# TOTAL ROMAN REINFORCEMENT IN GRAPHS 

H. Abdollahzadeh Ahangar ${ }^{1}$, J. Amjadi ${ }^{2}$<br>M. Chellali ${ }^{3}$, S. Nazari-Moghaddam ${ }^{2}$<br>AND<br>S.M. Sheikholeslami ${ }^{2}$<br>${ }^{1}$ Department of Mathematics Babol Noshirvani University of Technology Babol, I.R. Iran<br>${ }^{2}$ Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran<br>${ }^{3}$ LAMDA-RO Laboratory, Department of Mathematics<br>University of Blida<br>B.P. 270, Blida, Algeria<br>e-mail: ha.ahangar@nit.ac.ir<br>\{j-amjadi;s.nazari;s.m.sheikholeslami\}@azaruniv.ac.ir m_chellali@yahoo.com


#### Abstract

A total Roman dominating function on a graph $G$ is a labeling $f$ : $V(G) \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2 and the subgraph of $G$ induced by the set of all vertices of positive weight has no isolated vertex. The minimum weight of a total Roman dominating function on a graph $G$ is called the total Roman domination number of $G$. The total Roman reinforcement number $r_{t R}(G)$ of a graph $G$ is the minimum number of edges that must be added to $G$ in order to decrease the total Roman domination number. In this paper, we investigate the properties of total Roman reinforcement number in graphs, and we present some sharp bounds for $r_{t R}(G)$. Moreover, we show that the decision problem for total Roman reinforcement is NP-hard for bipartite graphs.


Keywords: total Roman domination number, total Roman reinforcement number.
2010 Mathematics Subject Classification: 05C69.

## 1. Introduction

Throughout this paper, $G$ denotes a simple graph without isolated vertex, with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of $G$ is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N_{G}(v)=N(v)$ is the set $\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of $v$ is the set $N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v \in S} N(v)$, and the closed neighborhood of $S$ is the set $N[S]=N(S) \cup S$. An $S$-external private neighbor of a vertex $v \in S$ is a vertex $u \in V \backslash S$ which is adjacent to $v$ but to no other vertex of $S$. The set of all $S$-external private neighbors of $v \in S$ is called the $S$-external private neighborhood of $v$ and is denoted by epn $(v, S)$. The degree of a vertex $v \in V$ is $d(v)=|N(v)|$. A leaf is a vertex of degree 1 , and a support vertex is a vertex adjacent to a leaf. The minimum and maximum degree of a graph $G$ are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively.

We write $K_{n}$ for the complete graph of order $n, P_{n}$ for the path of order $n, C_{n}$ for the cycle of length $n$, and $\bar{G}$ for the complement graph of $G$. A tree obtained from a star on at least three vertices by subdividing every edge exactly once is called a subdivided star. A tree containing exactly two vertices that are not leaves (which are necessarily adjacent) is called a double star. A double star with respectively $p$ and $q$ leaves attached at each support vertex is denoted by $D S_{p, q}$. The corona of a graph $H$, denoted $\operatorname{cor}(H)$ or $H \circ K_{1}$ in the literature, is the graph obtained from $H$ by adding a pendant edge to each vertex of $H$. The complete bipartite graph with partite sets $A, B$ such that $|A|=p$ and $|B|=q$ is denoted by $K_{p, q}$.

A total dominating set, abbreviated TD-set, of a graph $G$ without isolated vertex is a set $S$ of vertices such that every vertex in $V(G)$ is adjacent to at least one vertex in $S$. The total domination number of $G$, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TD-set of $G$. The literature on the subject of total domination in graphs has been surveyed and detailed in the recent book [12]. A previous survey on total domination in graphs can also be found in [10]. The total reinforcement number $r_{t}(G)$ of a graph $G$ with no isolated vertex is the minimum cardinality of all sets $E^{\prime} \subseteq E(\bar{G})$ for which $\gamma_{t}\left(G+E^{\prime}\right)<\gamma_{t}(G)$. In the case that there is no subset of edges $E^{\prime}$ such that $\gamma_{t}\left(G+E^{\prime}\right)<\gamma_{t}(G)$, we define $r_{t}(G)=0$. The concept of total reinforcement in graphs was introduced by Sridharan et al. [19] and has been studied by several authors [11].

A Roman dominating function on a graph $G$, abbreviated RD-function, is a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. The weight, $\omega(f)$, of $f$ is defined as $f(V(G))=\sum_{v \in V(G)} f(v)$. The Roman domination number, denoted $\gamma_{R}(G)$, is the minimum weight among all RD-functions in $G$.

An RD-function with minimum weight $\gamma_{R}(G)$ in $G$ is called a $\gamma_{R}(G)$-function. For an RD-function $f$, let $V_{i}=\{v \in V(G): f(v)=i\}$ for $i=0,1,2$. Since these three sets determine $f$, we can equivalently write $f=\left(V_{0}, V_{1}, V_{2}\right)$. Note that $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. The concept of Roman dominating function was first defined by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [7] and was motivated by Ian Stewart [20]. Roman domination in graphs is now well studied [ $8,14,15,17,18$, 21].

A total Roman dominating function of a graph $G$ with no isolated vertex, abbreviated TRD-function, is a Roman dominating function $f$ on $G$ with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight under $f$ has no isolated vertex. The total Roman domination number $\gamma_{t R}(G)$ is the minimum weight of a TRD-function on $G$. A TRD-function with minimum weight $\gamma_{t R}(G)$ in $G$ is called a $\gamma_{t R}(G)$-function. The concept of total Roman domination in graphs was introduced by Liu and Chang [16] and has been studied in $[1,2,3,4,5]$.

The total Roman reinforcement number $r_{t R}(G)$ of a graph $G$ with no isolated vertex is the minimum cardinality of all sets $E^{\prime} \subseteq E(G)$ for which $\gamma_{t R}\left(G+E^{\prime}\right)<$ $\gamma_{t R}(G)$. In the case that there is no such a subset of edges, we define $r_{t R}(G)=0$. A subset $E^{\prime} \subseteq E(\bar{G})$ is called an $r_{t R}(G)$-set if $\left|E^{\prime}\right|=r_{t R}(G)$ and $\gamma_{t R}\left(G+E^{\prime}\right)<$ $\gamma_{t R}(G)$. The following observation is therefore clear and immediate.

Observation 1. Let $G$ be a graph of order n. If $\Delta(G)=n-1$, then $r_{t R}(G)=0$.
Our purpose in this paper is to initiate a study of total Roman reinforcement number in graphs. We first investigate basic properties and bounds for the total Roman reinforcement number of a graph. In the last section, we will show that the decision problem associated to the total Roman reinforcement problem is NP-hard even when restricted to bipartite graphs.

We make use of the following results.
Proposition 2 [2]. If $G$ is a graph with no isolated vertex, then

$$
\gamma_{t}(G) \leq \gamma_{t R}(G) \leq 2 \gamma_{t}(G)
$$

Let $\mathcal{G}$ be the family of graphs that can be obtained from a 4 -cycle $\left(v_{1} v_{2} v_{3} v_{4}\right)$ by adding $k_{1}+k_{2} \geq 1$ vertex-disjoint paths $P_{2}$ and joining $v_{1}$ to the end of $k_{1}$ such paths and joining $v_{2}$ to the end of $k_{2}$ such paths (possibly, $k_{1}=0$ or $k_{2}=0$ ). Let $\mathcal{H}$ be the family of graphs that can be obtained from a double star by subdividing each pendant edge once and subdividing the non-pendant edge $r \geq 0$ times.

Proposition 3 [2]. Let $G$ be a connected graph of order $n \geq 2$. Then $\gamma_{t R}(G)=n$ if and only if one of the following holds.
(1) $G$ is a path or a cycle.
(2) $G$ is a corona, cor $(F)$, of some connected graph $F$.
(3) $G$ is a subdivided star.
(4) $G \in \mathcal{G} \cup \mathcal{H}$.

Proposition 4 [2]. If $G$ is a graph with no isolated vertex, then there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that either $V_{2}$ is a dominating set in $G$, or the set $S$ of vertices not dominated by $V_{2}$ satisfies $G[S]=k K_{2}$ for some $k \geq 1$, where $S \subseteq V_{1}$ and $N_{G}(S) \backslash S \subseteq V_{0}$.

Proposition 5 [2]. Let $G$ be a connected graph of order at least 3 and let $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function. If $x$ is a leaf and $y$ a support vertex in $G$, then $x \notin V_{2}$ and $y \notin V_{0}$.

Proposition 6. For a graph $G$ of order $n \geq 4, \gamma_{t R}(G)=4$ if and only if $G=2 K_{2}$ or $\Delta(G)=n-2$ or there are two adjacent vertices $u, v \in V(G)$ such that $N[u] \cup N[v]=V(G)$.

Proof. $\Rightarrow$ Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}$-function on $G$ with $\gamma_{t R}(G)=4$. Clearly $\left|V_{2}\right| \leq 2$. If $\Delta(G)=n-1$, then $\gamma_{t R}(G)=3$ which is a contradiction. Hence $\Delta(G) \leq n-2$. Assume first that $V_{2}=\emptyset$. Then $\left|V_{1}\right|=4$ and thus $n=4$. Since $G$ is nonempty and $1 \leq \Delta(G) \leq n-2=2$, we have $\Delta(G)=n-2=2$ or $G=2 K_{2}$. Now assume that $\left|V_{2}\right|=1$, say $V_{2}=\{v\}$. Then $\left|V_{1}\right|=2$. Since $v$ is adjacent to all $V_{0}$ and at least one vertex of $V_{1}$, we deduce that $n-2 \leq d(v) \leq \Delta(G) \leq n-2$ and so we have $\Delta(G)=n-2$. Finally, assume that $\left|V_{2}\right|=2$, say $V_{2}=\{u, v\}$. Clearly $V_{1}=\emptyset, u v \in E(G)$ and $N[u] \cup N[v]=V(G)$.
$\Leftarrow$ Obviously, if $G=2 K_{2}$, then $\gamma_{t R}(G)=4$. Also, it is easy to see that if $\Delta(G) \leq n-2$, then $\gamma_{t R}(G) \geq 4$. If $\Delta(G)=n-2$, then let $x$ be a vertex of maximum degree, $y$ be the non-neighbor of $x$ and $z$ be a common neighbor of $x$ and $y$. Define $f: V(G) \rightarrow\{0,1,2\}$ by $f(x)=2, f(y)=f(z)=1$ and $f(s)=0$ otherwise. Clearly, $f$ is a TRD-function of $G$ with weight 4 and so $\gamma_{t R}(G)=4$. Likewise, if there are two adjacent vertices $u, v \in V(G)$ such that $N[u] \cup N[v]=$ $V(G)$, then define a TRD-function on $G$ as follows: $f=(V(G) \backslash\{u, v\}, \emptyset,\{u, v\})$. Since $\omega(f)=4$, we deduce that $\gamma_{t R}(G)=4$.

## 2. Graphs $G$ with Small $r_{t R}(G)$

In this section, we study graphs with total Roman reinforcement number at most two.

Lemma 7. If $G$ is a connected graph of order $n \geq 4$ with $\gamma_{t R}(G)=n$, then $r_{t R}(G)=1$.

Proof. Since $\gamma_{t R}(G)=n, G$ satisfies one of the four conditions (1)-(4) in the statement of Proposition 3. If $G$ is a cycle, then let $G=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$; if $G$ is a path, then let $G=v_{1}, v_{2}, \ldots, v_{n}$; if $G \in \mathcal{H}$ or $G$ is a subdivided star, then let $v_{1} v_{2} v_{3} \cdots v_{k}$ be a diametrical path in $G$, and if $G=\operatorname{cor}(F)$, then let $v_{2} \in V(F)$ whose removal from $F$ leaves $F$ connected, $v_{3} \in N_{F}\left(v_{2}\right)$ and $v_{1}$ the leaf adjacent to $v_{2}$. Then the function $f: V(G) \rightarrow\{0,1,2\}$ defined by $f\left(v_{3}\right)=2, f\left(v_{1}\right)=f\left(v_{2}\right)=0$ and $f(x)=1$ otherwise, is a TRD-function of $G+\left\{v_{1} v_{3}\right\}$ of weight $n-1$ and this implies that $r_{t R}(G)=1$.

Theorem 8. Let $G$ be a connected graph of order $n \geq 4$. Then $r_{t R}(G)=1$ if and only if $\gamma_{t R}(G)=n$ or there exists a function $f: V(G) \rightarrow\{0,1,2\}$ with partition $\left(V_{0}, V_{1}, V_{2}\right)$ of weight less than $\gamma_{t R}(G)$ such that one of the following conditions holds.
(i) $V_{2}$ dominates $V_{0}$ and $G\left[V_{1} \cup V_{2}\right]$ has at most two isolated vertices.
(ii) $G\left[V_{1} \cup V_{2}\right]$ has no isolated vertices and exactly one vertex of $V_{0}$ is not dominated by $V_{2}$.

Proof. If $\gamma_{t R}(G)=n$, then $r_{t R}(G)=1$ by Lemma 7. Assume that $\gamma_{t R}(G) \leq$ $n-1$, and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a function on $G$ with weight less than $\gamma_{t R}(G)$ satisfying (i) or (ii). Since $\omega(f) \leq n-2$, we have $V_{2} \neq \emptyset$. If $f$ satisfies (ii) and $u \in V_{0}$ is the vertex not dominated by $V_{2}$, then $f$ is a TRD-function of $G+u v$, where $v \in V_{2}$. Next, assume that $f$ satisfies (i). If $G\left[V_{1} \cup V_{2}\right]$ has two isolated vertices $u, v$, then $f$ is a TRD-function of $G+\{u v\}$ and if $G\left[V_{1} \cup V_{2}\right]$ has exactly one isolated vertex, say $u$, then $f$ is a TRD-function of $G+\{u v\}$, where $v \in V_{1} \cup V_{2}$. This implies that $r_{t R}(G)=1$.

Conversely, assume that $r_{t R}(G)=1$, and let $F=\{e=x y\}$ be an $r_{t R}(G)-$ set. If $\gamma_{t R}(G)=n$, then we are done. Hence assume that $\gamma_{t R}(G)<n$ and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G+e)$-function. If $x, y \in V_{1} \cup V_{2}$, then $f$ satisfies item (i) and if $x \in V_{0}$ or $y \in V_{0}$, then $f$ satisfies item (ii). This complete the proof.

Proposition 9. Let $G$ be a graph. If there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}\right.$, $\left.V_{2}\right)$ such that $\left(\bigcup_{u \in V_{2}}\right.$ epn $\left.\left(u, V_{2}\right)\right) \cap V_{1} \neq \emptyset$, then $r_{t R}(G) \leq 1$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function such that $\left(\bigcup_{u \in V_{2}}\right.$ epn $\left.\left(u, V_{2}\right)\right) \cap$ $V_{1} \neq \emptyset$. Let $v$ be a vertex of $V_{1} \cap \operatorname{epn}\left(u, V_{2}\right)$ for some $u \in V_{2}$. Thus $u$ is the unique neighbor of $v$ in $V_{2}$. Let $I=N(v) \cap V_{1}$. Suppose first that $I=\emptyset$. If $V_{2}=\{u\}$, then either $\Delta(G)=n-1$ and so $r_{t R}(G)=0$ (by Observation 1 ), or $\Delta(G)<n-1$ and thus the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=0$ and $g(y)=f(y)$ otherwise, is a TRD-function of $G+u z$ of weight $\gamma_{t R}(G)-1$, where $z \in V_{1} \backslash\{v\}$. Therefore $r_{t R}(G) \leq 1$. Hence we can assume that $\left|V_{2}\right| \geq 2$. Then $V_{2}$ contains a vertex, say $s$, such that $u s \notin E$, for otherwise reassigning to $v$ a 0 instead of 1 provides a TRD-function with weight less than $\gamma_{t R}(G)$. Hence the
function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=0$ and $g(y)=f(y)$ otherwise, is a TRD-function of $G+u s$ of weight $\gamma_{t R}(G)-1$, and thus $r_{t R}(G)=1$.

Secondly, assume that $I \neq \emptyset$. Clearly, $G[I \cup\{u\}]$ contains an isolated vertex for otherwise reassigning a 0 to $v$ provides a TRD-function of $G$ with weight less than $\gamma_{t R}(G)$. Let $x$ be an isolated vertex in $G[I \cup\{u\}]$. If $x \neq u$, then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(x)=0$ and $g(y)=f(y)$ otherwise, is a TRD-function of $G+u x$ of weight $\gamma_{t R}(G)-1$. If $x=u$, then we may assume that $u$ is the unique isolated vertex in $G[I \cup\{u\}]$. Let $s$ be any vertex of $I$. Again the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=0$ and $g(y)=f(y)$ otherwise, is a TRD-function of $G+u s$ of weight $\gamma_{t R}(G)-1$. In any case, we have $r_{t R}(G)=1$.

Proposition 10. Let $G$ be a graph. Then $r_{t R}(G) \leq 2$ or there exists a $\gamma_{t R}(G)-$ function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}$ is a dominating set in $G$.

Proof. Suppose there is no $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}$ is dominating set of $G$. Then by Proposition 4, there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that the set $S$ of vertices not dominated by $V_{2}$ satisfies $G[S]=k K_{2}$ for some $k \geq 1$, where $S \subseteq V_{1}$ and $N_{G}(S) \backslash S \subseteq V_{0}$. If $\left|V_{2}\right|=0$, then $\gamma_{t R}(G)=n$ and by Lemma 7 we have $r_{t R}(G)=1$. Hence we assume that $\left|V_{2}\right| \geq 1$, and let $w \in V_{2}$. If $u, v$ are the vertices of a component in $G[S]$, then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(u)=g(v)=0$ and $g(x)=f(x)$ for $x \in V(G) \backslash\{u, v\}$ is a TRD-function of $G+\{u w, v w\}$ of weight less than $\omega(f)$ yielding $r_{t R}(G) \leq 2$.

Proposition 11. If $G$ is a graph having a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $\left|V_{2}\right| \leq 1$, then $r_{t R}(G) \leq 1$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function with $\left|V_{2}\right| \leq 1$. If $\left|V_{2}\right|=0$, then $\gamma_{t R}(G)=n$ and thus $r_{t R}(G)=1$ (by Lemma 7). Hence assume that $\left|V_{2}\right|=1$, say $V_{2}=\{u\}$. If $d(u)=n-1$, then Observation 1 implies that $r_{t R}(G)=0$. Thus, suppose that $d(u)<n-1$. Since there exists a vertex $w \in V_{1} \backslash N(u)$, let $G_{1}$ be a component of $G\left[V_{1}\right]$ containing a neighbor of $u$. If $\left|V\left(G_{1}\right)\right|=1$ and $V\left(G_{1}\right)=\{x\}$, then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(x)=0$ and $g(y)=f(y)$ for $y \in V(G) \backslash\{x\}$ is a TRD-function of $G+\{u w\}$ of weight less than $\omega(f)$ yielding $r_{t R}(G) \leq 1$. Let $\left|V\left(G_{1}\right)\right| \geq 2$. As $f$ is a $\gamma_{t R}(G)$-function, $u$ is not adjacent to all vertices in $V\left(G_{1}\right)$. Let $z \in V\left(G_{1}\right)$ be a vertex with maximum distance from $u$ in the induced subgraph $G\left[V\left(G_{1}\right) \cup\{u\}\right]$ and define $g: V(G) \rightarrow\{0,1,2\}$ by $g(z)=0$ and $g(y)=f(y)$ for $y \in V(G) \backslash\{z\}$. Clearly, $g$ is a TRD-function of $G+\{u z\}$ of weight less than $\omega(f)$ yielding $r_{t R}(G) \leq 1$. This completes the proof.

Proposition 12. If $G$ has a support vertex of degree two, then $r_{t R}(G) \leq 2$.

Proof. Let $v$ be a support vertex of degree two and $u$ the leaf adjacent to $v$. By Proposition 10, $r_{t R}(G) \leq 2$ or there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}$ is a dominating set of $G$. If $r_{t R}(G) \leq 2$, then we are done. Hence we can assume that $r_{t R}(G) \geq 3$ and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function such that $V_{2}$ is a dominating set of $G$. Clearly, $V_{2} \neq \emptyset$. If $\left|V_{2}\right|=1$, then by Proposition 11, $r_{t R}(G) \leq 1$, a contradiction. Henceforth we can assume that $\left|V_{2}\right| \geq 2$. Since $V_{2}$ is a dominating set of $G$, we conclude from Proposition 5 that $v \in V_{2}$. Since $f$ is a total Roman dominating function, we may assume that $u \in \operatorname{epn}\left(v, V_{2}\right)$. Let $w \in V_{2} \backslash\{v\}$ and define $g: V(G) \rightarrow\{0,1,2\}$ by $g(v)=1, g(u)=\min \{0, f(u)\}$ and $g(y)=f(y)$ for $y \in V(G) \backslash\{v, u\}$. Clearly, $g$ is a TRD-function of either $G+\{u w\}$ or $G+\{v w\}$ of weight less than $\omega(f)$ yielding $r_{t R}(G) \leq 1$, a contradiction.

Proposition 13. If $G$ is a connected graph containing a path $v_{1} v_{2} v_{3} v_{4} v_{5}$ in which $d\left(v_{i}\right)=2$ for $i \in\{2,3,4\}$, then $r_{t R}(G) \leq 2$.

Proof. If $v_{1}$ or $v_{5}$ is a leaf, then the desired result follows by Proposition 12. So we assume that $G$ does not have a support vertex of degree 2 . As discussed in Proposition 11, we assume that $r_{t R}(G) \geq 3$ and there exists a $\gamma_{t R}(G)$ function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}$ is a dominating set of $G$. If $\left|V_{2}\right|=1$, then by Proposition 11, $r_{t R}(G) \leq 1$, a contradiction. Henceforth we can assume $\left|V_{2}\right| \geq 2$. Since $V_{2}$ is a dominating set of $G$, we have $V_{2} \cap\left\{v_{2}, v_{3}, v_{4}\right\} \neq \emptyset$. If $f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)=2$, then we may assume, without loss of generality, that $f\left(v_{2}\right)=2, f\left(v_{3}\right)=f\left(v_{4}\right)=0$. Then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(v_{2}\right)=1$ and $g(x)=f(x)$ for $x \in V(G) \backslash\left\{v_{2}\right\}$ is a function of $G$ of weight less than $\gamma_{t R}(G)$ satisfying Condition (ii) of Theorem 8, and thus $r_{t R}(G)=1$, a contradiction. Now let $f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) \geq 3$. If $f\left(v_{3}\right)=2$, then we may assume that $f\left(v_{2}\right) \geq 1$ and $f\left(v_{4}\right)=0$. Clearly, $v_{4} \in \operatorname{epn}\left(v_{3}, V_{2}\right)$ for otherwise we can reduce the weight of $f$ by reassigning a 1 to $v_{3}$ instead of 2 . The function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(v_{3}\right)=1$ and $g(x)=f(x)$ for $x \in V(G) \backslash\left\{v_{3}\right\}$ is function of $G$ with weight less than $\gamma_{t R}(G)$ satisfying Condition (ii) of Theorem 8 and thus $r_{t R}(G)=1$, a contradiction. If $f\left(v_{3}\right) \leq 1$, then we suppose $f\left(v_{2}\right)=2$ because $V_{2}$ must dominate $v_{3}$. In this case, using the fact that epn $\left(v_{2}, V_{2}\right) \neq \emptyset$, one can see that the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(v_{2}\right)=1$ and $g(x)=f(x)$ for $x \in V(G) \backslash\left\{v_{2}\right\}$ is a function of $G$ of weight less than $\gamma_{t R}(G)$ satisfying Condition (ii) of Theorem 8 and so $r_{t R}(G)=1$, a contradiction. This completes the proof.

## 3. Properties and Bounds

In this section we investigate basic properties of $r_{t R}(G)$ and establish sharp bounds on the total Roman reinforcement number of a graph.

Theorem 14. Let $G$ be a connected graph of order $n \geq 4$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be $a \gamma_{t R}(G)$-function. Then

$$
r_{t R}(G) \leq \max \left\{2, \min \left\{\left|e p n\left(u, V_{2}\right)\right|: u \in V_{2}\right\}\right\}
$$

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function. If $\left|V_{2}\right| \leq 1$, then $r_{t R}(G) \leq 1$ (by Proposition 11). Henceforth, we assume that $\left|V_{2}\right| \geq 2$. If epn $\left(u, V_{2}\right) \cap V_{1} \neq \emptyset$ for some $u \in V_{2}$, then by Proposition 9 we have $r_{t R}(G) \leq 1$ as desired. Thus assume that $\operatorname{epn}\left(u, V_{2}\right) \subseteq V_{0}$ for each $u \in V_{2}$. Now let $u \in V_{2}$ with epn $\left(u, V_{2}\right)=$ $\left\{x_{1}, \ldots, x_{t}\right\}$ and let $v \in V_{2} \backslash\{u\}$. Then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(u)=1$ and $g(x)=f(x)$ for $x \in V(G) \backslash\{u\}$ is a TRD-function of $G+\left\{v x_{1}, \ldots, v x_{t}\right\}$ of weight $\gamma_{t R}(G)-1$. Therefore $r_{t R}(G) \leq\left|e p n\left(u, V_{2}\right)\right|$. The results follows from the fact that $u$ is an arbitrary vertex of $\left|V_{2}\right|$.

Since every vertex of $V_{2}$ has at most $d(u)-1$ neighbors in $V_{0}$, the following result is immediate from Theorem 14.

Corollary 15. Let $G$ be a connected graph of order $n \geq 4$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function. Then

$$
r_{t R}(G) \leq \max \left\{2, \min \left\{d(u)-1: u \in V_{2}\right\}\right\}
$$

The next result is an immediate consequence from Corollary 15 and Lemma 7.
Corollary 16. For any connected graph $G, r_{t R}(G) \leq \Delta(G)-1$.
The bounds of Theorem 14 and Corollary 16 are sharp for the double star $D S_{p, p}$ with $p \geq 2$.
Corollary 17. For any graph $G$ of order $n \geq 3$, we have $r_{t R}(G) \leq n-3$.
Proof. If $\Delta(G)=n-1$, then by Observation 1 we have $r_{t R}(G)=0$. Hence, let $\Delta(G) \leq n-2$. By Corollary 16, $r_{t R}(G) \leq \Delta(G)-1 \leq n-3$.

Proposition 18. Let $G$ be a graph with $\Delta(G) \geq 3$. If there exists a $\gamma_{t R}(G)$ function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $\left|V_{1}\right| \neq 0$, then $r_{t R}(G) \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$.
Proof. If $\gamma_{t R}(G)=3$, then $r_{t R}(G)=0<\left\lceil\frac{\Delta(G)}{2}\right\rceil$. Hence assume that $\gamma_{t R}(G) \geq$ 4 and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function such that $\left|V_{1}\right| \neq 0$. If $\left|V_{2}\right|=0$, then by Lemma 7 we have $r_{t R}(G)=1<\left\lceil\frac{\Delta(G)}{2}\right\rceil$. Thus assume that $\left|V_{2}\right| \geq 1$. For each $x \in V_{1}$, we define

$$
B_{x}=\left\{u \in V_{1} \cup V_{2}: u \text { is an isolated vertex in } G\left[V_{1} \cup V_{2} \backslash\{x\}\right]\right\}
$$

Let $v \in V_{1}$ and $B_{v}=\left\{x_{1}, \ldots, x_{t}\right\}$. Clearly, $\left|B_{v}\right| \leq d(v) \leq \Delta(G)$.

Suppose $t=0$, and let $u \in V_{2}$. Then $u v \notin E(G)$ for otherwise $\left(V_{0} \cup\{v\}, V_{1} \backslash\right.$ $\left.\{v\}, V_{2}\right)$ is a TRD-function of $G$, a contradiction. Thus the function $g: V(G) \rightarrow$ $\{0,1,2\}$ defined by $g(v)=0$ and $g(x)=f(x)$ for $x \in V(G) \backslash\{v\}$ is a TRDfunction of $G+u v$ of weight less than $\omega(f)$, and thus $r_{t R}(G)=1$.

Now, suppose that $t=1$. If $x_{1} \in V_{1}$, then for a vertex $u \in V_{2}$ the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=g\left(x_{1}\right)=0$ and $g(x)=f(x)$ for $x \in$ $V(G) \backslash\left\{v, x_{1}\right\}$ is a TRD-function of $G+\left\{u v, u x_{1}\right\}$ of weight less than $\omega(f)$ yielding $r_{t R}(G) \leq 2 \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$. Let $x_{1} \in V_{2}$. Since $\gamma_{t R}(G) \geq 4$, let $w \in V_{1} \cup V_{2} \backslash\left\{v, x_{1}\right\}$ and define $g: V(G) \rightarrow\{0,1,2\}$ by $g(v)=0$ and $g(x)=f(x)$ for $x \in V(G) \backslash\left\{x_{1}\right\}$. Clearly, $g$ is a TRD-function of $G+\left\{w x_{1}\right\}$ of weight less than $\omega(f)$ yielding $r_{t R}(G) \leq 1<\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

Suppose that $t=2$. If one of $x_{1}$ and $x_{2}$ belongs to $V_{2}$, say $x_{1}$, then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=0$ and $g(x)=f(x)$ for each $x \in V(G) \backslash\{v\}$ is a TRD-function of $G+x_{1} x_{2}$ with weight less than $\omega(f)$ yielding $r_{t R}(G)=1$. Hence assume that $\left\{x_{1}, x_{2}\right\} \subset V_{1}$. For a vertex $u \in V_{2}$, the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(x_{1}\right)=0$ and $g(x)=f(x)$ for each $x \in V(G) \backslash\left\{x_{1}\right\}$ is a TRD-function of $G+x_{1} u$ with weight less than $\omega(f)$ yielding $r_{t R}(G)=1$.

Finally, assume that $t \geq 3$. We claim that $v$ has a neighbor in $V_{2}$. Suppose, to contrary, that $N(v) \subseteq V_{0} \cup V_{1}$. In particular, we have $B_{v} \subseteq V_{1}$. Since $t \geq 3$, the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=2, g(x)=0$ for $x \in B_{v} \backslash\left\{x_{1}\right\}$ and $g(x)=f(x)$ for each $x \in V(G) \backslash\left(B_{v} \backslash\left\{x_{1}\right\}\right)$ is a TRD-function of $G$ with weight at most $\gamma_{t R}(G)-1$, which is a contradiction. Hence $N(v) \cap V_{2} \neq \emptyset$. Let $E^{\prime}=$ $\left\{x_{1} x_{2}, x_{3} x_{4}, \ldots, x_{t-1} x_{t}\right\}$ if $t$ is even, and $E^{\prime}=\left\{x_{1} x_{2}, x_{1} x_{3}, x_{4} x_{5}, \ldots, x_{t-1} x_{t}\right\}$ if $t$ is odd. Observe that $\left|E^{\prime}\right|=\left\lceil\frac{t}{2}\right\rceil \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$. Now, the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=0$ and $g(x)=f(x)$ for each $x \in V(G) \backslash\{v\}$ is a TRD-function of $G+E^{\prime}$ with weight less than $\gamma_{t R}(G)$, and therefore $r_{t R}(G) \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

Our next result gives a characterization of connected graphs $G$ with $\Delta(G) \geq$ 4 such that $r_{t R}(G)=\Delta(G)-1$.

Theorem 19. Let $G$ be a connected graph with $\Delta(G) \geq 4$. Then, $r_{t R}(G)=$ $\Delta(G)-1$ if and only if for each $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ we have $\left|V_{1}\right|=0$ and $\mid$ epn $\left(u, V_{2}\right) \mid=\Delta(G)-1$ for every vertex $u \in V_{2}$.

Proof. Let $r_{t R}(G)=\Delta(G)-1$. Since $\Delta(G) \geq 4$, we deduce from Proposition 18 that for each $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ we have $\left|V_{1}\right|=0$. Let $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function. Then $\left|V_{2}\right| \geq 2$. By Theorem 14 we have

$$
\Delta(G)-1=r_{t R}(G) \leq \min \left\{\left|e p n\left(u, V_{2}\right)\right|: u \in V_{2}\right\} \leq \Delta(G)-1
$$

and so $\left|e p n\left(u, V_{2}\right)\right|=\Delta(G)-1$ for every vertex $u \in V_{2}$.

Conversely, Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{t R}(G)$-function. Then $\left|V_{1}^{f}\right|=0$ and $\left|e p n\left(u, V_{2}^{f}\right)\right|=\Delta(G)-1$ for every vertex $u \in V_{2}^{f}$. It follows that $V_{0}^{f}=$ $\bigcup_{v \in V_{2}^{f}}$ epn $\left(v, V_{2}^{f}\right)$ and so

$$
\begin{equation*}
n-\left|V_{2}^{f}\right|=\left|\bigcup_{v \in V_{2}^{f}} e p n\left(v, V_{2}^{f}\right)\right|=(\Delta(G)-1)\left|V_{2}^{f}\right| \tag{1}
\end{equation*}
$$

Let $S$ be an $r_{t R}(G)$-set and assume that $g=\left(V_{0}^{g}, V_{1}^{g}, V_{2}^{g}\right)$ is a $\gamma_{t R}(G+S)$ function. Then

$$
\begin{equation*}
\Delta\left|V_{2}^{f}\right|=\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right|=n=\left|V_{0}^{g}\right|+\left|V_{1}^{g}\right|+\left|V_{2}^{g}\right| \tag{2}
\end{equation*}
$$

Let $A$ be the set of vertices of $G$ that belong to $V_{1}^{g} \cup V_{2}^{g}$ or having a neighbor in $V_{2}^{g}$, and let $|A|=\ell$. Then $\ell \leq\left|V_{1}^{g}\right|+\Delta(G)\left|V_{2}^{g}\right|$. Moreover, $\gamma_{t R}(G+S) \leq \gamma_{t R}(G)-1$ implies that $\left|V_{1}^{g}\right|+2\left|V_{2}^{g}\right| \leq 2\left|V_{2}^{f}\right|-1$, and thus $\left|V_{2}^{g}\right| \leq\left|V_{2}^{f}\right|-\frac{1+\left|V_{1}^{g}\right|}{2}$ if $\left|V_{1}^{g}\right|$ is odd, and $\left|V_{2}^{g}\right| \leq\left|V_{2}^{f}\right|-\frac{2+\left|V_{1}^{g}\right|}{2}$ if $\left|V_{1}^{g}\right|$ is even. Therefore,

$$
\begin{aligned}
\ell & \leq\left|V_{1}^{g}\right|+\left(\left|V_{2}^{f}\right|-\frac{2+\left|V_{1}^{g}\right|}{2}\right) \Delta(G)=n-\Delta(G)-\left|V_{1}^{g}\right| \frac{\Delta(G)-2}{2} \\
& \leq n-\Delta(G)
\end{aligned}
$$

if $\left|V_{1}^{g}\right|$ is even, and

$$
\begin{aligned}
\ell & \leq\left|V_{1}^{g}\right|+\left(\left|V_{2}^{f}\right|-\frac{\left(1+\left|V_{1}^{g}\right|\right)}{2}\right) \Delta(G)=n-(\Delta(G)-1)-\left(\left|V_{1}^{g}\right|-1\right) \frac{\Delta(G)-2}{2} \\
& \leq n-(\Delta(G)-1)
\end{aligned}
$$

if $\left|V_{1}^{g}\right|$ is odd. Hence, there are at least $\Delta(G)-1$ vertices in $V_{0}^{g}$ which are not Roman dominated by $g$ in $G$, that is, those vertices of $G$ that do not belong to A. Since these vertices are Roman dominated by $g$ in $G+S$, we conclude that $r_{t R}(G)=|S| \geq \Delta(G)-1$ and this completes the proof.

In the aim to characterize all trees $T$ with $r_{t R}(T)=\Delta-1$, we introduce for $\Delta \geq 4$ the family $\mathcal{T}_{\Delta}$ of trees that can be obtained from a sequence $T_{1}, T_{2}, \ldots$, $T_{k}(k \geq 1)$ of trees such that $T_{1}=D S_{\Delta-1, \Delta-1}$, and if $k \geq 2, T_{i+1}$ is obtained recursively from $T_{i}$ by adding a double star $D S_{\Delta-1, \Delta-1}$ and joining one of its leaves to a vertex of degree less than $\Delta$ of $T_{i}$.

Theorem 20. A tree $T$ of order $n \geq 6$ and maximum degree $\Delta \geq 4$ satisfies $r_{t R}(T)=\Delta-1$ if and only if $T \in T_{\Delta}$.

Proof. Let $T \in T_{\Delta}$. Then $T$ can be obtained by a sequence $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ of trees, where $T_{1}=D S_{\Delta-1, \Delta-1}, T=T_{k}$, and, if $k \geq 2, T_{i+1}$ is obtained recursively from $T_{i}$ by adding a double star $D S_{\Delta-1, \Delta-1}$ and joining one of its leaves to a vertex of degree less than $\Delta$ of $T_{i}$. We proceed by induction on the number of operations performed to construct $T$. If $k=1$, then it is not difficult to observe that $r_{t R}\left(T_{1}\right)=\Delta-1$. This establishes the base case. Assume now that $k \geq 2$ and that the result is true for every tree $T^{\prime}=T_{k-1}$ of the family $T_{\Delta}$ constructed by $k-1$ operations. Let $T=T_{k}$ be a tree of $T_{\Delta}$ constructed by $k$ operations. Clearly, any total Roman domination function of $T_{k-1}$, can be extended to a TRD-function of $T_{k}$ by assigning the weight 2 to $a$ and $b$, where $a$ and $b$ are the support vertices of the added double star $D S_{\Delta-1, \Delta-1}$. Hence $\gamma_{t R}\left(T_{k}\right) \leq \gamma_{t R}\left(T_{k-1}\right)+4$.

Now let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}\left(T_{k}\right)$-function. We may assume that $f(a)=$ $f(b)=2$ and every neighbor $x$ of $a$ or $b$ has $f(x)=0$. Clearly the function $f$, restricted to $T_{k-1}$ is a total Roman domination function of $T_{k-1}$ and so

$$
\gamma_{t R}\left(T_{k}\right)=\omega(f) \geq 4+\omega\left(f_{T_{k-1}}\right) \geq 4+\gamma_{t R}\left(T_{k-1}\right) .
$$

Therefore $\gamma_{t R}\left(T_{k}\right)=\gamma_{t R}\left(T_{k-1}\right)+4$. Since $r_{t R}\left(T_{k-1}\right)=\Delta-1$, by Theorem 19 and $\gamma_{t R}\left(T_{k}\right)=\gamma_{t R}\left(T_{k-1}\right)+4$, for each $\gamma_{t R}\left(T_{k}\right)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ we have $\left|V_{1}\right|=0$ and $\left|\operatorname{epn}\left(u, V_{2}\right)\right|=\Delta-1$ for every vertex $u \in V_{2}$. Thus $r_{t R}\left(T_{k}\right)=\Delta-1$.

Now assume that $T$ is a tree with $r_{t R}(T)=\Delta-1$. We proceed by induction on $n$. Note that $\operatorname{diam}(T) \geq 2$, since $n \geq 6$. If $\operatorname{diam}(T)=2$, then $T$ is a star and so $r_{t R}(T)=0$ which is a contradiction. If $\operatorname{diam}(T)=3$, then $T$ is a double star $D S_{p, q}:(p \geq q \geq 3)$. Observe that if $p \neq q$, then $r_{t R}(T)<\Delta-1$. Hence $p=q=\Delta-1$ and so $T \in \mathcal{T}_{\Delta}$. Assume that $\operatorname{diam}(T)=4$ and let $u_{1} u_{2} u_{3} u_{4} u_{5}$ be a diametrical path. Note that every support vertex of $T$ has at least two leaves, otherwise there exists a $\gamma_{t R}(T)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $\left|V_{1}\right| \geq 1$ which contradicts Theorem 19. Let $f$ be a $\gamma_{t R}(T)$-function. By Theorem 19, $f\left(u_{2}\right)=f\left(u_{3}\right)=f\left(u_{4}\right)=2$. If $u_{3}$ is not a support vertex, then every neighbor of $u_{3}$ is a support vertex and assigned a 2 under $f$. But in that case $f\left(u_{3}\right)=1$, a contradiction. Thus $u_{3}$ is a support vertex. But then $\left|e p n\left(u_{3}, V_{2}\right)\right|<\Delta-1$, contradicting Theorem 19. Hence $\operatorname{diam}(T) \geq 5$. Let $P: u_{1} u_{2} u_{3} \cdots u_{d}$ be a diametrical path. If $u_{3}$ is not a support vertex, then $u_{3}$ may be assigned a 1, a contradiction. Thus $u_{3}$ is a support vertex. We claim that $d\left(u_{4}\right)=2$ and no support vertex besides $u_{2}$ is adjacent to $u_{3}$. Indeed, if $d\left(u_{4}\right) \geq 3$ or $u_{3}$ is adjacent to a support vertex, then clearly $\left|e p n\left(u_{3}, V_{2}\right)\right|<\Delta-1$, which contradicts Theorem 19. Moreover, since $f\left(u_{2}\right)=f\left(u_{3}\right)=2$, we must have $d\left(u_{2}\right)=d\left(u_{3}\right)=\Delta$. Also, since $\mid$ epn $\left(u_{3}, V_{2}\right) \mid=\Delta-1$ we have $u_{5} \notin V_{2}$. Now, let $T^{\prime}$ be the tree containing $u_{5}$ obtained by removing the edge $u_{4} u_{5}$. Clearly the other component containing $u_{4}$ is a double star $D S_{\Delta-1, \Delta-1}$. Now if $r_{t R}\left(T^{\prime}\right)<\Delta-1$, then we can easily obtain $r_{t R}(T)<\Delta-1$, a contradiction. Thus $r_{t R}\left(T^{\prime}\right)=\Delta-1$,
and by induction on $T^{\prime}$, we have $T^{\prime} \in \mathcal{T}_{\Delta}$. Note that $u_{5}$ has degree less than $\Delta$ in $T^{\prime}$. Since $T$ is obtained from $T^{\prime}$ by adding a $D S_{\Delta-1, \Delta-1}$ attached from its leaf to a vertex of $T^{\prime}$ of degree less than $\Delta$, we deduce that $T \in T_{\Delta}$.

Theorem 21. For any graph $G$ with order $n, r_{t R}(G) \leq n-\Delta(G)-1$.
Proof. If $\Delta(G)=n-1$, then by Observation 1, we have $r_{t R}(G)=0$. Thus assume that $\Delta(G)<n-1$. Clearly $\gamma_{t R}(G) \geq 4$. Let $v$ be the vertex of degree $\Delta(G)$ and let $X=V(G) \backslash N[v]=\left\{y_{1}, \ldots, y_{k}\right\}$. Note that $|X|=n-\Delta(G)-$ 1. Since $\Delta\left(G+\left\{v y_{1}, \ldots, v y_{k}\right\}\right)=n-1$, we have $\gamma_{t R}\left(G+\left\{v y_{1}, \ldots, v y_{k}\right\}\right)=3$ yielding $r_{t R}(G) \leq n-\Delta(G)-1$.

Theorem 22. Let $G$ be a graph of order $n \geq 5$ such that $r_{t R}(G)>1$. Then $r_{t R}(G)=n-\Delta(G)-1$ if and only if $\gamma_{t R}(G)=4$.

Proof. Let $\gamma_{t R}(G)=4$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G)$-function. Then the only way to reduce $\gamma_{t R}(G)$, is to reduce it to 3 . This can be accomplished in a minimum way by making the max degree vertex to be adjacent to all the vertices, hence $r_{t R}(G)=n-\Delta(G)-1$

Conversely, let $G$ be a graph such that $r_{t R}(G)=n-\Delta(G)-1>1$. Suppose to the contrary that, $\gamma_{t R}(G) \neq 4$. If $\gamma_{t R}(G)=3$, then there exists a vertex of degree $\Delta(G)=n-1$ and so $r_{t R}(G)=0$ which is a contradiction. Hence $\gamma_{t R}(G) \geq 5$. By Proposition $10, r_{t R}(G) \leq 2$ or there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}$ is a dominating set of $G$. If $r_{t R}(G) \leq 2$, then since $r_{t R}(G)>1$, we have $r_{t R}(G)=2$, and thus $\Delta(G)=n-3$. Let $v$ be a vertex of degree $n-3$ in $G$. Then by adding an edge $u v \in \bar{G}$, we obtain $\Delta(G+u v)=n-2$, and Proposition 6 implies that $\gamma_{t R}(G+u v)=4$. Hence $r_{t R}(G)=1$ which is a contradiction. Therefore we conclude that there is a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}$ is a dominating set of $G$. It follows from Proposition 11 that $\left|V_{2}\right| \geq 2$. Let $x$ be a vertex of degree $\Delta(G)$ and let $X=V(G) \backslash N[x]$. If $f(x)=2$, then for $y \in V_{2} \backslash\{x\}$, add the set $F_{1}$ of edges from $x$ to vertices in epn $\left(y, V_{2}\right)$. The function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(y)=1$ and $g(x)=f(x)$ for each $x \in V(G) \backslash\{y\}$, is a TRD-function of $G+F_{1}$ of weight less than $\omega(f)$. Since $\mid$ epn $\left(y, V_{2}\right) \mid<n-\Delta-1$, we have $r_{t R}(G)<n-\Delta(G)-1$, a contradiction. Suppose now that $f(x)=1$. If there exists a vertex $z \in V_{2}$ such that $\operatorname{epn}\left(z, V_{2}\right) \cap V_{0} \subseteq N(x)$, then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(x)=2, g(z)=1$ and $g(u)=f(u)$ for $u \in V(G) \backslash\{x, z\}$ is a $\gamma_{t R}(G)$-function and so we are in a previous considered case and this leads to the desired result. Assume that for any $z \in V_{2}$, epn $\left(z, V_{2}\right) \cap V_{0} \varsubsetneqq N(x)$. Let $y \in V_{2} \cap N(x)$. Note that such a vertex $y$ exists since $V_{2}$ dominates $G$. Let $G^{\prime}$ be the graph obtained from $G$ by adding edges from $x$ to epn $\left(y, V_{2}\right) \cap V_{0} \cap X$ and to vertices in $\left(V_{1} \cup V_{2}\right) \cap X$. Then the function $g: V(G) \rightarrow\{0,1,2\}$ defined
by $g(x)=2, g(y)=0$ and $g(w)=f(w)$ for each $w \in V(G) \backslash\{x, y\}$, is a TRDfunction of $G^{\prime}$ of weight less than $\omega(f)$, implying that $r_{t R}(G)<n-\Delta(G)-1$, a contradiction. Finally, let $f(x)=0$ and consider the following two cases.

Case 1. $\left|V_{2}\right|=2$. Let $V_{2}=\left\{u_{1}, u_{2}\right\}$. If $\left(N\left(u_{i}\right) \cap V_{0}\right) \subseteq N(x)$ for $i=1,2$, then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(x)=2, g\left(u_{1}\right)=g\left(u_{2}\right)=1$ and $g(w)=f(w)$ for each $w \in V(G) \backslash\left\{x, u_{1}, u_{2}\right\}$, is a $\gamma_{t R}$-function of $G$ and we are in a previous considered case that leads to a contradiction. Suppose, without loss of generality, that $\left(N\left(u_{2}\right) \cap V_{0}\right) \nsubseteq N(x)$. Since $\gamma_{t R}(G) \geq 5$, we have $V_{1} \neq \emptyset$ and so we assume $c \in V_{1}$. Let $G^{\prime}$ be the graph obtained from $G$ by joining $x$ to all vertices in epn $\left(u_{1}, V_{2}\right) \cap V_{0} \cap X$ and all vertices in $X \cap\left(V_{1} \cup V_{2}\right)$ and define $g: V(G) \rightarrow\{0,1,2\}$ by $g(x)=2, g\left(u_{1}\right)=g(c)=0$ and $g(w)=f(w)$ for each $w \in V(G) \backslash\left\{x, u_{1}, c\right\}$. Clearly, $g$ is a TRD-function of $G^{\prime}$ of weight less than $\omega(f)$ and this implies that $r_{t R}(G)<n-\Delta(G)-1$, a contradiction.

Case 2. $\left|V_{2}\right| \geq 3$. Let $V_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$. If $\left(N\left(u_{i}\right) \cap V_{0}\right) \subseteq N(x)$ for $i=1, \ldots, k$, then we get a contradiction as above. Assume, without loss of generality, that $\left(N\left(u_{k}\right) \cap V_{0}\right) \nsubseteq N(x)$. Let $G^{\prime}$ be the graph obtained from $G$ by joining $x$ to all vertices in epn $\left(u_{i}, V_{2}\right) \cap V_{0} \cap X$ for $i=1, \ldots, k-1$, and all vertices in $X \cap\left(V_{1} \cup V_{2}\right)$ and define $g: V(G) \rightarrow\{0,1,2\}$ by $g(x)=2, g\left(u_{1}\right)=0, g\left(u_{2}\right)=1$ and $g(w)=f(w)$ for each $w \in V(G) \backslash\left\{x, u_{1}, u_{2}\right\}$. Clearly, $g$ is a TRD-function of $G^{\prime}$ of weight less than $\omega(f)$ and this implies that $r_{t R}(G)<n-\Delta(G)-1$, a contradiction.

The following result due to Cockayne et al. [6] will be useful for the next.
Theorem 23 [6]. If $G$ is a connected graph of order $n \geq 3$ and $\Delta(G) \leq n-2$, then $\gamma_{t}(G) \leq n-\Delta(G)$.

Theorem 24. Let $G$ be a graph of order $n$. If $r_{t R}(G) \neq 0$, then $r_{t R}(G) \leq$ $n-\Delta(G)-\left\lfloor\frac{\gamma_{t R}(G)}{2}\right\rfloor+1$.

Proof. We shall show that $\gamma_{t R}(G) \leq 2 n-2 \Delta(G)-2 r_{t R}(G)+2$. Since $\Delta(G) \leq$ $n-1-r_{t R}(G)$, by Theorem 21, we add $r_{t R}(G)-1$ edges incident with a vertex of maximum degree and call such a set of edges $S$. Clearly, $\gamma_{t R}(G)=\gamma_{t R}(G+S)$. Since $r_{t R}(G) \neq 0$, we have $\Delta(G)<n-1$ and so by Theorem $23, \gamma_{t}(G) \leq$ $n-\Delta(G)$. Therefore, by Proposition 2 we obtain

$$
\begin{aligned}
\gamma_{t R}(G) & =\gamma_{t R}(G+S) \leq 2 \gamma_{t}(G+S) \\
& \leq 2 n-2 \Delta(G+S) \leq 2 n-2 \Delta(G)-2 r_{t R}(G)+2
\end{aligned}
$$

This proves the result.

## 4. NP-Hardness of Total Roman Reinforcement

Our aim in this section is to show that the decision problem associated with the total Roman reinforcement is NP-hard even when restricted to bipartite graphs.

## Total Roman Reinforcement problem (TR-reinforcement)

Instance: A nonempty graph $G$ and a positive integer $k$.
Question: Is $r_{t R}(G) \leq k$ ?
We show the NP-hardness of TR-reinforcement problem by transforming the 3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified below was proven to be NP-complete in [9].

## 3-SAT problem

Instance: A collection $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over a finite set $U$ of variables such that $\left|C_{j}\right|=3$ for $j=1,2, \ldots, m$.
Question: Is there a truth assignment for $U$ that satisfies all the clauses in $\mathcal{C}$ ?
Theorem 25. The TR-reinforcement problem is NP-hard for bipartite graphs.
Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of the 3 -SAT problem. We will construct a graph $G$ and a positive integer $k$ such that $\mathcal{C}$ is satisfiable if and only if $r_{t R}(G) \leq k$.

For each $i \in\{1,2, \ldots, n\}$, let $H_{i}$ be the connected graph obtained from a $K_{2,4}$ with partite sets $\left\{u_{i}, \overline{u_{i}}\right\}$ and $\left\{a_{i}, b_{i}, r_{i}, s_{i}\right\}$ by adding two new vertices attached to vertex $s_{i}$. Also let $F$ be the graph obtained from a cycle $C_{4}:\left(v_{1} v_{2} v_{3} v_{4}\right)$ by adding three new vertices $v^{\prime}, v^{\prime \prime}$ and $v^{\prime \prime \prime}$ that we join to $v_{1}$. Now corresponding to the variable $u_{i} \in U$, associate the graph $H_{i}$. Corresponding to each clause $C_{j}=\left\{x_{j}, y_{j}, z_{j}\right\} \in \mathcal{C}$, associate a single vertex $c_{j}$ and add the edge set $E_{j}=$ $\left\{c_{j} x_{j}, c_{j} y_{j}, c_{j} z_{j}\right\}$. Next add the graph $F$ and join $v_{2}$ and $v_{4}$ to each $c_{j}$, and let $G$ be the resulting graph. Clearly, $G$ is a bipartite graph of order $8 n+m+7$ and size $10 n+5 m+7$. Set $k=1$. Also, for every $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$, we have $f\left(V\left(H_{i}\right)\right) \geq 4$ for each $i \in\{1,2, \ldots, n\}$. In particular, $f\left(s_{i}\right)=2$ and $f(x)=2$ for $x \in\left\{u_{i}, \overline{u_{i}}\right\}$. Moreover, to total Roman dominate vertices of $F$, we need, without loss of generality, that $f(V(F)) \geq 4$. Therefore $\gamma_{t R}(G) \geq 4 n+4$. The equality is obtained since one can easily construct a TRD-function of $G$ with weight $4 n+4$.

We shall show that $\mathcal{C}$ is satisfiable if and only if $r_{t R}(G)=1$. Assume that $\mathcal{C}$ is satisfiable, and let $t: U \rightarrow\{T, F\}$ be a satisfying truth assignment for $\mathcal{C}$. We construct a subset $D$ of vertices of $G$ as follows. If $t\left(u_{i}\right)=T$, then put
the vertices $u_{i}$ and $s_{i}$ in $D$; if $t\left(u_{i}\right)=F$, then put the vertices $\overline{u_{i}}$ and $s_{i}$ in $D$. Hence $|D|=2 n$. Define the function $g: V(G) \rightarrow\{0,1,2\}$ by $g(x)=2$ for every $x \in D, g\left(v_{1}\right)=2, g\left(v_{2}\right)=1$ and $g(y)=0$ for the remaining vertices $y \in V(G)$. It is easy to check that $g$ is a TRD-function of $G+v_{3} s_{1}$ of weight $4 n+3<\gamma_{t R}(G)=4 n+4$. Therefore $r_{t R}(G)=1$.

Conversely, assume that $r_{t R}(G)=1$. Then there is an edge $e \in E(\bar{G})$ such that $\gamma_{t R}(G+e)<4 n+4$. Let $h=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}(G+e)$-function such that every leaf is assigned 0 . Clearly such a $\gamma_{t R}(G+e)$-function exists. Then $h\left(V\left(H_{i}\right)\right) \geq 4$ for each $i$. In particular $f\left(s_{i}\right)=2$ and $f(x)=2$ for $x \in\left\{u_{i}, \overline{u_{i}}\right\}$. Also since $v_{1}$ is a support vertex with at least two leaves (in case $e$ is incident with the third leaf neighbor of $v_{1}$ ) we have $h\left(v_{1}\right)=2$. Now since $\gamma_{t R}(G+e)<4 n+4$, we deduce that $h\left(v_{2}\right)+h\left(v_{3}\right)+h\left(v_{4}\right) \leq 1$. Moreover, using the fact that every leaf is assigned a 0 under $h$, then whatever the added edge $e$, we must have $h\left(v_{2}\right)+h\left(v_{3}\right)+h\left(v_{4}\right) \geq 1$, and the equality is obtained. Note that if $h\left(v_{3}\right)=1$, then $e=v_{1} v_{3}$, and if $h\left(v_{3}\right)=0$, then $e=v_{3} z$, where $z \in\left\{s_{i}, u_{i}, \overline{u_{i}}\right\}$ for some $i$. Therefore $\gamma_{t R}(G+e)=4 n+3$, where $\left|\left\{u_{i}, \overline{u_{i}}\right\} \cap V_{2}\right|=1$ for every $i$. Since every vertex of $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ must have a neighbor in $V_{2}$, and so it must be dominated by a vertex of $\left\{u_{i}, \overline{u_{i}}\right\}$ for some $i \in\{1,2, \ldots, n\}$.

Let $t^{\prime}: U \rightarrow\{T, F\}$ be a mapping defined by $t^{\prime}\left(u_{i}\right)=T$ if $h\left(u_{i}\right)=2$ and $t^{\prime}\left(u_{i}\right)=F$ if $h\left(\overline{u_{i}}\right)=2$. Assume that $h\left(u_{i}\right)=2$ and $c_{j}$ is dominated by $u_{i}$. By the construction of $G$, the literal $u_{i}$ is in the clause $C_{j}$. Then $t^{\prime}\left(u_{i}\right)=T$, implying that the clause $C_{j}$ is satisfied by $t^{\prime}$. Next assume that $h\left(\overline{u_{i}}\right)=2$ and $c_{j}$ is dominated by $\overline{u_{i}}$. By the construction of $G$, the literal $\overline{u_{i}}$ is in the clause $C_{j}$. Then $t^{\prime}\left(u_{i}\right)=F$, and thus $t^{\prime}$ assigns $\overline{u_{i}}$ the true value $T$. Hence $t^{\prime}$ satisfies the clause $C_{j}$. Therefore $\mathcal{C}$ is satisfiable. Since the construction of the total Roman reinforcement instance is straightforward from a 3 -SAT instance, the size of the total Roman reinforcement instance is bounded above by a polynomial function of the size of 3-SAT instance. Consequently, we obtain a polynomial transformation.

We conclude this paper with two open problems.
Problem 1. Characterize all graphs $G$ of maximum degree 3 with $r_{t R}(G)=2$.
Let $F_{1}$ be the tree obtained from three copies of $K_{1,2}$ by adding a new vertex and joining it to the centers of $K_{1,2}$. Assume $F_{2}=D S_{2,2}$ and $F_{3}=K_{2}$. Let $\mathcal{T}_{3}$ be the family of trees that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ of trees such that $T_{1}=F_{1}$ or $F_{2}$ and if $k \geq 2, T_{i+1}$ is obtained recursively from $T_{i}$ by adding one of the trees $F_{1}, F_{2}$ or $F_{3}$ and joining one of its leaves to a vertex of degree less than 3 of $T_{i}$.

Problem 2. Prove or disprove: A tree $T$ of order $n \geq 6$ and maximum degree 3 satisfies $r_{t R}(T)=2$ if and only if $T \in \mathcal{T}_{3}$.

## References

[1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami and M. Soroudi, On the total Roman domination number of graphs, Ars Combin., to appear.
[2] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501-517. doi:10.2298/AADM160802017A
[3] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Global total Roman domination in graphs, Discrete Math. Algorithms Appl. 9 (2017) ID: 1750050. doi:10.1142/S1793830917500501
[4] J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim. 35 (2018) 126-133. doi:10.1007/s10878-017-0158-5
[5] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami and L. Volkmann, Total Roman domination number of trees, Australas. J. Combin. 69 (2017) 271-285.
[6] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219. doi:10.1002/net. 3230100304
[7] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22.
doi:10.1016/j.disc.2003.06.004
[8] O. Favaron, H. Karami, R. Khoeilar, and S.M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math. 309 (2009) 3447-3451. doi:10.1016/j.disc.2008.09.043
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, (Freeman, San Francisco, 1979).
[10] M.A. Henning, A survey on selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32-63. doi:10.1016/j.disc.2007.12.044
[11] M.A. Henning, N. Jafari Rad and J. Raczek, A note on total reinforcement in graphs, Discrete Appl. Math. 159 (2011), 1443-1446. doi:10.1016/j.dam.2011.04.024
[12] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013). doi:10.1007/978-1-4614-6525-6
[13] N. Jafari Rad and S. Sheikholeslami, Roman reinforcement in graphs, Bull. Inst. Combin. Appl. 61 (2011) 81-90.
[14] C.-H. Liu and G.J. Chang, Roman domination on 2-connected graphs, SIAM J. Discrete Math. 26 (2012) 193-205.
doi:10.1137/080733085
[15] C.-H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386-1391.
doi:10.1016/j.disc.2011.12.021
[16] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608-619. doi:10.1007/s10878-012-9482-y
[17] P. Pavlič and J. Žerovnik, Roman domination number of the Cartesian products of paths and cycles, Electron. J. Combin. 19 (3) (2012) \#P19.
[18] C.S. Revelle and K.E. Rosing, Defendens Imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594. doi:10.1080/00029890.2000.12005243
[19] N. Sridharan, M.D. Elias and V.S.A. Subramanian, Total reinforcement number of a graph, AKCE Int. J. Graphs Comb. 4 (2007) 197-202.
[20] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136-139. doi:10.1038/scientificamerican1299-136
[21] I.G. Yero and J.A. Rodríguez-Velázquez, Roman domination in Cartesian product graphs and strong product graphs, Appl. Anal. Discrete Math. 7 (2013) 262-274. doi:10.2298/AADM130813017G

Received 19 June 2017
Revised 21 November 2017 Accepted 21 November 2017

