (G). Let x be an isolated vertex in G[I ∪ {u}]. If x 6= u, then the
function g : V (G) → {0, 1, 2} defined by g (x) = 0 and g (y) = f (y) otherwise, is
a TRD-function of G+ ux of weight γtR (G)− 1. If x = u, then we may assume
that u is the unique isolated vertex in G[I ∪ {u}]. Let s be any vertex of I.
Again the function g : V (G) → {0, 1, 2} defined by g (v) = 0 and g (y) = f (y)
otherwise, is a TRD-function of G + us of weight γtR (G) − 1. In any case, we
have rtR (G) = 1.

Proposition 10. Let G be a graph. Then rtR (G) ≤ 2 or there exists a γtR (G)-
function f = (V0, V1, V2) such that V2 is a dominating set in G.

Proof. Suppose there is no γtR (G)-function f = (V0, V1, V2) such that V2 is
dominating set of G. Then by Proposition 4, there exists a γtR (G)-function
f = (V0, V1, V2) such that the set S of vertices not dominated by V2 satisfies
G[S] = kK2 for some k ≥ 1, where S ⊆ V1 and NG (S) \ S ⊆ V0. If |V2| = 0,
then γtR (G) = n and by Lemma 7 we have rtR (G) = 1. Hence we assume that
|V2| ≥ 1, and let w ∈ V2. If u, v are the vertices of a component in G[S], then the
function g : V (G) → {0, 1, 2} defined by g (u) = g (v) = 0 and g (x) = f (x) for
x ∈ V (G) \ {u, v} is a TRD-function of G + {uw, vw} of weight less than ω (f)
yielding rtR (G) ≤ 2.

Proposition 11. If G is a graph having a γtR (G)-function f = (V0, V1, V2) such
that |V2| ≤ 1, then rtR (G) ≤ 1.

Proof. Let f = (V0, V1, V2) be a γtR (G)-function with |V2| ≤ 1. If |V2| = 0, then
γtR (G) = n and thus rtR (G) = 1 (by Lemma 7). Hence assume that |V2| = 1,
say V2 = {u}. If d (u) = n − 1, then Observation 1 implies that rtR (G) = 0.
Thus, suppose that d (u) < n − 1. Since there exists a vertex w ∈ V1 \ N (u),
let G1 be a component of G[V1] containing a neighbor of u. If |V (G1)| = 1 and
V (G1) = {x}, then the function g : V (G) → {0, 1, 2} defined by g (x) = 0 and
g (y) = f (y) for y ∈ V (G) \ {x} is a TRD-function of G + {uw} of weight less
than ω (f) yielding rtR (G) ≤ 1. Let |V (G1)| ≥ 2. As f is a γtR (G)-function,
u is not adjacent to all vertices in V (G1). Let z ∈ V (G1) be a vertex with
maximum distance from u in the induced subgraph G[V (G1) ∪ {u}] and define
g : V (G) → {0, 1, 2} by g (z) = 0 and g (y) = f (y) for y ∈ V (G) \ {z}. Clearly,
g is a TRD-function of G + {uz} of weight less than ω (f) yielding rtR (G) ≤ 1.
This completes the proof.

Proposition 12. If G has a support vertex of degree two, then rtR (G) ≤ 2.
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Proof. Let v be a support vertex of degree two and u the leaf adjacent to v.
By Proposition 10, rtR (G) ≤ 2 or there exists a γtR (G)-function f = (V0, V1, V2)
such that V2 is a dominating set of G. If rtR (G) ≤ 2, then we are done. Hence
we can assume that rtR(G) ≥ 3 and let f = (V0, V1, V2) be a γtR (G)-function
such that V2 is a dominating set of G. Clearly, V2 6= ∅. If |V2| = 1, then by
Proposition 11, rtR(G) ≤ 1, a contradiction. Henceforth we can assume that
|V2| ≥ 2. Since V2 is a dominating set of G, we conclude from Proposition 5
that v ∈ V2. Since f is a total Roman dominating function, we may assume
that u ∈ epn (v, V2). Let w ∈ V2 \ {v} and define g : V (G) → {0, 1, 2} by
g (v) = 1, g (u) = min{0, f (u)} and g (y) = f(y) for y ∈ V (G) \ {v, u}. Clearly,
g is a TRD-function of either G + {uw} or G + {vw} of weight less than ω(f)
yielding rtR(G) ≤ 1, a contradiction.

Proposition 13. If G is a connected graph containing a path v1v2v3v4v5 in which

d (vi) = 2 for i ∈ {2, 3, 4}, then rtR (G) ≤ 2.

Proof. If v1 or v5 is a leaf, then the desired result follows by Proposition 12.
So we assume that G does not have a support vertex of degree 2. As discu-
ssed in Proposition 11, we assume that rtR (G) ≥ 3 and there exists a γtR (G)-
function f = (V0, V1, V2) such that V2 is a dominating set of G. If |V2| = 1,
then by Proposition 11, rtR(G) ≤ 1, a contradiction. Henceforth we can assume
|V2| ≥ 2. Since V2 is a dominating set of G, we have V2 ∩ {v2, v3, v4} 6= ∅. If
f (v2) + f (v3) + f (v4) = 2, then we may assume, without loss of generality, that
f (v2) = 2, f (v3) = f (v4) = 0. Then the function g : V (G) → {0, 1, 2} defined
by g (v2) = 1 and g (x) = f (x) for x ∈ V (G) \ {v2} is a function of G of weight
less than γtR (G) satisfying Condition (ii) of Theorem 8, and thus rtR(G) = 1, a
contradiction. Now let f (v2) + f (v3) + f (v4) ≥ 3. If f (v3) = 2, then we may
assume that f (v2) ≥ 1 and f (v4) = 0. Clearly, v4 ∈ epn (v3, V2) for otherwise
we can reduce the weight of f by reassigning a 1 to v3 instead of 2. The function
g : V (G) → {0, 1, 2} defined by g (v3) = 1 and g (x) = f (x) for x ∈ V (G)\{v3} is
function of G with weight less than γtR (G) satisfying Condition (ii) of Theorem
8 and thus rtR(G) = 1, a contradiction. If f (v3) ≤ 1, then we suppose f (v2) = 2
because V2 must dominate v3. In this case, using the fact that epn (v2, V2) 6= ∅,
one can see that the function g : V (G) → {0, 1, 2} defined by g (v2) = 1 and
g (x) = f (x) for x ∈ V (G) \ {v2} is a function of G of weight less than γtR (G)
satisfying Condition (ii) of Theorem 8 and so rtR (G) = 1, a contradiction. This
completes the proof.

3. Properties and Bounds

In this section we investigate basic properties of rtR (G) and establish sharp
bounds on the total Roman reinforcement number of a graph.
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Theorem 14. Let G be a connected graph of order n ≥ 4 and f = (V0, V1, V2) be
a γtR (G)-function. Then

rtR (G) ≤ max {2,min {|epn (u, V2)| : u ∈ V2} }.

Proof. Let f = (V0, V1, V2) be a γtR (G)-function. If |V2| ≤ 1, then rtR (G) ≤ 1
(by Proposition 11). Henceforth, we assume that |V2| ≥ 2. If epn (u, V2)∩V1 6= ∅
for some u ∈ V2, then by Proposition 9 we have rtR (G) ≤ 1 as desired. Thus
assume that epn (u, V2) ⊆ V0 for each u ∈ V2. Now let u ∈ V2 with epn (u, V2) =
{x1, . . . , xt} and let v ∈ V2 \ {u}. Then the function g : V (G) → {0, 1, 2}
defined by g (u) = 1 and g (x) = f (x) for x ∈ V (G) \ {u} is a TRD-function of
G+ {vx1, . . . , vxt} of weight γtR (G)− 1. Therefore rtR (G) ≤ |epn (u, V2) |. The
results follows from the fact that u is an arbitrary vertex of |V2|.

Since every vertex of V2 has at most d (u)− 1 neighbors in V0, the following
result is immediate from Theorem 14.

Corollary 15. Let G be a connected graph of order n ≥ 4 and f = (V0, V1, V2)
be a γtR (G)-function. Then

rtR (G) ≤ max {2,min {d (u)− 1 : u ∈ V2}}.

The next result is an immediate consequence from Corollary 15 and Lemma 7.

Corollary 16. For any connected graph G, rtR (G) ≤ ∆(G)− 1.

The bounds of Theorem 14 and Corollary 16 are sharp for the double star
DSp,p with p ≥ 2.

Corollary 17. For any graph G of order n ≥ 3, we have rtR (G) ≤ n− 3.

Proof. If ∆ (G) = n− 1, then by Observation 1 we have rtR (G) = 0. Hence, let
∆ (G) ≤ n− 2. By Corollary 16, rtR (G) ≤ ∆(G)− 1 ≤ n− 3.

Proposition 18. Let G be a graph with ∆(G) ≥ 3. If there exists a γtR (G)-

function f = (V0, V1, V2) such that |V1| 6= 0, then rtR (G) ≤
⌈

∆(G)
2

⌉

.

Proof. If γtR (G) = 3, then rtR (G) = 0 <
⌈

∆(G)
2

⌉

. Hence assume that γtR (G) ≥

4 and let f = (V0, V1, V2) be a γtR (G)-function such that |V1| 6= 0. If |V2| = 0,

then by Lemma 7 we have rtR (G) = 1 <
⌈

∆(G)
2

⌉

. Thus assume that |V2| ≥ 1.

For each x ∈ V1, we define

Bx = {u ∈ V1 ∪ V2 : u is an isolated vertex in G [V1 ∪ V2 \ {x}]} .

Let v ∈ V1 and Bv = {x1, . . . , xt}. Clearly, |Bv| ≤ d (v) ≤ ∆(G).
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Suppose t = 0, and let u ∈ V2. Then uv /∈ E (G) for otherwise (V0∪{v}, V1 \
{v}, V2) is a TRD-function of G, a contradiction. Thus the function g : V (G) →
{0, 1, 2} defined by g (v) = 0 and g (x) = f (x) for x ∈ V (G) \ {v} is a TRD-
function of G+ uv of weight less than ω (f) , and thus rtR (G) = 1.

Now, suppose that t = 1. If x1 ∈ V1, then for a vertex u ∈ V2 the function
g : V (G) → {0, 1, 2} defined by g (v) = g (x1) = 0 and g (x) = f (x) for x ∈
V (G)\{v, x1} is a TRD-function ofG+{uv, ux1} of weight less than ω (f) yielding

rtR (G) ≤ 2 ≤
⌈

∆(G)
2

⌉

. Let x1 ∈ V2. Since γtR (G) ≥ 4, let w ∈ V1 ∪ V2 \ {v, x1}

and define g : V (G) → {0, 1, 2} by g (v) = 0 and g (x) = f (x) for x ∈ V (G)\{x1}.
Clearly, g is a TRD-function of G + {wx1} of weight less than ω (f) yielding

rtR (G) ≤ 1 <
⌈

∆(G)
2

⌉

.

Suppose that t = 2. If one of x1 and x2 belongs to V2, say x1, then the
function g : V (G) → {0, 1, 2} defined by g (v) = 0 and g (x) = f (x) for each
x ∈ V (G) \ {v} is a TRD-function of G + x1x2 with weight less than ω (f)
yielding rtR (G) = 1. Hence assume that {x1, x2} ⊂ V1. For a vertex u ∈ V2,
the function g : V (G) → {0, 1, 2} defined by g (x1) = 0 and g (x) = f (x) for
each x ∈ V (G) \ {x1} is a TRD-function of G+ x1u with weight less than ω (f)
yielding rtR (G) = 1.

Finally, assume that t ≥ 3. We claim that v has a neighbor in V2. Suppose, to
contrary, that N (v) ⊆ V0 ∪ V1. In particular, we have Bv ⊆ V1. Since t ≥ 3, the
function g : V (G) → {0, 1, 2} defined by g (v) = 2, g (x) = 0 for x ∈ Bv \{x1} and
g (x) = f (x) for each x ∈ V (G)\ (Bv \{x1}) is a TRD-function of G with weight
at most γtR (G) − 1, which is a contradiction. Hence N (v) ∩ V2 6= ∅. Let E′ =
{x1x2, x3x4, . . . , xt−1xt} if t is even, and E′ = {x1x2, x1x3, x4x5, . . . , xt−1xt} if t is

odd. Observe that |E′| =
⌈

t
2

⌉

≤
⌈

∆(G)
2

⌉

. Now, the function g : V (G) → {0, 1, 2}

defined by g (v) = 0 and g (x) = f (x) for each x ∈ V (G)\{v} is a TRD-function

of G+ E′ with weight less than γtR (G) , and therefore rtR (G) ≤
⌈

∆(G)
2

⌉

.

Our next result gives a characterization of connected graphs G with ∆ (G) ≥
4 such that rtR (G) = ∆ (G)− 1.

Theorem 19. Let G be a connected graph with ∆(G) ≥ 4. Then, rtR (G) =
∆ (G)−1 if and only if for each γtR (G)-function f = (V0, V1, V2) we have |V1| = 0
and |epn (u, V2) | = ∆(G)− 1 for every vertex u ∈ V2.

Proof. Let rtR (G) = ∆ (G) − 1. Since ∆ (G) ≥ 4, we deduce from Proposition
18 that for each γtR (G)-function f = (V0, V1, V2) we have |V1| = 0. Let f =
(V0, V1, V2) be a γtR (G)-function. Then |V2| ≥ 2. By Theorem 14 we have

∆ (G)− 1 = rtR (G) ≤ min {|epn (u, V2) | : u ∈ V2} ≤ ∆(G)− 1

and so |epn (u, V2)| = ∆(G)− 1 for every vertex u ∈ V2.
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Conversely, Let f =
(

V f
0 , V f

1 , V f
2

)

be a γtR (G)-function. Then |V f
1 | = 0

and
∣

∣

∣
epn

(

u, V f
2

)
∣

∣

∣
= ∆(G) − 1 for every vertex u ∈ V f

2 . It follows that V f
0 =

⋃

v∈V
f
2

epn
(

v, V f
2

)

and so

n−
∣

∣

∣
V f
2

∣

∣

∣
=

∣

∣

∣

∣

⋃

v∈V
f
2

epn
(

v, V f
2

)

∣

∣

∣

∣

= (∆ (G)− 1)
∣

∣

∣
V f
2

∣

∣

∣
.(1)

Let S be an rtR (G)-set and assume that g = (V g
0 , V

g
1 , V

g
2 ) is a γtR (G+ S)-

function. Then

∆
∣

∣

∣
V f
2

∣

∣

∣
=

∣

∣

∣
V f
0

∣

∣

∣
+
∣

∣

∣
V f
2

∣

∣

∣
= n = |V g

0 |+ |V g
1 |+ |V g

2 |.(2)

Let A be the set of vertices of G that belong to V g
1 ∪V

g
2 or having a neighbor in V g

2 ,
and let |A| = ℓ. Then ℓ ≤ |V g

1 |+∆(G) |V g
2 |. Moreover, γtR (G+ S) ≤ γtR (G)−1

implies that |V g
1 | + 2|V g

2 | ≤ 2|V f
2 | − 1, and thus |V g

2 | ≤ |V f
2 | −

1+|V g
1 |

2 if |V g
1 | is

odd, and |V g
2 | ≤ |V f

2 | −
2+|V g

1
|

2 if |V g
1 | is even. Therefore,

ℓ ≤ |V g
1 |+

(

∣

∣

∣
V f
2

∣

∣

∣
−

2+|V g
1
|

2

)

∆(G) = n−∆(G)− |V g
1 |

∆(G)−2
2

≤ n−∆(G) ,

if |V g
1 | is even, and

ℓ ≤ |V g
1 |+

(

|V f
2 | −

(1+|V g
1
|)

2

)

∆(G) = n− (∆ (G)− 1)− (|V g
1 | − 1) ∆(G)−2

2

≤ n− (∆ (G)− 1) ,

if |V g
1 | is odd. Hence, there are at least ∆ (G) − 1 vertices in V g

0 which are not
Roman dominated by g in G, that is, those vertices of G that do not belong to
A. Since these vertices are Roman dominated by g in G + S, we conclude that
rtR (G) = |S| ≥ ∆(G)− 1 and this completes the proof.

In the aim to characterize all trees T with rtR (T ) = ∆− 1, we introduce for
∆ ≥ 4 the family T∆ of trees that can be obtained from a sequence T1, T2, . . . ,
Tk (k ≥ 1) of trees such that T1 = DS∆−1,∆−1, and if k ≥ 2, Ti+1 is obtained
recursively from Ti by adding a double star DS∆−1,∆−1 and joining one of its
leaves to a vertex of degree less than ∆ of Ti.

Theorem 20. A tree T of order n ≥ 6 and maximum degree ∆ ≥ 4 satisfies

rtR (T ) = ∆− 1 if and only if T ∈ T∆.
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Proof. Let T ∈ T∆. Then T can be obtained by a sequence T1, T2, . . . , Tk (k ≥ 1)
of trees, where T1 = DS∆−1,∆−1, T = Tk, and, if k ≥ 2, Ti+1 is obtained
recursively from Ti by adding a double star DS∆−1,∆−1 and joining one of its
leaves to a vertex of degree less than ∆ of Ti. We proceed by induction on the
number of operations performed to construct T . If k = 1, then it is not difficult
to observe that rtR (T1) = ∆ − 1. This establishes the base case. Assume now
that k ≥ 2 and that the result is true for every tree T ′ = Tk−1 of the family
T∆ constructed by k − 1 operations. Let T = Tk be a tree of T∆ constructed
by k operations. Clearly, any total Roman domination function of Tk−1, can be
extended to a TRD-function of Tk by assigning the weight 2 to a and b, where
a and b are the support vertices of the added double star DS∆−1,∆−1. Hence
γtR (Tk) ≤ γtR (Tk−1) + 4.

Now let f = (V0, V1, V2) be a γtR (Tk)-function. We may assume that f (a) =
f (b) = 2 and every neighbor x of a or b has f (x) = 0. Clearly the function f ,
restricted to Tk−1 is a total Roman domination function of Tk−1 and so

γtR (Tk) = ω(f) ≥ 4 + ω
(

fTk−1

)

≥ 4 + γtR (Tk−1) .

Therefore γtR (Tk) = γtR (Tk−1) + 4. Since rtR (Tk−1) = ∆ − 1, by Theorem 19
and γtR (Tk) = γtR (Tk−1)+ 4, for each γtR (Tk)-function f = (V0, V1, V2) we have
|V1| = 0 and |epn (u, V2)| = ∆−1 for every vertex u ∈ V2. Thus rtR (Tk) = ∆−1.

Now assume that T is a tree with rtR (T ) = ∆− 1. We proceed by induction
on n. Note that diam (T ) ≥ 2, since n ≥ 6. If diam (T ) = 2, then T is a star
and so rtR (T ) = 0 which is a contradiction. If diam (T ) = 3, then T is a double
star DSp,q : (p ≥ q ≥ 3). Observe that if p 6= q, then rtR (T ) < ∆ − 1. Hence
p = q = ∆ − 1 and so T ∈ T∆. Assume that diam (T ) = 4 and let u1u2u3u4u5
be a diametrical path. Note that every support vertex of T has at least two
leaves, otherwise there exists a γtR (T )-function f = (V0, V1, V2) with |V1| ≥ 1
which contradicts Theorem 19. Let f be a γtR (T )-function. By Theorem 19,
f (u2) = f (u3) = f (u4) = 2. If u3 is not a support vertex, then every neighbor
of u3 is a support vertex and assigned a 2 under f . But in that case f (u3) = 1,
a contradiction. Thus u3 is a support vertex. But then |epn (u3, V2) | < ∆ − 1,
contradicting Theorem 19. Hence diam (T ) ≥ 5. Let P : u1u2u3 · · ·ud be a
diametrical path. If u3 is not a support vertex, then u3 may be assigned a
1, a contradiction. Thus u3 is a support vertex. We claim that d (u4) = 2
and no support vertex besides u2 is adjacent to u3. Indeed, if d (u4) ≥ 3 or
u3 is adjacent to a support vertex, then clearly |epn (u3, V2)| < ∆ − 1, which
contradicts Theorem 19. Moreover, since f (u2) = f (u3) = 2, we must have
d (u2) = d (u3) = ∆. Also, since |epn (u3, V2) | = ∆− 1 we have u5 /∈ V2. Now, let
T ′ be the tree containing u5 obtained by removing the edge u4u5. Clearly the other
component containing u4 is a double star DS∆−1,∆−1. Now if rtR (T ′) < ∆ − 1,
then we can easily obtain rtR (T ) < ∆−1, a contradiction. Thus rtR (T ′) = ∆−1,
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and by induction on T ′, we have T ′ ∈ T∆. Note that u5 has degree less than ∆
in T ′. Since T is obtained from T ′ by adding a DS∆−1,∆−1 attached from its leaf
to a vertex of T ′ of degree less than ∆, we deduce that T ∈ T∆.

Theorem 21. For any graph G with order n, rtR (G) ≤ n−∆(G)− 1.

Proof. If ∆ (G) = n − 1, then by Observation 1, we have rtR (G) = 0. Thus
assume that ∆ (G) < n − 1. Clearly γtR (G) ≥ 4. Let v be the vertex of degree
∆ (G) and let X = V (G) \ N [v] = {y1, . . . , yk}. Note that |X| = n − ∆(G) −
1. Since ∆ (G+ {vy1, . . . , vyk}) = n − 1, we have γtR (G+ {vy1, . . . , vyk}) = 3
yielding rtR (G) ≤ n−∆(G)− 1.

Theorem 22. Let G be a graph of order n ≥ 5 such that rtR (G) > 1. Then

rtR (G) = n−∆(G)− 1 if and only if γtR (G) = 4.

Proof. Let γtR (G) = 4 and f = (V0, V1, V2) be a γtR (G)-function. Then the
only way to reduce γtR (G), is to reduce it to 3. This can be accomplished in a
minimum way by making the max degree vertex to be adjacent to all the vertices,
hence rtR (G) = n−∆(G)− 1

Conversely, let G be a graph such that rtR (G) = n−∆(G)− 1 > 1. Suppose
to the contrary that, γtR (G) 6= 4. If γtR (G) = 3, then there exists a vertex
of degree ∆ (G) = n − 1 and so rtR (G) = 0 which is a contradiction. Hence
γtR (G) ≥ 5. By Proposition 10, rtR (G) ≤ 2 or there exists a γtR (G)-function
f = (V0, V1, V2) such that V2 is a dominating set of G. If rtR (G) ≤ 2, then
since rtR (G) > 1, we have rtR (G) = 2, and thus ∆ (G) = n − 3. Let v be
a vertex of degree n − 3 in G. Then by adding an edge uv ∈ G, we obtain
∆ (G+ uv) = n − 2, and Proposition 6 implies that γtR (G+ uv) = 4. Hence
rtR (G) = 1 which is a contradiction. Therefore we conclude that there is a
γtR (G)-function f = (V0, V1, V2) such that V2 is a dominating set of G. It
follows from Proposition 11 that |V2| ≥ 2. Let x be a vertex of degree ∆ (G) and let
X = V (G)\N [x]. If f (x) = 2, then for y ∈ V2\{x}, add the set F1 of edges from
x to vertices in epn (y, V2). The function g : V (G) → {0, 1, 2} defined by g (y) = 1
and g (x) = f (x) for each x ∈ V (G)\{y}, is a TRD-function of G+F1 of weight
less than ω (f). Since |epn (y, V2)| < n−∆−1, we have rtR (G) < n−∆(G)−1,
a contradiction. Suppose now that f (x) = 1. If there exists a vertex z ∈ V2

such that epn (z, V2) ∩ V0 ⊆ N (x), then the function g : V (G) → {0, 1, 2}
defined by g (x) = 2, g (z) = 1 and g (u) = f (u) for u ∈ V (G) \ {x, z} is a
γtR (G)-function and so we are in a previous considered case and this leads to
the desired result. Assume that for any z ∈ V2, epn (z, V2) ∩ V0  N (x). Let
y ∈ V2 ∩ N (x). Note that such a vertex y exists since V2 dominates G. Let G′

be the graph obtained from G by adding edges from x to epn (y, V2) ∩ V0 ∩ X
and to vertices in (V1 ∪ V2) ∩X. Then the function g : V (G) → {0, 1, 2} defined
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by g (x) = 2, g (y) = 0 and g (w) = f (w) for each w ∈ V (G) \ {x, y}, is a TRD-
function of G′ of weight less than ω (f) , implying that rtR (G) < n−∆(G)− 1,
a contradiction. Finally, let f (x) = 0 and consider the following two cases.

Case 1. |V2| = 2. Let V2 = {u1, u2}. If (N (ui) ∩ V0) ⊆ N (x) for i = 1, 2,
then the function g : V (G) → {0, 1, 2} defined by g (x) = 2, g (u1) = g (u2) = 1
and g (w) = f (w) for each w ∈ V (G) \ {x, u1, u2}, is a γtR-function of G and we
are in a previous considered case that leads to a contradiction. Suppose, without
loss of generality, that (N (u2) ∩ V0) 6⊆ N (x). Since γtR (G) ≥ 5, we have V1 6= ∅
and so we assume c ∈ V1. Let G′ be the graph obtained from G by joining x to
all vertices in epn (u1, V2) ∩ V0 ∩ X and all vertices in X ∩ (V1 ∪ V2) and define
g : V (G) → {0, 1, 2} by g (x) = 2, g (u1) = g (c) = 0 and g (w) = f (w) for each
w ∈ V (G) \ {x, u1, c}. Clearly, g is a TRD-function of G′ of weight less than
ω (f) and this implies that rtR (G) < n−∆(G)− 1, a contradiction.

Case 2. |V2| ≥ 3. Let V2 = {u1, . . . , uk}. If (N (ui) ∩ V0) ⊆ N (x) for
i = 1, . . . , k, then we get a contradiction as above. Assume, without loss of
generality, that (N (uk) ∩ V0) 6⊆ N (x). Let G′ be the graph obtained from G by
joining x to all vertices in epn (ui, V2) ∩ V0 ∩X for i = 1, . . . , k−1, and all vertices
inX∩(V1 ∪ V2) and define g : V (G) → {0, 1, 2} by g (x) = 2, g (u1) = 0, g (u2) = 1
and g (w) = f (w) for each w ∈ V (G) \ {x, u1, u2}. Clearly, g is a TRD-function
of G′ of weight less than ω (f) and this implies that rtR (G) < n −∆(G) − 1, a
contradiction.

The following result due to Cockayne et al. [6] will be useful for the next.

Theorem 23 [6]. If G is a connected graph of order n ≥ 3 and ∆(G) ≤ n − 2,
then γt (G) ≤ n−∆(G).

Theorem 24. Let G be a graph of order n. If rtR (G) 6= 0, then rtR (G) ≤

n−∆(G)−
⌊

γtR(G)
2

⌋

+ 1.

Proof. We shall show that γtR (G) ≤ 2n− 2∆ (G)− 2rtR (G)+2. Since ∆ (G) ≤
n−1−rtR (G), by Theorem 21, we add rtR (G)−1 edges incident with a vertex of
maximum degree and call such a set of edges S. Clearly, γtR (G) = γtR (G+ S).
Since rtR (G) 6= 0, we have ∆ (G) < n − 1 and so by Theorem 23, γt (G) ≤
n−∆(G). Therefore, by Proposition 2 we obtain

γtR (G) = γtR (G+ S) ≤ 2γt (G+ S)
≤ 2n− 2∆ (G+ S) ≤ 2n− 2∆ (G)− 2rtR (G) + 2.

This proves the result.
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4. NP-Hardness of Total Roman Reinforcement

Our aim in this section is to show that the decision problem associated with the
total Roman reinforcement is NP-hard even when restricted to bipartite graphs.

Total Roman Reinforcement problem (TR-reinforcement)

Instance: A nonempty graph G and a positive integer k.
Question: Is rtR (G) ≤ k?

We show the NP-hardness of TR-reinforcement problem by transforming the
3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified
below was proven to be NP-complete in [9].

3-SAT problem

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of
variables such that |Cj | = 3 for j = 1, 2, . . . ,m.
Question: Is there a truth assignment for U that satisfies all the clauses in C?

Theorem 25. The TR-reinforcement problem is NP-hard for bipartite graphs.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary in-
stance of the 3-SAT problem. We will construct a graph G and a positive integer
k such that C is satisfiable if and only if rtR (G) ≤ k.

For each i ∈ {1, 2, . . . , n}, let Hi be the connected graph obtained from a K2,4

with partite sets {ui, ui} and {ai, bi, ri, si} by adding two new vertices attached
to vertex si. Also let F be the graph obtained from a cycle C4 : (v1v2v3v4) by
adding three new vertices v′, v′′ and v′′′ that we join to v1. Now corresponding
to the variable ui ∈ U , associate the graph Hi. Corresponding to each clause
Cj = {xj , yj , zj} ∈ C, associate a single vertex cj and add the edge set Ej =
{cjxj , cjyj , cjzj}. Next add the graph F and join v2 and v4 to each cj , and let G
be the resulting graph. Clearly, G is a bipartite graph of order 8n +m + 7 and
size 10n + 5m + 7. Set k = 1. Also, for every γtR (G)-function f = (V0, V1, V2) ,
we have f (V (Hi)) ≥ 4 for each i ∈ {1, 2, . . . , n}. In particular, f (si) = 2 and
f (x) = 2 for x ∈ {ui, ui}. Moreover, to total Roman dominate vertices of F, we
need, without loss of generality, that f (V (F )) ≥ 4. Therefore γtR (G) ≥ 4n+ 4.
The equality is obtained since one can easily construct a TRD-function of G with
weight 4n+ 4.

We shall show that C is satisfiable if and only if rtR (G) = 1. Assume that
C is satisfiable, and let t : U → {T, F} be a satisfying truth assignment for C.
We construct a subset D of vertices of G as follows. If t (ui) = T, then put
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the vertices ui and si in D; if t (ui) = F, then put the vertices ui and si in
D. Hence |D| = 2n. Define the function g : V (G) → {0, 1, 2} by g (x) = 2 for
every x ∈ D, g (v1) = 2, g (v2) = 1 and g (y) = 0 for the remaining vertices
y ∈ V (G) . It is easy to check that g is a TRD-function of G + v3s1 of weight
4n+ 3 < γtR (G) = 4n+ 4. Therefore rtR (G) = 1.

Conversely, assume that rtR (G) = 1. Then there is an edge e ∈ E
(

G
)

such
that γtR (G+ e) < 4n + 4. Let h = (V0, V1, V2) be a γtR (G+ e)-function such
that every leaf is assigned 0. Clearly such a γtR (G+ e)-function exists. Then
h (V (Hi)) ≥ 4 for each i. In particular f (si) = 2 and f (x) = 2 for x ∈ {ui, ui}.
Also since v1 is a support vertex with at least two leaves (in case e is incident with
the third leaf neighbor of v1) we have h (v1) = 2. Now since γtR (G+ e) < 4n+4,
we deduce that h (v2)+ h (v3)+ h (v4) ≤ 1. Moreover, using the fact that every
leaf is assigned a 0 under h, then whatever the added edge e, we must have
h (v2)+ h (v3)+ h (v4) ≥ 1, and the equality is obtained. Note that if h (v3) = 1,
then e = v1v3, and if h (v3) = 0, then e = v3z, where z ∈ {si, ui, ui} for some
i. Therefore γtR (G+ e) = 4n + 3, where |{ui, ui} ∩ V2| = 1 for every i. Since
every vertex of {c1, c2, . . . , cm} must have a neighbor in V2, and so it must be
dominated by a vertex of {ui, ui} for some i ∈ {1, 2, . . . , n}.

Let t′ : U → {T, F} be a mapping defined by t′ (ui) = T if h (ui) = 2 and
t′ (ui) = F if h (ui) = 2. Assume that h (ui) = 2 and cj is dominated by ui.
By the construction of G, the literal ui is in the clause Cj . Then t′ (ui) = T,
implying that the clause Cj is satisfied by t′. Next assume that h (ui) = 2 and cj
is dominated by ui. By the construction of G, the literal ui is in the clause Cj .
Then t′ (ui) = F, and thus t′ assigns ui the true value T. Hence t′ satisfies the
clause Cj . Therefore C is satisfiable. Since the construction of the total Roman
reinforcement instance is straightforward from a 3-SAT instance, the size of the
total Roman reinforcement instance is bounded above by a polynomial function of
the size of 3-SAT instance. Consequently, we obtain a polynomial transformation.

We conclude this paper with two open problems.

Problem 1. Characterize all graphs G of maximum degree 3 with rtR (G) = 2.
Let F1 be the tree obtained from three copies of K1,2 by adding a new vertex

and joining it to the centers of K1,2. Assume F2 = DS2,2 and F3 = K2. Let T3 be
the family of trees that can be obtained from a sequence T1, T2, . . . , Tk (k ≥ 1)
of trees such that T1 = F1 or F2 and if k ≥ 2, Ti+1 is obtained recursively from
Ti by adding one of the trees F1, F2 or F3 and joining one of its leaves to a vertex
of degree less than 3 of Ti.

Problem 2. Prove or disprove: A tree T of order n ≥ 6 and maximum degree 3
satisfies rtR (T ) = 2 if and only if T ∈ T3.
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