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Abstract

For an r-regular graph G, we define an edge-coloring c with colors from
{1, 2, . . . , k}, in such a way that any vertex of G is incident with at least
one edge of each color. The multiset-color cm(v) of a vertex v is defined as
the ordered tuple (a1, a2, . . . , ak), where ai (1 ≤ i ≤ k) denotes the number
of edges of color i which are incident with v in G. Then this edge-coloring
c is called a k-kaleidoscopic coloring of G if every two distinct vertices in
G have different multiset-colors and in this way the graph G is defined as
a k-kaleidoscope. In this paper, we determine the integer k for a complete
graph Kn to be a k-kaleidoscope, and hence solve a conjecture in [P. Zhang,
A Kaleidoscopic View of Graph Colorings, (Springer Briefs in Math., New
York, 2016)] that for any integers n and k with n ≥ k + 3 ≥ 6, the com-
plete graph Kn is a k-kaleidoscope. Then, we construct an r-regular 3-
kaleidoscope of order

(

r−1

2

)

− 1 for each integer r ≥ 7, where r ≡ 3 (mod 4),
which solves another conjecture in [P. Zhang, A Kaleidoscopic View of Graph
Colorings, (Springer Briefs in Math., New York, 2016)] on the maximum or-
der of r-regular 3-kaleidoscopes.
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1. Introduction

In this paper, all graphs are simple, undirected and finite. For notation and
terminology we follow the book [1]. An edge-coloring of a graph G is a map-
ping from the edges of G to a finite number of colors. In the early days, many
classical colorings were put forward and studied such as proper edge-coloring,
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list edge-coloring, acyclic edge-coloring and so on. Recently, based on a variety
of application instances in different fields, a number of new edge-colorings were
put forward. For example, the rainbow edge-coloring has received wide attention
due to its close connection with network security and many valuable results were
derived in the papers such as [3, 4] and the book [5].

In this paper, we examine another kind of edge-coloring, the kaleidoscopic
coloring, which was first introduced in [2]. Assume that a group of n computers,
each having r ports, are needed to build a network. There are k types of connec-
tions and every pair of computers can have at most one connection between them.
It is necessary to use every port so that the fail-safe connections would be max-
imized. Furthermore, distinct computers must have different numbers of types
of connections so that the computer engineer is able to distinguish them. The
above example is an application instance of a kaleidoscopic coloring. Actually
it can model a lot of situations and be applied to many fields such as computer
science and telecommunications. Next we will give a definition of kaleidoscopic
coloring.

For an r-regular graph G, we define an edge-coloring with the colors [k] =
{1, 2, 3, . . . , k} (k ≥ 3) assigned to the edges of G such that any vertex in G is
incident with at least one edge of each color. For a color set S = {i1, i2, . . . , is},
the S-tuple of a vertex v is defined as (ai1 , ai2 , . . . , ais), where aij (1 ≤ j ≤ s)
denotes the number of edges of color ij that are incident with v inG. In particular,
the multiset-color cm(v) of the vertex v is an S-tuple for S = [k]. Then this edge-
coloring c is called a k-kaleidoscopic coloring of G if every two distinct vertices in
G have different multiset-colors and in this way the graph G is a k-kaleidoscope.

A proper edge-coloring of a graph G is a factorization of the edge set of G
into F1, F2, . . . , Fk such that Fi (1 ≤ i ≤ k) is an independent edge set; what we
need for the kaleidoscopic coloring is a factorization that enables distinct vertices
to have distinct [k]-tuples, where a [k]-tuple for a vertex v in G is defined as
(degF1

(v), degF2
(v), . . . , degFk

(v)).

It is well known that every connected graph has at least two vertices with
the same degree. Actually there is exactly one connected graph G of order n
containing only two vertices of the same degree. We can describe the graph as
follows. Label the vertices of G as v1, v2, . . . , vn, and add an edge vivj if and only
if i + j ≥ n + 1. It is obvious that v⌊n

2 ⌋
and v⌊n

2 ⌋+1 have the same degree
⌊

n
2

⌋

.

Therefore for any decomposition of any r-regular graph G into two graphs D1 and
D2, at least two vertices u and v have the property: degD1

(u) = degD1
(v) and

degD2
(u) = degD2

(v). So any r-regular graph G is definitely not a 2-kaleidoscope,
thus we will consider r-regular graphs with r ≥ 3. It can be easily seen that
r > k is required for an r-regular graph to be a k-kaleidoscope according to the
definition. But in fact r > k+1 holds since r = k+1 would imply that at most k
different [k]-tuples satisfy the demand of at least r + 1 distinct [k]-tuples for the
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vertices in G, a contradiction. Combining with the discussion above, we come to
the conclusion that for an r-regular graph G of order n, the possible values of k
for G to be a k-kaleidoscope can only be integers between 3 and n− 3.

In [6], the author solved the cases for k to be 3 or n− 3 when G is complete.
The following conjecture was also posed in the same book.

Conjecture 1.1 [6]. For integers n and k with n ≥ k+3 ≥ 6, the complete graph

Kn is a k-kaleidoscope.

Another open problem from [6] is to determine the maximum order of an r-
regular 3-kaleidoscope. A simple calculation shows that there are

(

r−1
2

)

different
[3]-tuples altogether for an r-regular graph. Therefore the number of vertices
in an r-regular 3-kaleidoscopic graph cannot exceed

(

r−1
2

)

. Since for the integer

r ≡ 3 (mod 4),
(

r−1
2

)

is odd, so there is no r-regular graph of order
(

r−1
2

)

. Thus

the largest possible order for an r-regular 3-kaleidoscope is
(

r−1
2

)

− 1. Zhang [6]
proved that for any r (r ≥ 5) such that r 6≡ 3 (mod 4), there exists an r-regular
3-kaleidoscope of order

(

r−1
2

)

. Furthermore, the following conjecture was posed
in the same book.

Conjecture 1.2 [6]. For every integer r, r ≥ 7 and r ≡ 3 (mod 4), there is an

r-regular 3-kaleidoscope of order
(

r−1
2

)

− 1.

In this paper, we verify these two conjectures and give their proofs in Sections
2 and 3, respectively.

2. Proof of Conjecture 1.1

In the proof of Conjecture 1.1, we need two auxiliary lemmas from [6].

Lemma 2.1 [6]. For each integer n≥ 6, the complete graph Kn is a 3-kaleidoscope.

Lemma 2.2 [6]. For each integer k ≥ 3, the complete graph Kk+3 is a k-
kaleidoscope.

Proof of Conjecture 1.1. The case when k = 3 is verified in Lemma 2.1. For
the complete graph Kn, we give our proof by induction on n. The base case when
n = 6 follows from Lemma 2.1. We assume that Km (m ≥ 6) is a k-kaleidoscope
for any k (3 ≤ k ≤ m−3), where m is any integer smaller than n. We distinguish
two cases according to the range of k.

Case 1.
⌈

n
2

⌉

≤ k ≤ n− 3. It is well known that for even values of n, n ≥ 4,
Kn can be decomposed into n

2 − 1 Hamiltonian cycles H1, H2, . . . , Hn
2
−1 and a

perfect matching F . We then put the (n−3)-kaleidoscopic coloring of G = Kn to
be an (n − 3)-kaleidoscope depicted in the proof of Lemma 2.2 here. When n is
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even, for each i
(

1 ≤ i ≤ n
2 − 2

)

, we give a proper coloring to Hi with the colors
2i− 1 and 2i. Furthermore, we assign color n− 3 to all edges in F . The vertices
v1, v2, . . . , vn of the Hamiltonian cycle Hn

2
−1 are placed in clockwise order, we

assign color i
(

1 ≤ i ≤ n
2

)

to the two edges incident with v2i in Hn
2
−1. While

when n (n ≥ 7) is odd, let v ∈ V (G), then G− v can be decomposed into n−1
2 −1

Hamiltonian cycles H1, H2, H3, . . . , Hn−1

2
−1 and a perfect matching F , then color

the edges of H1, H2, H3, . . . , Hn−1

2
−2 and F as above. For Hn−1

2
−1 containing

v1, v2, . . . , vn−1 in the clockwise order, assign color i
(

1 ≤ i ≤ n−1
2

)

to the edge
v2i−1v2i and color n−3 to the remaining edges. At last give color i

(

1 ≤ i ≤ n−1
2

)

to the edge vv2i−1, assign color n−1
2 + i

(

1 ≤ i ≤ n−1
2 − 3

)

to the edge vv2i and
give color n − 3 to the remaining edges in G. We denote the coloring depicted
above by c and we give a k-kaleidoscopic coloring c′ on the foundation of c for
⌈

n
2

⌉

≤ k ≤ n− 4. That is,

c′(e) =

{

c(e) if 1 ≤ c(e) ≤ k − 1,

k if k ≤ c(e) ≤ n− 3.

The coloring c′ is k-kaleidoscopic since the [k]-tuples for different vertices were
different in their former

⌈

n
2

⌉

− 1 positions, so we can still distinguish them after
we combine the latter colors into one.

Case 2. For 4 ≤ k ≤
⌈

n
2

⌉

− 1, we again distinguish two subcases according
to n being even or odd.

Subcase 1. When n is even. We first consider the case when 5 ≤ k ≤
⌈

n
2

⌉

− 1. Partition the n vertices of Kn into two copies of Kn
2
, denoted by

G1 and G2 with all edges between them. By the inductive hypothesis, there
exists a (k − 2)-kaleidoscopic coloring of Kn

2
. Then we give this coloring using

the colors from {3, 4, . . . , k} to both G1 with vertices v1, v2, . . . , vn
2
and G2 with

vertices v′1, v
′

2, . . . , v
′
n
2

. Each pair of vertices vi and v′i
(

1 ≤ i ≤ n
2

)

share the

same {3, 4, . . . , k}-tuple. Thus it is enough to provide a coloring of the graph
Kn

2
,n
2
using the colors from {1, 2} such that each vertex is incident with at least

one edge of each color from {1, 2} and vi and v′i have different {1, 2}-tuples. Let
wi = vi−1

(

2 ≤ i ≤ n
2

)

, w1 = vn
2
, w′

i = v′i+1

(

1 ≤ i ≤ n
2 − 1

)

and w′
n
2

= v′1. Color

1 is assigned to the edge wiw
′

j if and only if n
2 + 1 ≤ i + j ≤ n − 1 and color 2

is assigned to all the remaining edges in Kn
2
,n
2
. Then the {1, 2}-tuples of vertices

of Kn
2
,n
2
are listed in the chart below. As a result, for any 1 ≤ i ≤ n

2 , vi and v′i
have distinct {1, 2}-tuples and then this coloring is just what we want.

If k = 4, then Gi (i = 1, 2) contains the unique connected spanning subgraph
Fi with only two vertices sharing the same degree as we say in the introduction.
List the vertices of Fi according to their degrees in the nondecreasing order and
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vertex v1 vi (2 ≤ i ≤ n
2 − 2) vn

2
−1 vn

2

{1, 2}-tuple (2, n2 − 2) (i+ 1, n2 − i− 1) (n2 − 1, 1) (1, n2 − 1)

vertex v′1 v′i (2 ≤ i ≤ n
2 − 2) v′n

2
−1 v′n

2

{1, 2}-tuple (n2 − 1, 1) (i− 1, n2 − i+ 1) (n2 − 2, 2) (n2 − 1, 1)

Table 1. The corresponding {1, 2}-tuples of the vertices of Kn

2
,n
2
.

label them as v1, v2, . . . , vn
2
in F1 and v′1, v

′

2, . . . , v
′
n
2

in F2. Let H1 = F1− vn
2
v⌊n

4 ⌋
and H2 = F2 − v′n

2

v′
⌊n

4 ⌋
. Assign color 3 to the edges of Hi (i = 1, 2) and color

4 to the remaining edges in Gis. The remaining edges are colored as the above
description except for a little change that the color of w′

n
2
−2wn

2
is 2 instead of 1.

The checkout is similar.

Subcase 2. When n is odd. The simplest case is k = 4 and n ≥ 13. In
this case, split the graph Kn into K⌈n

2 ⌉
and K⌊n

2 ⌋
with all edges between them.

Give a 3-kaleidoscopic coloring respectively to K⌈n
2 ⌉

and K⌊n
2 ⌋

using the colors

2, 3 and 4. And assign color 1 to all edges between them. For the case that
5 ≤ k ≤

⌈

n
2

⌉

− 1 and n ≥ 13, label the vertices of K⌈n
2 ⌉

and K⌊n
2 ⌋

respectively

as v1, v2, . . . , v⌈n
2 ⌉

and v′1, v
′

2, . . . , v
′

⌊n
2 ⌋
, furthermore we each give them a (k− 3)-

kaleidoscopic coloring using the colors from {4, 5, . . . , k} if k 6= 5 and a 3-kalei-
doscopic coloring using colors from {3, 4, 5} if k = 5. For the former case, viv

′

j is
assigned to color a (a ∈ {1, 2, 3}) if i + j ≡ a (mod 3) while in the latter case,
viv

′

j has color b (b ∈ {1, 2}) if i+ j ≡ b (mod 2).

Only three particular cases are left. That is, k = 4 when n = 9 and k = 4
or 5 when n = 11. Like our discussion in Subcase 1, we again find the three
unique connected spanning subgraph F4, F5 and F6 with only two vertices of the
same degree contained in K4, K5 and K6 appearing in the decomposition of K9

and K11. Similarly, the vertices of F4, F5 and F6 are ordered in nondecreasing
sequence according to their degrees as vi (1 ≤ i ≤ 4), v′i (1 ≤ i ≤ 5) and v′′i
(1 ≤ i ≤ 6). Let H4 = F4 − v2v4, H5 = F5 − v′2v

′

5 and H6 = F6 − v′′3v
′′

6 . Color
the edges of Hi (i = 4, 5, 6) with 1 and all the remaining edges in Ki (i = 4, 5, 6)
with 2. Thus v1 and v2, v3 and v4, v

′

1 and v′2, v
′

4 and v′5, v
′′

2 and v′′3 , in addition
with v′′5 and v′′6 , each couple of these six has the same {1, 2}-tuple. As a result,
we only need to provide a coloring to the edges of K4,5 or K5,6 using the colors
3, 4 and to the edges of K5,6 using the colors 3, 4, 5 such that the above six
couples cannot have the same {3, 4}-tuples or {3, 4, 5}-tuples. The vertices can
be matched properly to vi (1 ≤ i ≤ 4), v′k (1 ≤ k ≤ 5) or v′′t (1 ≤ t ≤ 6) as we
show in Figure 1 so that the six couples would not have the same multiset-colors.
Thus, our proof is done.
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Color 3

Color 5

Color 4

(2, 2) (1, 3) (1, 3) (1, 3) (2, 2)

(1, 4) (2, 3) (3, 2) (1, 4) (1, 5)(3, 3)(3, 3)(2, 4)(1, 5)

(2, 3) (1, 4) (2, 3) (1, 4) (3, 2) (1, 4)

(2, 1, 2) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3)(2, 1, 2)

(1, 1, 4) (2, 1, 3) (3, 1, 2) (1, 2, 3) (1, 1, 4)

k = 4, n = 9

k = 5, n = 11

k = 4, n = 11

v1 v2 v3 v4

v′
1

v′2 v′
3

v′4 v′
5

v′1 v′2 v′
3

v′4

v′5v′1 v′
2 v′

3
v′
4

v′′
1 v′′

2
v′′
3

v′′
4

v′′
5 v′′

6

v′′
1

v′′
2v′′

3
v′′
4

v′′
5 v′′6

v′5

Figure 1. Three colorings of K4,5 and K5,6 in three different cases.

3. Proof of Conjecture 1.2

Proof of Conjecture 1.2. For a fixed integer r ≥ 5, note that
(

r−1
2

)

=
∑i=r−2

i=1 i.
So for 1 ≤ i ≤ r− 2, let Vi be a set of r− 1− i vertices, and for each Vi, order the
vertices as vi,1, vi,2, . . . , vi,r−1−i. Then we arrange these vertices in Vi (1 ≤ i ≤ r−
2) in the shape of an equilateral triangle. That is, the distance between any couple
of nearest vertices is 1. We provide an example of the location of the vertices
for r = 7 in Figure 2(a). We then rotate the triangle counterclockwise through
an angle of 2π/3 radians and denote like above as V ′

i (1 ≤ i ≤ r − 2) and v′i,j
(1 ≤ j ≤ r−1− i). In the same way V ′′

i (1 ≤ i ≤ r−2) and v′′i,j (1 ≤ j ≤ r−1− i)
are obtained after a counterclockwise rotating by the angle 4π/3. We denote by
e1 the v1,1v1,r−2-side, e2 the v1,r−2vr−2,1-side, and e3 the v1,1vr−2,1-side. For any
point x in the triangle, we denote by di(x) (i = 1, 2, 3) the distance from x to
ei+2 (mod 3) on a line segment parallel to ei. More details are showed in Figure
2(b). It is obvious that for any vertex x, d1(x) + d2(x) + d3(x) = d(e1) = r − 3,
that is, the length of a side of this equilateral triangle. However, any vertex x
can be denoted as vi,s1(x), v

′

j,s2(x)
or v′′

k,s3(x)
, where si(x) = di(x) + 1. As a result

s1(x) + s2(x) + s3(x) = r and every vertex is endowed with a unique coordinate
(s1(x), s2(x), s3(x)). We are going to give a coloring that enables any vertex x to
have si(x) (i = 1, 2, 3) edges with color i.

We start by removing the vertex vr−2,1. On the set Vi, 1 ≤ i ≤ r − 3, we
construct the unique connected graph Fi with only two vertices of the same degree
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1

1
1

e1

e2
e3

d1(x) d2(x)

d3(x)

x

v1,1

vr−2,1

v1,r−2

(a) (b)

Figure 2. The location of the vertices for r = 7 and the diagram for di(x)s (i = 1, 2, 3).

satisfying the inequalities degFi
vi,1 ≤ degFi

vi,2 ≤ · · · ≤ degFi
vi,r−1−i. Besides,

define A =
{

v1, r−1

2
+2iv2, r−1

2
+2i−1 : 1 ≤ i ≤ r−3

4

}

. For 1 ≤ j ≤ r−3
4 , let Ej =

{

vi,r−i−2jvi+2,r−i−2j−1 : 1 ≤ i ≤ r − 4j − 1
}

and B =
{

v4i−3, r−4i+3

2

v4i−1, r−4i+1

2

:

1 ≤ i ≤ r−3
4

}

. Note that A,B and each Ej are all independent edge sets. Now

we assign color 1 to each edge of A,B, Ej

(

1 ≤ j ≤ r−3
4

)

and Fi (1 ≤ i ≤ r − 3).
Then for any vertex x, it is incident with exactly s1(x) edges with color 1. The
connected graphs F ′

i on V ′

i (2 ≤ i ≤ r − 2), F ′

1 on V ′

1 − v′1,r−2 and the edge sets

A′, E′

j are defined similarly. However, let B′ =
{

v′
4i−1, r−4i+1

2

v′
4i+1, r−4i−1

2

: 1 ≤ i ≤

r−3
4

}

. Again we assign color 2 to each edge of A′, B′, E′

j and F ′

i (1 ≤ i ≤ r − 2).

Then any vertex x is incident with s2(x) edges of color 2 except v′2,r−3 and v′
1, r−1

2

with a difference of 1 respectively. So we add an edge v′2,r−3v
′

1, r−1

2

and give it

color 2.

Since the vertex v′′1,1(vr−2,1) has been removed, take the vertex v′′2,1 in place
of v′′1,1 (v′′2,1 is used twice, both in F ′′

1 and F ′′

2 ). Then F ′′

i on V ′′

i (1 ≤ i ≤ r − 2),
A′′, E′′

j and B′′ are obtained after the same procedure as Fi, A, Ej and B′ and
we give color 3 to each edge of them. The vertices v′′

1, r−1

2

and v′′2,1 are incident

with s3

(

v′′
1, r−1

2

)

− 1 and s3
(

v′′2,1
)

+ 1 numbers of edges of color 3, respectively.

So remove the edge v′′2,1v
′′

2,r−3 and add the edge v′′
1, r−1

2

v′′2,r−3 with color 3. Then

any vertex x is incident with s3(x) edges of color 3.

The construction for the r-regular graph is complete and the coloring is
given. It can be verified that each edge has been colored and any vertex x does
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V1

V2

V3

V4

Color 1

Color 2

Color 3

(1, 1, 5)
(2, 1, 4) (3, 1, 3) (4, 1, 2) (5, 1, 1)

(1, 2, 4)

(2, 2, 3) (3, 2, 2) (4, 2, 1)

(1, 3, 3)(2, 3, 2)

(3, 3, 1)

(1, 4, 2) (2, 4, 1)

Figure 3. A 3-kaleidoscopic coloring of the r-regular graph when r = 7.

have a unique {1, 2, 3}-tuple (s1(x), s2(x), s3(x)) under this coloring. We give an
example of a 3-kaleidoscopic 7-regular graph in Figure 3.

The proof is thus complete.
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