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Abstract

A total Roman dominating function on a graph G is a labeling f :
V(G) — {0,1,2} such that every vertex with label 0 has a neighbor with
label 2 and the subgraph of G induced by the set of all vertices of positive
weight has no isolated vertex. The minimum weight of a total Roman domi-
nating function on a graph G is called the total Roman domination number
of G. The total Roman reinforcement number .z (G) of a graph G is the
minimum number of edges that must be added to G in order to decrease the
total Roman domination number. In this paper, we investigate the proper-
ties of total Roman reinforcement number in graphs, and we present some
sharp bounds for r;r (G). Moreover, we show that the decision problem for
total Roman reinforcement is NP-hard for bipartite graphs.
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1. INTRODUCTION

Throughout this paper, G denotes a simple graph without isolated vertex, with
vertex set V = V (G) and edge set E = E(G). The order |V| of G is denoted
by n = n(G). For every vertex v € V, the open neighborhood N¢ (v) = N (v)
is the set {u € V(G) : ww € E(G)} and the closed neighborhood of v is the
set N[v] = N (v) U {v}. The open neighborhood of a set S C V is the set
N (S) = Uyes N (v), and the closed neighborhood of S is the set N[S] = N(S)US.
An S-external private neighbor of a vertex v € S is a vertex v € V' \ S which
is adjacent to v but to no other vertex of S. The set of all S-external private
neighbors of v € S is called the S-external private neighborhood of v and is
denoted by epn (v,S). The degree of a vertex v € V is d(v) = |[N(v)|. A leaf
is a vertex of degree 1, and a support vertezr is a vertex adjacent to a leaf. The
minimum and mazimum degree of a graph G are denoted by ¢ = §(G) and
A = A(G), respectively.

We write K, for the complete graph of order n, P, for the path of order
n, C, for the cycle of length n, and G for the complement graph of G. A tree
obtained from a star on at least three vertices by subdividing every edge exactly
once is called a subdivided star. A tree containing exactly two vertices that are
not leaves (which are necessarily adjacent) is called a double star. A double star
with respectively p and ¢ leaves attached at each support vertex is denoted by
DS, 4. The corona of a graph H, denoted cor(H) or H o K in the literature, is
the graph obtained from H by adding a pendant edge to each vertex of H. The
complete bipartite graph with partite sets A, B such that |A| = p and |B| = ¢ is
denoted by K, 4.

A total dominating set, abbreviated TD-set, of a graph G without isolated
vertex is a set S of vertices such that every vertex in V (G) is adjacent to at least
one vertex in S. The total domination number of G, denoted by v; (G), is the
minimum cardinality of a TD-set of G. The literature on the subject of total
domination in graphs has been surveyed and detailed in the recent book [12]. A
previous survey on total domination in graphs can also be found in [10]. The
total reinforcement number ry (G) of a graph G with no isolated vertex is the
minimum cardinality of all sets E' C E (G) for which v (G + E') < 7% (G). In
the case that there is no subset of edges E’ such that 1 (G + E') < v (G), we
define 74 (G) = 0. The concept of total reinforcement in graphs was introduced
by Sridharan et al. [19] and has been studied by several authors [11].

A Roman dominating function on a graph G, abbreviated RD-function, is a
function f: V (G) — {0, 1, 2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight,
w(f), of f is defined as f(V (G)) = X yev(q) [ (v). The Roman domination
number, denoted g (G), is the minimum weight among all RD-functions in G.
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An RD-function with minimum weight vz (G) in G is called a g (G)-function.
For an RD-function f, let V; = {v € V (G): f (v) =i} for i = 0,1,2. Since these
three sets determine f, we can equivalently write f = (Vp, Vi, V2). Note that
w (f) = |[V1|+2|Vz|. The concept of Roman dominating function was first defined
by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [7] and was motivated by Ian
Stewart [20]. Roman domination in graphs is now well studied [8, 14, 15, 17, 18,
21].

A total Roman dominating function of a graph G with no isolated vertex,
abbreviated TRD-function, is a Roman dominating function f on G with the
additional property that the subgraph of G induced by the set of all vertices
of positive weight under f has no isolated vertex. The total Roman domination
number ;g (G) is the minimum weight of a TRD-function on G. A TRD-function
with minimum weight y;z (G) in G is called a g (G)-function. The concept of
total Roman domination in graphs was introduced by Liu and Chang [16] and
has been studied in [1, 2, 3, 4, 5].

The total Roman reinforcement number rig (G) of a graph G with no isolated
vertex is the minimum cardinality of all sets E C F (G) for which vz (G + E') <
vr (G). In the case that there is no such a subset of edges, we define rz (G) = 0.
A subset B’ C E (G) is called an ryp (G)-set if |E'| = 1z (G) and 3z (G + E') <
7w (G) . The following observation is therefore clear and immediate.

Observation 1. Let G be a graph of order n. If A (G) =n—1, then g (G) = 0.

Our purpose in this paper is to initiate a study of total Roman reinforcement
number in graphs. We first investigate basic properties and bounds for the total
Roman reinforcement number of a graph. In the last section, we will show that
the decision problem associated to the total Roman reinforcement problem is
NP-hard even when restricted to bipartite graphs.

We make use of the following results.

Proposition 2 [2]. If G is a graph with no isolated vertez, then

7 (G) < %r (G) < 2% (G).

Let G be the family of graphs that can be obtained from a 4-cycle (v1vav3v4)
by adding k1 + ks > 1 vertex-disjoint paths P, and joining vy to the end of k; such
paths and joining vy to the end of k2 such paths (possibly, k1 = 0 or ko = 0). Let
‘H be the family of graphs that can be obtained from a double star by subdividing
each pendant edge once and subdividing the non-pendant edge r > 0 times.

Proposition 3 [2]. Let G be a connected graph of order n > 2. Then yr (G) =n
if and only if one of the following holds.

(1) G is a path or a cycle.
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(2) G is a corona, cor (F), of some connected graph F'.
(3) G is a subdivided star.
(4) Ge GUH.

Proposition 4 [2|. If G is a graph with no isolated vertex, then there exists a
er (G)-function f = (Vo, Vi, Va) such that either Va is a dominating set in G, or
the set S of vertices not dominated by V, satisfies G[S] = kKs for some k > 1,
where S C Vi and Ng(S)\ S C V.

Proposition 5 [2]. Let G be a connected graph of order at least 3 and let f =
(Vo, V1, Vo) be a yir (G)-function. If z is a leaf and y a support vertex in G, then
x ¢ Vo andy ¢ Vp.

Proposition 6. For a graph G of order n > 4, vwr (G) = 4 if and only if
G =2Ks or A(G) = n — 2 or there are two adjacent vertices u,v € V (G) such
that N{u] U N[v] = V (Q).

Proof. = Let f = (Vp,V1,V2) be a yig-function on G with vz (G) = 4. Clearly
|[Vo| < 2. If A(G) = n — 1, then g (G) = 3 which is a contradiction. Hence
A (G) < n—2. Assume first that Vo = (. Then |V;| = 4 and thus n = 4. Since G
is nonempty and 1 < A(G) <n—2=2, wehave A(G) =n—2=2or G = 2K,.
Now assume that |Va| = 1, say Vo = {v}. Then |V;| = 2. Since v is adjacent to all
Vo and at least one vertex of Vj, we deduce that n —2 < d(v) < A(G) <n-—2
and so we have A (G) = n — 2. Finally, assume that || = 2, say Vo = {u,v}.
Clearly Vi =0, wv € E(G) and N[u]U N[v] =V (G).

< Obviously, if G = 2K5, then v5 (G) = 4. Also, it is easy to see that if
A(G) < n—2, then 5 (G) > 4. If A(G) = n — 2, then let = be a vertex of
maximum degree, y be the non-neighbor of x and z be a common neighbor of =
and y. Define f: V(G) — {0,1,2} by f(x) =2, f(y) = f(2) =1and f(s) =0
otherwise. Clearly, f is a TRD-function of G with weight 4 and so g (G) = 4.
Likewise, if there are two adjacent vertices u,v € V (G) such that N[u] U N[v] =
V (G), then define a TRD-function on G as follows: f = (V (G)\{u,v},0, {u,v}).
Since w (f) = 4, we deduce that vz (G) = 4.

2. GRAPHS G WITH SMALL 7R (G)

In this section, we study graphs with total Roman reinforcement number at most
two.

Lemma 7. If G is a connected graph of order n > 4 with vr (G) = n, then
TtR (G) =1.
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Proof. Since 1z (G) = n, G satisfies one of the four conditions (1)-(4) in the
statement of Proposition 3. If G is a cycle, then let G = (vy,v9,...,v,); if
G is a path, then let G = vy, v9,...,v,; if G € H or G is a subdivided star,
then let vivous - - - v be a diametrical path in G, and if G = cor (F'), then let
ve € V (F) whose removal from F' leaves F' connected, vs € Np (v2) and v;
the leaf adjacent to ve. Then the function f : V (G) — {0,1,2} defined by
f(v3) = 2,f(v1) = f(v2) = 0 and f(x) = 1 otherwise, is a TRD-function of
G + {vivs} of weight n — 1 and this implies that rr (G) = 1. |

Theorem 8. Let G be a connected graph of ordern > 4. Then rig (G) = 1 if and
only if vir (G) = n or there exists a function f:V (G) — {0,1,2} with partition
(Vo, V1, Va) of weight less than g (G) such that one of the following conditions
holds.

(i) Vo dominates Vi and G[V4 U V] has at most two isolated vertices.

(ii) G[Vi U Va] has no isolated vertices and exactly one vertez of Vi is not domi-
nated by Vs.

Proof. 1f vir (G) = n, then 1 (G) = 1 by Lemma 7. Assume that vr (G) <
n—1, and let f = (Vp, V1, V2) be a function on G with weight less than v (G)
satisfying (i) or (ii). Since w(f) < n — 2, we have Vo # (. If f satisfies (ii)
and u € Vj is the vertex not dominated by Vs, then f is a TRD-function of
G + uv, where v € V5. Next, assume that f satisfies (i). If G[V; U V3] has two
isolated vertices u, v, then f is a TRD-function of G + {uv} and if G[V; U V3] has
exactly one isolated vertex, say u, then f is a TRD-function of G + {uv}, where
v € V3 U Va. This implies that rp (G) = 1.

Conversely, assume that .z (G) = 1, and let F' = {e = zy} be an rr (G)-
set. If v4r (G) = n, then we are done. Hence assume that vz (G) < n and let
f= Vo, V1,V2) be a vtr (G + e)-function. If z,y € Vi U V3, then f satisfies item
(i) and if x € Vjy or y € Vj, then f satisfies item (ii). This complete the proof. =

Proposition 9. Let G be a graph. If there exists a yr (G)-function f = (Vo, V1,
Va) such that (U,ey, epn (u,V2)) NV1 # 0, then rr (G) < 1.

Proof. Let f=(Vy, V1, Va) be a vz (G)-function such that (UueV2 epn (u, V2)) N
Vi # 0. Let v be a vertex of V4 Nepn (u, Va) for some u € Vo. Thus u is the
unique neighbor of v in V5. Let I = N (v) N V;. Suppose first that I = (. If
Vo = {u}, then either A(G) = n —1 and so rz (G) = 0 (by Observation 1), or
A (G) < n—1 and thus the function g : V(G) — {0, 1,2} defined by g (v) = 0 and
g (y) = f (y) otherwise, is a TRD-function of G + uz of weight vz (G) — 1, where
z € Vi \ {v}. Therefore rr (G) < 1. Hence we can assume that |Va| > 2. Then
V5 contains a vertex, say s, such that us ¢ E, for otherwise reassigning to v a 0
instead of 1 provides a TRD-function with weight less than v (G). Hence the
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function g : V(G) — {0, 1,2} defined by g (v) = 0 and g (y) = f (y) otherwise, is
a TRD-function of G 4 us of weight 1z (G) — 1, and thus r;5 (G) = 1.
Secondly, assume that I # (). Clearly, G[I U {u}] contains an isolated vertex
for otherwise reassigning a 0 to v provides a TRD-function of G with weight less
than g (G). Let x be an isolated vertex in G[I U {u}]. If x # u, then the
function g : V(G) — {0, 1,2} defined by ¢ (z) = 0 and ¢ (y) = f (y) otherwise, is
a TRD-function of G + ux of weight 1z (G) — 1. If x = u, then we may assume
that u is the unique isolated vertex in G[I U {u}]. Let s be any vertex of I.
Again the function g : V(G) — {0,1,2} defined by ¢g(v) = 0 and g (y) = f(y)
otherwise, is a TRD-function of G + us of weight 1z (G) — 1. In any case, we
have g (G) = 1. |

Proposition 10. Let G be a graph. Then rig (G) < 2 or there ezists a yr (G)-
function f = (Vo, Vi, Va) such that Vs is a dominating set in G.

Proof. Suppose there is no g (G)-function f = (Vp, V4, Va) such that V5 is
dominating set of G. Then by Proposition 4, there exists a ;g (G)-function
f = (Vo,V1,V3) such that the set S of vertices not dominated by V5 satisfies
G[S] = kK3 for some k > 1, where S C V; and Ng (S)\ S C V. If |Va| = 0,
then vz (G) = n and by Lemma 7 we have mz (G) = 1. Hence we assume that
|Va| > 1, and let w € Va. If u, v are the vertices of a component in G[S], then the
function g : V(G) — {0,1,2} defined by ¢g(u) = g(v) =0 and g (z) = f (x) for
x € V(G) \ {u,v} is a TRD-function of G + {uw,vw} of weight less than w (f)
yielding mr (G) < 2. |

Proposition 11. If G is a graph having a yg (G)-function f = (Vp, V1, Va) such
that |Va| < 1, then rig (G) < 1.

Proof. Let f = (Vo, V1, V2) be a 14 (G)-function with V3| < 1. If [V3]| = 0, then
7w (G) = n and thus rr (G) = 1 (by Lemma 7). Hence assume that |Va| = 1,
say Vo = {u}. If d(u) = n — 1, then Observation 1 implies that rz (G) = 0.
Thus, suppose that d(u) < n — 1. Since there exists a vertex w € Vi \ N (u),
let G1 be a component of G[V1] containing a neighbor of u. If |V (G1)| = 1 and
V (G1) = {z}, then the function g : V(G) — {0,1,2} defined by g () = 0 and
g(y) = f(y) for y € V(G) \ {z} is a TRD-function of G + {uw} of weight less
than w (f) yielding g (G) < 1. Let |V (G1)| > 2. As f is a yr (G)-function,
u is not adjacent to all vertices in V (G1). Let z € V (G1) be a vertex with
maximum distance from u in the induced subgraph G[V (G1) U {u}] and define
g:V(G)—{0,1,2} by g(2) =0and g(y) = f(y) for y € V(G) \ {z}. Clearly,
g is a TRD-function of G + {uz} of weight less than w (f) yielding rr (G) < 1.
This completes the proof. [

Proposition 12. If G has a support vertex of degree two, then rig (G) < 2.
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Proof. Let v be a support vertex of degree two and u the leaf adjacent to v.
By Proposition 10, 7z (G) < 2 or there exists a g (G)-function f = (Vy, V1, Va)
such that V5 is a dominating set of G. If g (G) < 2, then we are done. Hence
we can assume that rp(G) > 3 and let f = (Vp, V4, Va) be a yg (G)-function
such that V5 is a dominating set of G. Clearly, Vo # (). If |V3] = 1, then by
Proposition 11, rz(G) < 1, a contradiction. Henceforth we can assume that
|[Va| > 2. Since V3 is a dominating set of G, we conclude from Proposition 5
that v € V5. Since f is a total Roman dominating function, we may assume
that u € epn (v,V2). Let w € Vi \ {v} and define g : V(G) — {0,1,2} by
g (v) =1,9(u) = min{0, f (u)} and g (y) = f(y) for y € V(G) \ {v,u}. Clearly,
g is a TRD-function of either G + {uw} or G + {vw} of weight less than w(f)
yielding rr(G) < 1, a contradiction. |

Proposition 13. If G is a connected graph containing a path vivevsvavs in which
d(v;) =2 fori € {2,3,4}, then mp (G) < 2.

Proof. If vy or vy is a leaf, then the desired result follows by Proposition 12.
So we assume that G does not have a support vertex of degree 2. As discu-
ssed in Proposition 11, we assume that r.z (G) > 3 and there exists a yg (G)-
function f = (Vp, V1, Va) such that V5 is a dominating set of G. If |Va| = 1,
then by Proposition 11, r;z(G) < 1, a contradiction. Henceforth we can assume
|[Va| > 2. Since V5 is a dominating set of G, we have V5 N {ve,v3,v4} # 0. If
f(ve) + f (v3)+ f (vg) = 2, then we may assume, without loss of generality, that
f(v2) =2, f(v3) = f(va) = 0. Then the function g : V(G) — {0,1,2} defined
by g(v2) =1 and g(x) = f (z) for z € V (G) \ {v2} is a function of G of weight
less than v (G) satisfying Condition (ii) of Theorem 8, and thus rz(G) =1, a
contradiction. Now let f (v2) + f (v3) + f (va) > 3. If f(v3) = 2, then we may
assume that f(v2) > 1 and f (vq4) = 0. Clearly, vy € epn (vs, V) for otherwise
we can reduce the weight of f by reassigning a 1 to v3 instead of 2. The function
g:V(G)— {0,1,2} defined by g (v3) = 1land g (z) = f (z) forz € V (G)\{vs} is
function of G with weight less than v;r (G) satisfying Condition (ii) of Theorem
8 and thus r4z(G) = 1, a contradiction. If f (v3) < 1, then we suppose f (vy) = 2
because Vo must dominate vs. In this case, using the fact that epn (ve, V2) # 0,
one can see that the function g : V(G) — {0,1,2} defined by g (v2) = 1 and
g(z) = f(z) for x € V(G) \ {v2} is a function of G of weight less than vz (GQ)
satisfying Condition (ii) of Theorem 8 and so r;gz (G) = 1, a contradiction. This
completes the proof. ]

3. PROPERTIES AND BOUNDS

In this section we investigate basic properties of r,g (G) and establish sharp
bounds on the total Roman reinforcement number of a graph.
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Theorem 14. Let G be a connected graph of order n > 4 and f = (Vo, V1, Va) be
a g (G)-function. Then

rir (G) < max {2, min {|epn (u, V2)| : v € Va}}.

Proof. Let f = (Vo,V1,V2) be a yg (G)-function. If [V| < 1, then mr (G) < 1
(by Proposition 11). Henceforth, we assume that |Va| > 2. If epn (u, Vo) NV; # ()
for some u € V3, then by Proposition 9 we have rz (G) < 1 as desired. Thus
assume that epn (u, Vo) C V) for each u € V5. Now let u € Vo with epn (u, Va) =
{z1,...,2¢} and let v € V5 \ {u}. Then the function g : V(G) — {0,1,2}
defined by ¢g (u) =1 and g (x) = f (z) for x € V (GQ) \ {u} is a TRD-function of
G + {vzy,...,vxs} of weight g (G) — 1. Therefore rp (G) < |epn (u, V2) |. The
results follows from the fact that u is an arbitrary vertex of |Va|. |

Since every vertex of V3 has at most d (u) — 1 neighbors in Vj, the following
result is immediate from Theorem 14.

Corollary 15. Let G be a connected graph of order n > 4 and f = (Vo, V1, Va)
be a vir (G)-function. Then

i (G) <max{2,min{d(u) — 1 : u € Va}}.
The next result is an immediate consequence from Corollary 15 and Lemma, 7.

Corollary 16. For any connected graph G, g (G) < A(G) — 1.

The bounds of Theorem 14 and Corollary 16 are sharp for the double star
DS, with p > 2.

Corollary 17. For any graph G of order n > 3, we have rig (G) <n — 3.

Proof. If A(G) =n— 1, then by Observation 1 we have r.p (G) = 0. Hence, let
A (G) <n—2. By Corollary 16, ,r (G) < A(G) —1<n—3. |
Proposition 18. Let G be a graph with A(G) > 3. If there exists a v (G)-
function f = (Vo, V1, Va) such that |V1| # 0, then rig (G) < {%W

Proof. 1f v (G) = 3, then g (G) =0 < [%W Hence assume that v (G) >

4 and let f = (Vo, V1, V) be a g (G)-function such that |Vi] # 0. If |Va] = 0,
then by Lemma 7 we have rp (G) = 1 < {%W Thus assume that |Va| > 1.
For each x € V;, we define

B, ={u € ViUV, : uis an isolated vertex in G [V1 U V2 \ {z}]}.

Let v € Vi and B, = {z1,...,z}. Clearly, |B,| < d(v) < A(G).
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Suppose t = 0, and let u € V5. Then uv ¢ E (G) for otherwise (Vo U{v}, Vi \
{v}, V2) is a TRD-function of G, a contradiction. Thus the function g : V(G) —
{0,1,2} defined by g(v) = 0 and g(z) = f(x) for z € V(G) \ {v} is a TRD-
function of G 4 uv of weight less than w (f), and thus g (G) = 1.

Now, suppose that ¢t = 1. If 1 € V4, then for a vertex u € V5 the function
g : V(G) — {0,1,2} defined by g(v) = g(x1) = 0 and g(z) = f(x) for z €
V (G)\{v, z1} is a TRD-function of G+{uv, uz } of weight less than w (f) yielding

g (G) <2< [ﬁ—‘ Let x1 € Va. Since yr (G) > 4, let w € V1 U Vo \ {v, 21}

and defineg : V (G) — {0,1,2} by g (v) =0and g () = f (z) forz € V (G)\{z1}.
Clearly, g is a TRD-function of G + {wz1} of weight less than w (f) yielding
rn(G) <1< |22,

Suppose that ¢ = 2. If one of x1 and x5 belongs to Vs, say 1, then the
function ¢g : V(G) — {0, 1,2} defined by ¢g(v) = 0 and g (z) = f (z) for each
xz € V(G) \ {v} is a TRD-function of G + x1x9 with weight less than w (f)
yielding rr (G) = 1. Hence assume that {x1,22} C Vi. For a vertex u € Va,
the function g : V(G) — {0,1,2} defined by g (z1) = 0 and g (z) = f(x) for
each z € V (G) \ {z1} is a TRD-function of G + z1u with weight less than w (f)
yielding rr (G) = 1.

Finally, assume that ¢ > 3. We claim that v has a neighbor in V5. Suppose, to
contrary, that N (v) C Vo U V4. In particular, we have B, C V;. Since ¢t > 3, the
function ¢ : V(G) — {0, 1,2} defined by g (v) = 2,9 (z) = 0 for z € B, \ {x1} and
g(x) = f(x) for each z € V (G) \ (B, \ {x1}) is a TRD-function of G with weight
at most vz (G) — 1, which is a contradiction. Hence N (v) NV, # (. Let E/ =
{z129, 324, ..., 24124} if tis even, and E' = {x129, v123, x4X5, . . ., xp_12¢} il £ 18

AG)

odd. Observe that |E'| = [§] < {T-‘ . Now, the function ¢ : V(G) — {0, 1,2}

defined by g (v) = 0 and g (x) = f () for each 2 € V (G) \ {v} is a TRD-function

)
of G 4+ E' with weight less than vz (G), and therefore rip (G) < {#W [ ]

Our next result gives a characterization of connected graphs G with A (G) >
4 such that rip (G) = A(G) — 1.

Theorem 19. Let G be a connected graph with A(G) > 4. Then, rig (G) =
A (G)—1 if and only if for each vir (G)-function f = (Vo, Vi, Va) we have |V1| =0
and |epn (u, Va) | = A (G) — 1 for every vertex u € V.

Proof. Let rip (G) = A(G) — 1. Since A (G) > 4, we deduce from Proposition
18 that for each ;g (G)-function f = (Vp, V1, Va) we have |Vi| = 0. Let f =
(Vo, V1, V2) be a g (G)-function. Then |V5| > 2. By Theorem 14 we have

A(G)—1=rg(G) <min{lepn (u,V2)| : ue Va} <A(G) -1

and so |epn (u, Va)| = A (G) — 1 for every vertex u € Vs.
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Conversely, Let f = (%f,Vlf,VQf) be a g (G)-function. Then |V{| = 0
and ‘epn (u, VQf)‘ = A(G) — 1 for every vertex u € Vi . Tt follows that Vof =
UU€V2f epn (v, V2f> and so

1) w= ] = U an (o) |- @@ - 0]w].
veVy

Let S be an 7p (G)-set and assume that g = (VJ, V7, VJ) is a yr (G + S)-
function. Then

© AV | = |+ V] = n =131+ e 1L

Let A be the set of vertices of G that belong to VUV or having a neighbor in V3,

and let |A| = £. Then ¢ < |[V?|+ A (G) |VJ|. Moreover, vig (G + S) < vr (G)—1
g

implies that V7] + 2V§| < 2|V{| — 1, and thus [v] < [V§/] — 00 ¢ v 5

g
odd, and |V{| < |V | — % if [V{’] is even. Therefore,

C< VI + (’ng‘ _2+|2V19|>A(G)=n—A(G)—]V19’A(G2)2
< n_A(G)a

if [V{] is even, and

(< Vo4 (|v2f|—“+’2vf’>)A<G> — 0 (A(G) — 1) — (VF] — 1) Q=2
<n-(A(Q)-1),

if |[V{] is odd. Hence, there are at least A (G) — 1 vertices in Vjj which are not
Roman dominated by g in G, that is, those vertices of G that do not belong to
A. Since these vertices are Roman dominated by ¢ in G + S, we conclude that
rir (G) =|S| > A(G) — 1 and this completes the proof. |

In the aim to characterize all trees T with r4g (T') = A — 1, we introduce for
A > 4 the family TaA of trees that can be obtained from a sequence 717,75, ...,
T (k> 1) of trees such that Ty = DSa—1,a-1, and if & > 2, T;; is obtained
recursively from 7; by adding a double star DSa_1 A—1 and joining one of its
leaves to a vertex of degree less than A of T;.

Theorem 20. A tree T of order n > 6 and maximum degree A > 4 satisfies
rig (T) =A —1if and only if T € Th.
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Proof. Let T € Ta. Then T can be obtained by a sequence T1,T5, ..., T (k > 1)
of trees, where T = DSa_1a-1, T = T, and, if k£ > 2, T;; is obtained
recursively from 7; by adding a double star DSa_1 A—1 and joining one of its
leaves to a vertex of degree less than A of T;. We proceed by induction on the
number of operations performed to construct T'. If k = 1, then it is not difficult
to observe that ryg (T1) = A — 1. This establishes the base case. Assume now
that k > 2 and that the result is true for every tree 7 = Ty_; of the family
Ta constructed by k& — 1 operations. Let T = T} be a tree of Ta constructed
by k operations. Clearly, any total Roman domination function of T_1, can be
extended to a TRD-function of T} by assigning the weight 2 to a and b, where
a and b are the support vertices of the added double star DSA_1 aA—1. Hence
YR (Tk) < ver (Th—1) + 4.

Now let f = (Vp, V1, Va) be a g (Tk)-function. We may assume that f (a) =
f(b) = 2 and every neighbor z of a or b has f (x) = 0. Clearly the function f,
restricted to Tx_1 is a total Roman domination function of 7}_; and so

Yer (Tp) =w(f) =4+ w (fr,_,) =4+ %r (Tr-1) .

Therefore g (Tx) = yr (Tk—1) + 4. Since rig (Tx—1) = A — 1, by Theorem 19
and v (Tx) = ver (Tx—1) + 4, for each v g (T))-function f = (Vo, V1, V2) we have
|Vi| = 0 and |epn (u, Va)| = A —1 for every vertex u € Vo. Thus ryg (T)) = A—1.

Now assume that 7" is a tree with r,z (1) = A — 1. We proceed by induction
on n. Note that diam (7') > 2, since n > 6. If diam (7") = 2, then T is a star
and so rp (T') = 0 which is a contradiction. If diam (7") = 3, then T is a double
star DSy, : (p > q > 3). Observe that if p # ¢, then 7 (T) < A — 1. Hence
p=¢qg=A—1andsoT € Ta. Assume that diam (T') = 4 and let wujuaugusus
be a diametrical path. Note that every support vertex of T has at least two
leaves, otherwise there exists a vz (T)-function f = (Vo, Vi, Vo) with |Vi| > 1
which contradicts Theorem 19. Let f be a g (T')-function. By Theorem 19,
f(ug) = f(usg) = f(ug) = 2. If ug is not a support vertex, then every neighbor
of ug is a support vertex and assigned a 2 under f. But in that case f (u3) = 1,
a contradiction. Thus ug is a support vertex. But then |epn (ug, Va)| < A —1,
contradicting Theorem 19. Hence diam (T) > 5. Let P : ujugus---uq be a
diametrical path. If us is not a support vertex, then us may be assigned a
1, a contradiction. Thus us is a support vertex. We claim that d(ug) = 2
and no support vertex besides uy is adjacent to wus. Indeed, if d(u4) > 3 or
us is adjacent to a support vertex, then clearly |epn (us, V2)| < A — 1, which
contradicts Theorem 19. Moreover, since f(u2) = f(u3z) = 2, we must have
d(u2) = d(us) = A. Also, since |epn (us3, V2) | = A — 1 we have us ¢ V2. Now, let
T’ be the tree containing us obtained by removing the edge uqus. Clearly the other
component containing u4 is a double star DSaA_1 a—1. Now if rp (T") < A — 1,
then we can easily obtain rz (T') < A—1, a contradiction. Thus rz (T7) = A—1,
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and by induction on 7", we have T € Ta. Note that us has degree less than A
in 7. Since T is obtained from 7" by adding a DSA_; a—1 attached from its leaf
to a vertex of T” of degree less than A, we deduce that T € Ta. ]

Theorem 21. For any graph G with order n, rig (G) <n— A (G) — 1.

Proof. If A(G) = n — 1, then by Observation 1, we have rz (G) = 0. Thus
assume that A (G) < n — 1. Clearly v (G) > 4. Let v be the vertex of degree
A(G) and let X =V (G)\ N[v] = {y1,...,yx}. Note that | X| =n—A(G) —
1. Since A (G + {vyi,...,vyx}) = n — 1, we have g (G + {vy1,...,vyr}) = 3
yielding rp (G) <n—A(G) — 1. n

Theorem 22. Let G be a graph of order n > 5 such that rigr (G) > 1. Then
g (G) =n—A(G) — 1 if and only if v1r (G) = 4.

Proof. Let 71 (G) = 4 and f = (Vb, Vi, V2) be a yg (G)-function. Then the
only way to reduce g (G), is to reduce it to 3. This can be accomplished in a
minimum way by making the max degree vertex to be adjacent to all the vertices,
hence mp (G) =n—A(G) — 1

Conversely, let G be a graph such that 7,z (G) =n—A (G) —1 > 1. Suppose
to the contrary that, v (G) # 4. If g (G) = 3, then there exists a vertex
of degree A(G) = n — 1 and so rg (G) = 0 which is a contradiction. Hence
mr (G) > 5. By Proposition 10, rg (G) < 2 or there exists a ;g (G)-function
f = (Vo,V1,Va) such that V5 is a dominating set of G. If mpr (G) < 2, then
since g (G) > 1, we have rp (G) = 2, and thus A(G) = n — 3. Let v be
a vertex of degree n — 3 in G. Then by adding an edge uwv € G, we obtain
A (G +uwv) = n — 2, and Proposition 6 implies that g (G + wv) = 4. Hence
rig (G) = 1 which is a contradiction. Therefore we conclude that there is a
vr (G)-function f = (Vp, Vi, Va) such that Vs is a dominating set of G. It
follows from Proposition 11 that |Va| > 2. Let x be a vertex of degree A (G) and let
X =V (G)\N|z]. If f(x) =2, then for y € V5 \ {2}, add the set F} of edges from
x to vertices in epn (y, V3). The function g : V (G) — {0, 1,2} defined by g (y) = 1
and g (x) = f (z) for each z € V (G) \ {y}, is a TRD-function of G + F of weight
less than w (f). Since |epn (y, V2)| < n—A—1, we have rig (G) <n—A(G)—1,
a contradiction. Suppose now that f(z) = 1. If there exists a vertex z € V5
such that epn(z,V2) N Vy € N (x), then the function g : V (G) — {0,1,2}
defined by g(z) = 2,9(2) = 1 and g(u) = f(u) for u € V(G) \ {z,2} is a
vtr (G)-function and so we are in a previous considered case and this leads to
the desired result. Assume that for any z € Vs, epn(z,V2) N Vo & N (z). Let
y € Vo N N (x). Note that such a vertex y exists since V5 dominates G. Let G’
be the graph obtained from G by adding edges from z to epn (y,V2) N Vo N X
and to vertices in (V3 U V2) N X. Then the function g : V(G) — {0,1,2} defined
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by g(x) =2,9(y) =0 and g (w) = f (w) for each w € V (G) \ {z,y}, is a TRD-
function of G’ of weight less than w (f), implying that 5 (G) <n — A(G) — 1,
a contradiction. Finally, let f (z) = 0 and consider the following two cases.

Case 1. |Va| = 2. Let Vo = {ug,u2}. If (N (u;)NVp) € N () for i = 1,2,
then the function ¢ : V(G) — {0, 1,2} defined by g (z) = 2,9 (u1) = g (u2) =1
and g (w) = f (w) for each w € V (G) \ {z,u1,uz}, is a y¢p-function of G and we
are in a previous considered case that leads to a contradiction. Suppose, without
loss of generality, that (N (ug) N Vy) € N (z). Since 1z (G) > 5, we have V; # ()
and so we assume ¢ € V. Let G’ be the graph obtained from G by joining x to
all vertices in epn (u1,V2) N Vo N X and all vertices in X N (V3 U V3) and define
g:V(G) = {0,1,2} by g(x) = 2,9 (u1) = g(¢) =0 and g (w) = f (w) for each
w € V(G)\ {x,uy,c}. Clearly, g is a TRD-function of G’ of weight less than
w (f) and this implies that r:g (G) < n — A (G) — 1, a contradiction.

Case 2. |Va| > 3. Let Vo = {u1,...,ux}. If (N(u;)NVy) € N(x) for
i = 1,...,k, then we get a contradiction as above. Assume, without loss of
generality, that (N (ug) N Vo) € N (z). Let G’ be the graph obtained from G by
joining x to all vertices in epn (u;, Vo) N Vo N X fori =1,...,k—1, and all vertices
in XN(V3 U V) and defineg : V (G) — {0,1,2} by g () = 2,9 (u1) = 0,9 (ug) =1
and g (w) = f (w) for each w € V (G) \ {x, u1,us}. Clearly, g is a TRD-function
of G’ of weight less than w (f) and this implies that 7z (G) <n — A(G) — 1, a
contradiction. ]

The following result due to Cockayne et al. [6] will be useful for the next.

Theorem 23 [6]. If G is a connected graph of order n > 3 and A (G) <n — 2,
then v (G) <n — A (G).

Theorem 24. Let G be a graph of order n. If rig(G) # 0, then rp(G) <
n—A(G) - VRT(G)J g

Proof. We shall show that vz (G) < 2n—2A(G) —2rr (G) +2. Since A (G) <
n—1—rr (G), by Theorem 21, we add g (G) — 1 edges incident with a vertex of
maximum degree and call such a set of edges S. Clearly, vir (G) = v1r (G + 5).
Since g (G) # 0, we have A(G) < n — 1 and so by Theorem 23, v (G) <
n — A (G). Therefore, by Proposition 2 we obtain

1R (G) = nr (G +5) <27 (G +5)
<2n—2A(G+S) <2n—-2A(G) —2rr (G) + 2.

This proves the result. [
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4. NP-HARDNESS OF TOTAL ROMAN REINFORCEMENT

Our aim in this section is to show that the decision problem associated with the
total Roman reinforcement is NP-hard even when restricted to bipartite graphs.

Total Roman Reinforcement problem (TR-reinforcement)

Instance: A nonempty graph G and a positive integer k.
Question: Is rp (G) < k7

We show the NP-hardness of TR-reinforcement problem by transforming the
3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified
below was proven to be NP-complete in [9].

3-SAT problem

Instance: A collection C = {C1,Cy,...,Cyp} of clauses over a finite set U of
variables such that |C;| =3 for j =1,2,...,m.
Question: Is there a truth assignment for U that satisfies all the clauses in C?

Theorem 25. The TR-reinforcement problem is NP-hard for bipartite graphs.

Proof. Let U = {uy,us,...,uy} and C = {C1,Co,...,Cp} be an arbitrary in-
stance of the 3-SAT problem. We will construct a graph G and a positive integer
k such that C is satisfiable if and only if r (G) < k.

Foreachi € {1,2,...,n}, let H; be the connected graph obtained from a K 4
with partite sets {u;, w;} and {a;, b;,7;,$;} by adding two new vertices attached
to vertex s;. Also let F' be the graph obtained from a cycle Cy : (vivovsvy) by
adding three new vertices v’,v” and v” that we join to v;. Now corresponding
to the variable u; € U, associate the graph H;. Corresponding to each clause
C; = {zj,y;,%} € C, associate a single vertex ¢; and add the edge set E; =
{¢jz;,cjy;,cjz;}. Next add the graph F' and join vy and vy to each ¢;, and let G
be the resulting graph. Clearly, G is a bipartite graph of order 8n + m + 7 and
size 10n + 5m + 7. Set k = 1. Also, for every vg (G)-function f = (Vp, Vi, V2),
we have f(V(H;)) > 4 for each i € {1,2,...,n}. In particular, f(s;) = 2 and
f(z) =2 for € {u;,u;}. Moreover, to total Roman dominate vertices of F, we
need, without loss of generality, that f (V(F')) > 4. Therefore vz (G) > 4n + 4.
The equality is obtained since one can easily construct a TRD-function of G with
weight 4n + 4.

We shall show that C is satisfiable if and only if rr (G) = 1. Assume that
C is satisfiable, and let ¢ : U — {T, F'} be a satisfying truth assignment for C.
We construct a subset D of vertices of G as follows. If ¢(u;) = T, then put
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the vertices w; and s; in D; if t (u;) = F, then put the vertices u; and s; in
D. Hence |D| = 2n. Define the function g : V(G) — {0,1,2} by g (x) = 2 for
every x € D,g(v1) = 2,9(v2) = 1 and g(y) = 0 for the remaining vertices
y € V(G). It is easy to check that g is a TRD-function of G + v3s; of weight
dn + 3 < g (G) = 4n + 4. Therefore rp (G) = 1.

Conversely, assume that r;z (G) = 1. Then there is an edge e € E (é) such
that y4r (G +e€) < 4n + 4. Let h = (Vp, V1, V2) be a yr (G + e)-function such
that every leaf is assigned 0. Clearly such a vr (G + e)-function exists. Then
h(V (H;)) > 4 for each i. In particular f(s;) = 2 and f (z) = 2 for x € {u;, u;}.
Also since v; is a support vertex with at least two leaves (in case e is incident with
the third leaf neighbor of v1) we have h (v1) = 2. Now since v (G + €) < 4n+4,
we deduce that h (v2) + h(vs)+ h(vs) < 1. Moreover, using the fact that every
leaf is assigned a 0 under h, then whatever the added edge e, we must have
h(v2) 4+ h(vs)+ h(v4) > 1, and the equality is obtained. Note that if h (v3) =1,
then e = vyvs, and if h(vs) = 0, then e = v3z, where z € {s;,u;,u;} for some
i. Therefore vir (G +€) = 4n + 3, where |[{u;,w;} NVa| = 1 for every i. Since
every vertex of {cy,ca,..., ¢y} must have a neighbor in V5, and so it must be
dominated by a vertex of {u;,u;} for some ¢ € {1,2,...,n}.

Let t' : U — {T, F} be a mapping defined by ¢’ (u;) = T if h(u;) = 2 and
t' (uj) = F if h(w;) = 2. Assume that h(u;) = 2 and ¢; is dominated by u;.
By the construction of G, the literal w; is in the clause C; . Then t' (u;) = T,
implying that the clause C; is satisfied by t'. Next assume that h (7;) = 2 and ¢;
is dominated by w;. By the construction of G, the literal %; is in the clause Cj.
Then t' (u;) = F, and thus t' assigns u; the true value T. Hence ¢’ satisfies the
clause Cj. Therefore C is satisfiable. Since the construction of the total Roman
reinforcement instance is straightforward from a 3-SAT instance, the size of the
total Roman reinforcement instance is bounded above by a polynomial function of
the size of 3-SAT instance. Consequently, we obtain a polynomial transformation.

|

We conclude this paper with two open problems.

Problem 1. Characterize all graphs G' of maximum degree 3 with .z (G) = 2.

Let Fy be the tree obtained from three copies of K 2 by adding a new vertex
and joining it to the centers of K 5. Assume Fy = DSs 9 and F3 = Ky. Let T3 be
the family of trees that can be obtained from a sequence T4, Ts,..., T (k> 1)
of trees such that 71 = F} or F5 and if k > 2, T;,; is obtained recursively from
T; by adding one of the trees I}, F5 or F3 and joining one of its leaves to a vertex
of degree less than 3 of T;.

Problem 2. Prove or disprove: A tree T of order n > 6 and maximum degree 3
satisfies g (T') = 2 if and only if T € T3.
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