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Abstract

A set S of vertices in a graph G is an independent dominating set of G if
S is an independent set and every vertex not in S is adjacent to a vertex in S.
The independent domination number, i(G), of G is the minimum cardinality
of an independent dominating set. Goddard and Henning [Discrete Math.
313 (2013) 839–854] posed the conjecture that if G /∈ {K3,3, C5 �K2} is a
connected, cubic graph on n vertices, then i(G) ≤ 3

8
n, where C5 �K2 is the

5-prism. As an application of known result, we observe that this conjecture
is true when G is 2-connected and planar, and we provide an infinite family
of such graphs that achieve the bound. We conjecture that if G is a bipartite,
planar, cubic graph of order n, then i(G) ≤ 1

3
n, and we provide an infinite

family of such graphs that achieve this bound.
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1. Introduction

In this note, we continue the study of independent domination in cubic graphs.
A set is independent in a graph if no two vertices in the set are adjacent. An
independent dominating set, abbreviated ID-set, in a graph is a set that is both
dominating and independent. Equivalently, an independent dominating set is a
maximal independent set. The independent domination number of a graph G,
denoted by i(G), is the minimum cardinality of an independent dominating set,
and an independent dominating set of cardinality i(G) in G is called an i(G)-set.
Independent dominating sets have been studied extensively in the literature (see,
for example, [1, 2, 4, 5, 7, 8, 9, 10, 12] and the so-called domination book [6]). A
recent survey on independent domination in graphs can be found in [3].

Recall that K3,3 denotes the bipartite complete graph with both partite sets
on three vertices. The 5-prism, C5�K2, is the Cartesian product of a 5-cycle
with a copy of K2. The graphs K3,3 and C5�K2 are shown in Figure 1(a) and
1(b), respectively.

(a) K3,3 (b) C5 �K2

Figure 1. The graphs K3,3 and C5 �K2.

As remarked in [4], the question of best possible bounds on the independent
domination number of a connected, cubic graph remains unresolved. Lam, Shiu
and Sun [9] established the following upper bound on the independent domination
number of a connected, cubic graph. Equality in Theorem 1 holds for the prism
C5�K2 (see Figure 1).

Theorem 1 [9]. For a connected, cubic graph G on n vertices, i(G) ≤ 2

5
n except

for K3,3.

Goddard and Henning [3] conjectured that the graphs K3,3 and C5�K2 are
the only exceptions for an upper bound of 3

8
n. We state their conjecture formally

as follows.

Conjecture 2 [3]. If G /∈ {K3,3, C5�K2} is a connected, cubic graph on n
vertices, then i(G) ≤ 3

8
n.

Dorbec et al. [2] proved Conjecture 2 when G does not have a subgraph
isomorphic to K2,3.
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Theorem 3 [2]. If G ≇ C5�K2 is a connected, cubic graph on n vertices that

does not have a subgraph isomorphic to K2,3, then i(G) ≤ 3

8
n.

A graph G is k-vertex connected, which we shall simply write as k-connected,
if there does not exist a set of k−1 vertices whose removal disconnects the graph,
i.e., the vertex connectivity of G is at least k. In particular, if a connected graph
does not have a cut-vertex, then it is 2-connected. As a simple application of
Theorem 3, we observe that Conjecture 2 is true for 2-connected, planar, cubic
graphs.

Theorem 4. If G ≇ C5�K2 is a 2-connected, planar, cubic graph on n vertices,

then i(G) ≤ 3

8
n.

Proof. We show firstly that G has no subgraph isomorphic to K2,3. Suppose, to
the contrary, thatG has a subgraph F , isomorphic toK2,3, with partite sets {a, f}
and {b, c, d}. Consider an embedding of G in the plane. For every embedding
of K2,3 in the plane there is a cycle which has a vertex in its interior. Without
loss of generality, suppose that c is a vertex in the interior of the cycle C, where
C: abfda. Let x be the neighbor of c different from a and f . Either the vertex
x is in the interior of the cycle C or the vertex x belongs to C, in which case
x = b or x = d. If x = b, then the vertex d is a cut-vertex in G, contradicting the
2-connectivity of G. Hence, x 6= b. Analogously, x 6= d. Therefore, the vertex
x is in the interior of C. Renaming vertices, if necessary, we may assume that
x is in the interior of cycle abfca. Let X be the subgraph of G that lies in the
interior of the cycle abfca. By assumption, x ∈ X. If the vertex b is adjacent to
a vertex of X, then the vertex d is a cut-vertex of G, a contradiction. Therefore,
the vertex b is not adjacent to a vertex of X. However, then, the vertex c is a
cut-vertex of G, a contradiction. Hence, G has no subgraph isomorphic to K2,3.
Thus, by Theorem 3, i(G) ≤ 3n/8.

We pose the following conjecture.

Conjecture 5. If G ≇ C5�K2 is a connected, planar, cubic graph on n vertices,

then i(G) ≤ 3

8
n.

The following conjecture was posed by Zhu and Wu [13].

Conjecture 6 [13]. If G is a 2-connected, planar, cubic graph of order n, then
γ(G) ≤ 1

3
n.

We pose the following two conjectures.

Conjecture 7. If G is a bipartite, planar, cubic graph of order n, then i(G) ≤ 1

3
n.

Conjecture 8. If G is a bipartite, planar, cubic graph of order n, then γ(G)≤ 1

3
n.
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We remark that every bipartite, cubic graph has no cut-vertex, and there-
fore each of its components is a 2-connected, cubic (bipartite) graph. Hence,
Conjecture 6 implies Conjecture 8, and so Conjecture 8 is a weaker conjecture
than Conjecture 6. We also remark that Conjecture 7 implies Conjecture 8, and
so Conjecture 8 is a weaker conjecture than Conjecture 7. A computer search
confirms that Conjecture 7 is true when n ≤ 24.

We have three immediate aims in this paper.

Our first aim is to provide an infinite family, Gcubic, of 2-connected, planar,
cubic graphs that achieve the upper bound of Theorem 4. The family Gcubic is
constructed in Section 2.

Our second aim is to provide an infinite family, Fcubic, of connected, planar,
cubic graphs that are not 2-connected that achieve the upper bound of Conjec-
ture 5. The family Fcubic is constructed in Section 3.

Our third aim is to provide an infinite family, Hcubic, of bipartite, planar,
cubic graphs that achieve the upper bound of Conjecture 7 and Conjecture 8.
The family Hcubic is constructed in Section 4.

For k ≥ 1, we use the notation [k] = {1, . . . , k}.

2. The Graph Family Gcubic

We denote the graph obtained from a 5-prism by deleting an edge that does
not belong to a 5-cycle by (C5�K2)

−. The graph (C5�K2)
− is illustrated in

Figure 2.

Figure 2. The graph (C5 �K2)
−.

Let F ∼= (C5�K2)
−, where V (F ) = {r1, r2, . . . , r5, s1, s2, . . . , s5}, where

r1r2 · · · r5r1 and s1s2 · · · s5s1 are the two 5-cycles in F and risi ∈ E(F ) for i ∈
{2, 3, 4, 5}. Let H ∼= (C5�K2)

−, where V (H) = {p1, p2, . . . , p5, q1, q2, . . . , q5},
where p1p2 · · · p5p1 and q1q2 · · · q5q1 are the two 5-cycles in H and piqi ∈ E(H)
for i ∈ {2, 3, 4, 5}. An infinite family, Gcubic, of 2-connected, planar, cubic graphs
can be constructed as follows. For k ≥ 1, define the graph Gk as described
below. Consider two copies of the path P4k+2 with respective vertex sequences
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c0d0a1b1c1d1 · · · akbkckdk and y0z0w1x1y1z1 · · ·wkxkykzk. Join c0 to z0, and join
d0 to y0, and for each i ∈ [k], join ai to wi, bi to xi, ci to zi, and di to yi.
To complete Gk add a disjoint copy of F and H, and join c0 to r1, y0 to s1,
dk to p1, and zk to q1. We note that the graph Gk has order 8k + 24. Let
Gcubic = {Gk : k ≥ 1 }. An embedding of the graph G2 ∈ Gcubic (of order 40) in
the plane is illustrated in Figure 3.

s5 s4 s3 s2 s1

r1r2r3r4r5 a1 b1 c1

d1
w1 x1

y1

z1

a2 b2 c2

d2
w2 x2

y2

z2

c0

d0

y0 z0

q1 q2 q3 q4

q5

p5p4p3

p2

p1

Figure 3. A planar drawing of the graph G2.

For simplicity, the graph G2 is redrawn in Figure 4.

s5 s4 s3 s2 s1

r1r2r3r4r5 a1 b1 c1 d1

w1 x1 y1 z1

a2 b2 c2 d2

w2 x2 y2 z2

c0 d0

y0 z0 q1 q2 q3 q4 q5

p5p4p3p2p1

Figure 4. The graph G2.

We are now in a position to prove the following result.

Proposition 9. If G ∈ Gcubic has order n, then i(G) = 3

8
n.

Proof. Let G ∈ Gcubic have order n. Then, G = Gk for some k ≥ 1, and so G
has order n = 8k + 24. We show that i(G) = 3k + 9. Let V0 = {c0, d0, y0, z0},
and let Vi = {ai, bi, ci, di, wi, xi, yi, zi} for i ∈ [k]. The set

{r2, r4, s1, s3} ∪ {p2, p4, q1, q3} ∪ {z0} ∪

(

k
⋃

i=1

{ai, ci, yi}

)

is an ID-set of G of cardinality 3k + 9, implying that i(G) ≤ 3k + 9. We show
next that i(G) ≥ 3k + 9. We adopt the following notation. If X is a subset of
vertices of G, we let XF = X ∩ V (F ) and let XH = X ∩ V (H). Further, we let
X0 = V0 ∩X, and for i ∈ [k], we let Xi = Vi ∩X.
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Let X be an i(G)-set. In order to dominate {d0, z0}, we note that |X0| ≥ 1
since at most one of a1 and w1 belong to X. In order to dominate {bi, ci, xi, yi},
we note that |Xi| ≥ 2. Let IX = { i ∈ [k]: |Xi| = 2 }. Among all i(G)-sets, let X
be chosen so that

(1) |XF |+ |XH | is maximum.
(2) Subject to (1), |X0| is minimum.
(3) Subject to (2), |IX | is minimum.

We proceed further with the following series of claims. The statement and
proof of our first claim is analogous to the statement and proof of a similar claim
in [4]. For completeness, we include the proof of this claim.

Claim A. If {di, zi} ⊆ Xi for some i ∈ [k], then |Xi| = 3 or |Xi| = 4. Further,

if |Xi| = 3, then either ai or wi is not dominated by Xi.

Proof. If {ai, wi} ∩Xi 6= ∅, then either ai ∈ Xi, in which case xi ∈ Xi in order
to dominate xi, or wi ∈ Xi, in which case bi ∈ Xi in order to dominate bi. In
both cases, |Xi| = 4. On the other hand, if {ai, wi}∩Xi = ∅, then either bi ∈ Xi,
in which case wi is not dominated by Xi, or xi ∈ Xi, in which case ai is not
dominated by Xi.

Claim B. 3 ≤ |XH | ≤ 4. Further, if |XH | = 3, then neither p1 nor q1 belongs

to XH , and exactly one of p1 and q1 is not dominated by XH .

Proof. Suppose that {p1, q1} ⊆ XH . In this case, p3 ∈ XH or q3 ∈ XH . We
may assume, by symmetry, that p3 ∈ XH , which forces q4 to belong to XH , and
so |XH | = 4. Suppose that exactly one of p1 and q1 belongs to XH . We may
assume, by symmetry, that p1 ∈ XH , and so q1 /∈ XH . In order to dominate q2,
either q2 ∈ XH or q3 ∈ XH . If q2 ∈ XH , then in order to dominate p3 and q5, we
note that XH contains two vertices in addition to p1 and q2, and so |XH | = 4.
If q3 ∈ XH , then XH = {p1, p4, q3, q5}, and once again |XH | = 4. Suppose that
neither p1 nor q1 belongs toXH . In this case, either p2 ∈ XH or q2 ∈ XH . We may
assume, by symmetry, that p2 ∈ XH . Now, either |XH | = 4 or XH = {p2, p5, q3}
or XH = {p2, p5, q4}. In particular, if |XH | = 3, then q1 is not dominated by XH .

By symmetry, the proof of Claim C is analogous to that of Claim B, and is
therefore omitted.

Claim C. 3 ≤ |XF | ≤ 4. Further, if |XF | = 3, then neither r1 nor s1 belongs to

XF , and exactly one of r1 and s1 is not dominated by XF .

Claim D. |XF | = |XH | = 4.
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Proof. Suppose, to the contrary, that |XF | 6= 4 or |XH | 6= 4. By symmetry,
we may assume that |XH | 6= 4. Then, by Claim B, |XH | = 3, neither p1 nor q1
belongs to XH , and exactly one of p1 and q1 is not dominated by XH . We may
assume, by symmetry, that p1 is not dominated by XH . In order to dominate
the vertex p1, we have that dk ∈ Xk. But then zk ∈ Xk in order to dominate zk,
noting that q1 /∈ XH . Thus, {dk, zk} ⊆ Xk. By Claim A, |Xk| = 3 or |Xk| = 4.

Suppose that |Xk| = 4. In this case, either Xk = {ak, dk, xk, zk} or Xk =
{bk, dk, wk, zk}. We may assume, by symmetry, that Xk = {ak, dk, xk, zk}. But
then removing the five vertices in XH ∪ {dk, zk} from X, and replacing them
with the five vertices {ck, p1, p3, q1, q4} produces a new i(G)-set X ′ satisfying
|X ′

F | = |XF | and |X ′

H | > |XH |, which is contrary to our choice of the set X.
Hence, |Xk| = 3.

Since |Xk| = 3, either Xk = {bk, dk, zk} or Xk = {xk, dk, zk}. We may as-
sume, by symmetry, that Xk = {bk, dk, zk}. But then removing the five vertices in
XH ∪{dk, zk} from X, and replacing them with the five vertices {yk, p1, p3, q1, q4}
produces a new i(G)-set X ′ satisfying |X ′

F | = |XF | and |X ′

H | > |XH |, which is
contrary to our choice of the set X.

Claim E. |X0| = 1.

Proof. As observed earlier, |X0| ≥ 1. Suppose, to the contrary, that |X0| ≥ 2.
Then, either X0 = {c0, y0} or X0 = {d0, z0}. If X0 = {c0, y0}, then removing the
four vertices in XF from X, and replacing them with the three vertices {r2, r5, s3}
produces an ID-set of G of cardinality |X| − 1, contradicting the fact that X is
an i(G)-set. Hence, X0 = {d0, z0}. This implies that neither a1 nor w1 belongs
to X, and at most one of b1 and x1 belongs to X. By symmetry, we may assume
that b1 /∈ X. The set X ′ = (X \ {d0}) ∪ {a1} produces a new i(G)-set satisfying
|X ′

F | + |X ′

H | = |XF | + |XH | and |X ′

0| < |X0|, which is contrary to our choice of
the set X.

The proof of the following claim uses some of the arguments presented in [4].

Claim F. IX = ∅.

Proof. Suppose, to the contrary, that |IX | ≥ 1. Let i be the largest integer such
that |Xi| = 2. In order to dominate {bi, ci, xi, yi}, we may assume, by symmetry,
that Xi = {bi, yi} or Xi = {bi, zi} or Xi = {bi, di} or Xi = {ci, yi}. In all four
cases, the vertex wi is not dominated by Xi. If i = 1, then this would imply that
in order to dominate the vertex wi, we have that z0 ∈ X0. But then d0 ∈ X0,
and so X0 = {d0, z0}, contradicting Claim E.

Thus, i ≥ 2. We now consider the set Xi−1. In order to dominate the vertex
wi, we have that zi−1 ∈ Xi−1. But then di−1 ∈ Xi−1 in order to dominate di−1.
Thus, {di−1, zi−1} ⊆ Xi−1. By Claim A, either |Xi−1| = 3 or |Xi−1| = 4.
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Suppose that |Xi−1| = 4. We may assume, by symmetry, that ai−1 ∈
Xi−1; that is, Xi−1 = {ai−1, di−1, xi−1, zi−1}. But then the set X ′ = (X \
{di−1, xi−1, zi−1})∪{ci−1, yi−1, wi} is an i(G)-set such that |X ′

F |+ |X ′

H | = |XF |+
|XH |, |X ′

0| = |X0|, and |IX′ | < |IX |, contradicting our choice of the set X. Hence,
|Xi−1| = 3.

Since |Xi−1| = 3, eitherXi−1 = {bi−1, di−1, zi−1} orXi−1 = {xi−1, di−1, zi−1}.
We may assume, by symmetry, that Xi−1 = {bi−1, di−1, zi−1}. Thus, wi−1 is not
dominated by Xi−1. If i = 2, then this would imply that in order to dominate
the vertex wi−1, we have that z0 ∈ X0. But then d0 ∈ X0, and so X0 = {d0, z0},
contradicting Claim E. Thus, i ≥ 3. We now consider the set Xi−2. In order to
dominate the vertex wi−1, we have that {di−2, zi−2} ⊆ Xi−2.

Continuing this process, there is a smallest positive integer j < i such that
{di−j , zi−j} ⊆ Xi−j and |Xi−j | = 4. We may assume, by symmetry, that ai−j ∈
Xi−j ; that is, Xi−j = {ai−j , di−j , xi−j , zi−j}. We now define the set X ′ of vertices
of G as follows. For ℓ ∈ [k], let X ′

ℓ = Vi ∩X ′ be the set defined as follows. Let
X ′

i = Xi ∪ {wi} and let X ′

i−j = {ai−j , ci−j , yi−j}. If j ≥ 2, then for i − j + 1 ≤
ℓ ≤ i − 1, let X ′

ℓ = {aℓ, cℓ, yℓ}. If j ≤ i − 1, then for 0 ≤ ℓ ≤ i − j − 1, let
X ′

ℓ = Xℓ. If i < k, then for i+1 ≤ ℓ ≤ k, let X ′

ℓ = Xℓ. Then, |X
′

i| = |Xi|+1 = 3,
|X ′

i−j | = |Xi−j | − 1 = 3, and |X ′

ℓ| = |Xℓ| for all ℓ /∈ {i, i− j}, where ℓ ∈ [k]∪ {0}.
Further, let X ′

F = XF and X ′

H = XH . Thus,

X ′ = X ′

F ∪X ′

H ∪

(

k
⋃

i=1

X ′

i

)

,

and |X ′| = |X|. Since the set X is an ID-set, by construction so too is the set X ′,
implying that the set X ′ is an i(G)-set. However, |X ′

F | = |XF |, |X
′

H | = |XH |,
|X ′

0| = |X0| and |IX′ | < |IX |, contradicting our choice of the setX. Consequently,
IX = ∅.

By Claim F, IX = ∅, implying that |Xi| ≥ 3 for all i ∈ [k]. Thus, by
Claim D and Claim E, we note that i(G) = |X| ≥ 3k + 9. As observed earlier,
i(G) ≤ 3k+9. Consequently, i(G) = 3k+9 = 3n/8. This completes the proof of
Proposition 9.

3. The Graph Family Fcubic

Following the notation introduced in Section 2, we construct an infinite family,
Fcubic, of connected, planar, cubic graphs that are not 2-connected as follows.
Let G∗

1 be the graph obtained from the graph G1 ∈ Gcubic by deleting the vertices
in V (F ), and adding a new vertex v and adding the edges vc0 and vy0. The
resulting graph, G∗

1, is illustrated in Figure 5.
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v

a1 b1 c1 d1

w1 x1 y1 z1

c0 d0

y0 z0

q1 q2 q3 q4

q5

p5p4p3

p2

p1

Figure 5. The graph G∗

1
.

We note that G∗

1 has order 23. An analogous, but simpler, proof than that
of Proposition 9 (or simple use a computer) shows that i(G∗

1) = 9. The set
{p1, p3, q1, q4, c1, y1, d0, z0, v} is an example of an i(G∗

1)-set.

For k ≥ 3, let F1, F2, . . . , Fk be k vertex-disjoint copies of the graph G∗

1, and
let vi be the vertex of degree 2 in Fi for i ∈ [k]. Let C:u1u2 · · ·uku1 be a k-cycle
that has no vertex in common with these k copies of the graph G∗

1. Let F ∗

k be
the graph obtained from the disjoint union, F1 ∪F2 ∪ · · · ∪Fk ∪C, of these k+1
graphs by adding the k edges uivi for i ∈ [k]. Let Fcubic = {F ∗

k : k ≥ 3 }. The
graph F ∗

4 (of order 96) in the family Fcubic is illustrated in Figure 6.

G∗

1

v1

u1

G∗

1

v2

u2

G∗

1

v3

u3

G∗

1

v4

u4

Figure 6. The graph F ∗

4
∈ Fcubic.

For each k ≥ 3, the graph F ∗

k has order n = 24k. Further, since i(G∗

1) = 9
and there exists an i(G∗

1)-set containing the vertex v of degree 2 in G∗

1, we observe
that i(F ∗

k ) = 9k = 3n/8. We state this formally as follows.

Proposition 10. If G ∈ Fcubic has order n, then G is a connected, planar, cubic

graph satisfying i(G) = 3

8
n.

4. The Graph Family Hcubic

An infinite family, Hcubic, of bipartite, planar, cubic graphs can be constructed
as follows. For k ≥ 2, define the graph Hk as described below. Consider
two copies of the cycle C2k with respective vertex sequences a1b1a2b2 · · · akbka1
and c1d1c2d2 · · · ckdkc1. To complete Hk, add 2k new vertices e1, e2, . . . , ek and
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f1, f2, . . . , fk, and for each i ∈ [k], join ei to ai, ci and fi, and join fi to bi and di.
We note that the graph Hk has order 6k. Let Hcubic = {Hk: k ≥ 2 }. The graph
H5 (of order 30) in the family Hcubic is illustrated in Figure 7.

c1

e1

a1

d1

f1

b1

c2

e2

a2

d2

f2

b2

c3

e3

a3

d3

f3

b3

c4

e4

a4

d4

f4

b4

c5

e5

a5

d5

f5

b5

Figure 7. The bipartite, planar, cubic graph H5.

Let S be a set of vertices in a graph G and let v ∈ S. The open neighborhood

of v in G is NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood

of v is NG[v] = {v} ∪ NG(v). The S-private neighborhood of v is defined by
pn[v, S] = {w ∈ V (G) : NG[w] ∩ S = {v}}. A classical result of Ore [11] states
that if S is dominating set in a graph G, then S is a minimal dominating set of
G if and only if for each v ∈ S, pn[v, S] 6= ∅.

We are now in a position to prove the following result.

Proposition 11. If G ∈ Hcubic has order n, then γ(G) = i(G) = 1

3
n.

Proof. Let G ∈ Hcubic have order n. Then, G = Hk for some k ≥ 2, and so G
has order n = 6k. We show that γ(G) = i(G) = 2k. Let Xi = {ai, bi, ci, di, ei, fi}
for i ∈ [k]. The set Dk =

⋃k
i=1

{ai, di} is an ID-set of G of cardinality 2k,
implying that i(G) ≤ |Dk| = 2k. We show next that γ(G) ≥ 2k. Let S be a
γ(G)-set. By the minimality of S, and by construction of the graph G, we note
that 1 ≤ |S ∩Xi| ≤ 4 for all i ∈ [k]. For j ∈ [4], let Sj = {i ∈ [k]: |S ∩Xi| = j}.
Thus, (S1, S2, S3, S4) is a (weak) partition of the set [k], where some of the sets
may be empty. We note that |S| =

∑

4

i=1
i|Si| and k =

∑

4

i=1
|Si|.

In what follows, we take addition modulo k. Among all γ(G)-sets, we choose
S so that |S4| is a minimum. We proceed further with the following two claims.

Claim I. |S4| = 0.

Proof. Suppose, to the contrary, that |S4| ≥ 1. Thus, |S ∩Xi| = 4 for some i ∈
[k]. By the minimality of the set S, we note that S∩Xi = {ai, bi, ci, di}. By Ore’s
Theorem [11] and the structure of the graph G, we note that pn[ai, S] = {bi−1}
and pn[ci, S] = {di−1}. This implies that S ∩ Xi−1 = {ei−1}. We now consider
the set S′ = (S \ {ai, ci}) ∪ {ei, fi−1}. The resulting set S′ is a dominating set
of G satisfying |S′| = |S|, and is therefore a γ(G)-set. However, |S′

4| = |S4| − 1,
contradicting our choice of the set S. Therefore, |S4| = 0.
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Claim II. |S3| ≥ |S1|.

Proof. Suppose that i ∈ S1 for some i ∈ [k], and so |S ∩ Xi| = 1. In order to
dominate ei and fi, we note that either ei ∈ S or fi ∈ S. Suppose that ei ∈ S.
In order to dominate bi, the vertex ai+1 ∈ S, while in order to dominate di, the
vertex ci+1 ∈ S. In order to dominate the vertex fi+1, the set S contains a vertex
of Xi+1 different from ai+1 and ci+1, implying that |S ∩Xi+1| ≥ 3. By Claim I,
|S ∩ Xi+1| ≤ 3. Consequently, |S ∩ Xi+1| = 3, and so i + 1 ∈ S3. Hence, if
ei ∈ S, then i+ 1 ∈ S3, {ai+1, ci+1} ⊂ S and |S ∩ {bi+1, di+1}| ≤ 1. Analogously,
if fi ∈ S, then i − 1 ∈ S3, {bi−1, di−1} ⊂ S and |S ∩ {ai−1, ci−1}| ≤ 1. This
implies that if i ∈ S1, then either ei ∈ S, in which case we can uniquely associate
i + 1 ∈ S3 with i, or fi ∈ S, in which case we can uniquely associate i − 1 ∈ S3

with i. Therefore, |S3| ≥ |S1|.

We now return to the proof of Proposition 11. By Claim I, |S4| = 0, and so
|S| =

∑

3

i=1
i|Si| and k =

∑

3

i=1
|Si|.

By Claim II, |S3| ≥ |S1|, and so k = |S1| + |S2| + |S3| ≥ 2|S1| + |S2|, or,
equivalently, k − 2|S1| − |S2| ≥ 0. Thus,

|S| = |S1|+ 2|S2|+ 3|S3| = |S1|+ 2|S2|+ 3(k − |S1| − |S2|)
= 3k − 2|S1| − |S2| = 2k + (k − 2|S1| − |S2|) ≥ 2k.

Thus, 2k ≤ |S| = γ(G) ≤ i(G) ≤ 2k. Consequently, we must have equality
throughout this inequality chain. In particular, γ(G) = i(G) = 2k = 1

3
n.

5. Summary of Results

In this paper, we consider five conjectures which we name as Conjectures 2, 5, 6, 7
and 8. We first consider Conjecture 2. We prove in Theorem 4 that Conjecture 2
is true for 2-connected graphs. Our first main result constructs an infinite family,
Gcubic, of 2-connected, planar, cubic graphs in Section 2 to show that in this case
the bound is tight.

We next consider Conjecture 5. By of our previous result, it suffices to prove
Conjecture 5 for connected, planar, cubic graphs that contain cut-vertices. Our
second result constructs an infinite family, Fcubic, of connected, planar, cubic
graphs that contain cut-vertices in Section 3 to show that if Conjecture 5 is true
for graphs with cut-vertices, then the bound is tight.

We finally consider Conjectures 6, 7 and 8. Our third result constructs an
infinite family, Hcubic, of bipartite, planar, cubic graphs in Section 4 to show that
if Conjectures 7 and 8 are true, then the bounds are tight.
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[7] M.A. Henning, C. Löwenstein and D. Rautenbach, Independent domination in sub-

cubic bipartite graphs of girth at least six , Discrete Appl. Math. 162 (2014) 399–403.
doi:10.1016/j.dam.2013.08.035

[8] A.V. Kostochka, The independent domination number of a cubic 3-connected graph

can be much larger than its domination number , Graphs Combin. 9 (1993) 235–237.
doi:10.1007/BF02988312

[9] P.C.B. Lam, W.C. Shiu and L. Sun, On independent domination number of regular

graphs , Discrete Math. 202 (1999) 135–144.
doi:10.1016/S0012-365X(98)00350-1

[10] J. Lyle, A note on independent sets in graphs with large minimum degree and small

cliques , Electron. J. Combin. 21 (2014) #P2.38.

[11] O. Ore, Theory of graphs , Amer. Math. Soc. Transl. 38 (1962) 206–212.
doi:10.1090/coll/038

[12] J. Southey and M.A. Henning, Domination versus independent domination in cubic

graphs , Discrete Math. 313 (2013) 1212–1220.
doi:10.1016/j.disc.2012.01.003

http://dx.doi.org/10.1007/BF01788145
http://dx.doi.org/10.1002/jgt.21855
http://dx.doi.org/10.1016/j.disc.2012.11.031
http://dx.doi.org/10.1007/s00026-012-0155-4
http://dx.doi.org/10.1007/s10878-010-9336-4
http://dx.doi.org/10.1016/j.dam.2013.08.035
http://dx.doi.org/10.1007/BF02988312
http://dx.doi.org/10.1016/S0012-365X\(98\)00350-1
http://dx.doi.org/10.1090/coll/038
http://dx.doi.org/10.1016/j.disc.2012.01.003


On Independent Domination in Planar Cubic Graphs 853

[13] T. Zhu and B. Wu, Domination of maximal K4-minor free graphs and maximal

K2,3-minor free graphs, and disproofs of two conjectures on planar graphs , Discrete
Appl. Math. 194 (2015) 147–153.
doi:10.1016/j.dam.2015.05.029

Received 2 August 2017
Revised 1 December 2017

Accepted 1 December 2017

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.dam.2015.05.029
http://www.tcpdf.org

