ON INDEPENDENT DOMINATION IN PLANAR CUBIC GRAPHS

Gholamreza Abrishami ${ }^{a}$
Michael A. Henning ${ }^{b, 1}$
AND
Freydoon Rahbarnia ${ }^{a, 2}$
${ }^{a}$ Department of Applied Mathematics
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran
${ }^{b}$ Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
e-mail: gh.abrishamimoghadam@mail.um.ac.ir
mahenning@uj.ac.za
rahbarnia@um.ac.ir

Abstract

A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number, $i(G)$, of G is the minimum cardinality of an independent dominating set. Goddard and Henning [Discrete Math. 313 (2013) 839-854] posed the conjecture that if $G \notin\left\{K_{3,3}, C_{5} \square K_{2}\right\}$ is a connected, cubic graph on n vertices, then $i(G) \leq \frac{3}{8} n$, where $C_{5} \square K_{2}$ is the 5 -prism. As an application of known result, we observe that this conjecture is true when G is 2 -connected and planar, and we provide an infinite family of such graphs that achieve the bound. We conjecture that if G is a bipartite, planar, cubic graph of order n, then $i(G) \leq \frac{1}{3} n$, and we provide an infinite family of such graphs that achieve this bound.

Keywords: independent domination number, domination number, cubic graphs.
2010 Mathematics Subject Classification: 05C69, 05C10.

[^0]
1. Introduction

In this note, we continue the study of independent domination in cubic graphs. A set is independent in a graph if no two vertices in the set are adjacent. An independent dominating set, abbreviated ID-set, in a graph is a set that is both dominating and independent. Equivalently, an independent dominating set is a maximal independent set. The independent domination number of a graph G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set, and an independent dominating set of cardinality $i(G)$ in G is called an $i(G)$-set. Independent dominating sets have been studied extensively in the literature (see, for example, $[1,2,4,5,7,8,9,10,12]$ and the so-called domination book [6]). A recent survey on independent domination in graphs can be found in [3].

Recall that $K_{3,3}$ denotes the bipartite complete graph with both partite sets on three vertices. The 5 -prism, $C_{5} \square K_{2}$, is the Cartesian product of a 5 -cycle with a copy of K_{2}. The graphs $K_{3,3}$ and $C_{5} \square K_{2}$ are shown in Figure 1(a) and 1(b), respectively.

Figure 1. The graphs $K_{3,3}$ and $C_{5} \square K_{2}$.
As remarked in [4], the question of best possible bounds on the independent domination number of a connected, cubic graph remains unresolved. Lam, Shiu and Sun [9] established the following upper bound on the independent domination number of a connected, cubic graph. Equality in Theorem 1 holds for the prism $C_{5} \square K_{2}$ (see Figure 1).
Theorem 1 [9]. For a connected, cubic graph G on n vertices, $i(G) \leq \frac{2}{5} n$ except for $K_{3,3}$.

Goddard and Henning [3] conjectured that the graphs $K_{3,3}$ and $C_{5} \square K_{2}$ are the only exceptions for an upper bound of $\frac{3}{8} n$. We state their conjecture formally as follows.

Conjecture 2 [3]. If $G \notin\left\{K_{3,3}, C_{5} \square K_{2}\right\}$ is a connected, cubic graph on n vertices, then $i(G) \leq \frac{3}{8} n$.

Dorbec et al. [2] proved Conjecture 2 when G does not have a subgraph isomorphic to $K_{2,3}$.

Theorem 3 [2]. If $G \not \approx C_{5} \square K_{2}$ is a connected, cubic graph on n vertices that does not have a subgraph isomorphic to $K_{2,3}$, then $i(G) \leq \frac{3}{8} n$.

A graph G is k-vertex connected, which we shall simply write as k-connected, if there does not exist a set of $k-1$ vertices whose removal disconnects the graph, i.e., the vertex connectivity of G is at least k. In particular, if a connected graph does not have a cut-vertex, then it is 2-connected. As a simple application of Theorem 3, we observe that Conjecture 2 is true for 2 -connected, planar, cubic graphs.

Theorem 4. If $G \not \equiv C_{5} \square K_{2}$ is a 2-connected, planar, cubic graph on n vertices, then $i(G) \leq \frac{3}{8} n$.

Proof. We show firstly that G has no subgraph isomorphic to $K_{2,3}$. Suppose, to the contrary, that G has a subgraph F, isomorphic to $K_{2,3}$, with partite sets $\{a, f\}$ and $\{b, c, d\}$. Consider an embedding of G in the plane. For every embedding of $K_{2,3}$ in the plane there is a cycle which has a vertex in its interior. Without loss of generality, suppose that c is a vertex in the interior of the cycle C, where C : abfda. Let x be the neighbor of c different from a and f. Either the vertex x is in the interior of the cycle C or the vertex x belongs to C, in which case $x=b$ or $x=d$. If $x=b$, then the vertex d is a cut-vertex in G, contradicting the 2 -connectivity of G. Hence, $x \neq b$. Analogously, $x \neq d$. Therefore, the vertex x is in the interior of C. Renaming vertices, if necessary, we may assume that x is in the interior of cycle $a b f c a$. Let X be the subgraph of G that lies in the interior of the cycle $a b f c a$. By assumption, $x \in X$. If the vertex b is adjacent to a vertex of X, then the vertex d is a cut-vertex of G, a contradiction. Therefore, the vertex b is not adjacent to a vertex of X. However, then, the vertex c is a cut-vertex of G, a contradiction. Hence, G has no subgraph isomorphic to $K_{2,3}$. Thus, by Theorem $3, i(G) \leq 3 n / 8$.

We pose the following conjecture.
Conjecture 5. If $G \nsubseteq C_{5} \square K_{2}$ is a connected, planar, cubic graph on n vertices, then $i(G) \leq \frac{3}{8} n$.

The following conjecture was posed by Zhu and Wu [13].
Conjecture 6 [13]. If G is a 2-connected, planar, cubic graph of order n, then $\gamma(G) \leq \frac{1}{3} n$.

We pose the following two conjectures.
Conjecture 7. If G is a bipartite, planar, cubic graph of order n, then $i(G) \leq \frac{1}{3} n$.
Conjecture 8. If G is a bipartite, planar, cubic graph of order n, then $\gamma(G) \leq \frac{1}{3} n$.

We remark that every bipartite, cubic graph has no cut-vertex, and therefore each of its components is a 2-connected, cubic (bipartite) graph. Hence, Conjecture 6 implies Conjecture 8, and so Conjecture 8 is a weaker conjecture than Conjecture 6. We also remark that Conjecture 7 implies Conjecture 8, and so Conjecture 8 is a weaker conjecture than Conjecture 7. A computer search confirms that Conjecture 7 is true when $n \leq 24$.

We have three immediate aims in this paper.
Our first aim is to provide an infinite family, $\mathcal{G}_{\text {cubic }}$, of 2-connected, planar, cubic graphs that achieve the upper bound of Theorem 4. The family $\mathcal{G}_{\text {cubic }}$ is constructed in Section 2.

Our second aim is to provide an infinite family, $\mathcal{F}_{\text {cubic }}$, of connected, planar, cubic graphs that are not 2-connected that achieve the upper bound of Conjecture 5. The family $\mathcal{F}_{\text {cubic }}$ is constructed in Section 3.

Our third aim is to provide an infinite family, $\mathcal{H}_{\text {cubic }}$, of bipartite, planar, cubic graphs that achieve the upper bound of Conjecture 7 and Conjecture 8. The family $\mathcal{H}_{\text {cubic }}$ is constructed in Section 4.

For $k \geq 1$, we use the notation $[k]=\{1, \ldots, k\}$.

2. The Graph Family $\mathcal{G}_{\text {cubic }}$

We denote the graph obtained from a 5 -prism by deleting an edge that does not belong to a 5 -cycle by $\left(C_{5} \square K_{2}\right)^{-}$. The graph $\left(C_{5} \square K_{2}\right)^{-}$is illustrated in Figure 2.

Figure 2. The graph $\left(C_{5} \square K_{2}\right)^{-}$.
Let $F \cong\left(C_{5} \square K_{2}\right)^{-}$, where $V(F)=\left\{r_{1}, r_{2}, \ldots, r_{5}, s_{1}, s_{2}, \ldots, s_{5}\right\}$, where $r_{1} r_{2} \cdots r_{5} r_{1}$ and $s_{1} s_{2} \cdots s_{5} s_{1}$ are the two 5 -cycles in F and $r_{i} s_{i} \in E(F)$ for $i \in$ $\{2,3,4,5\}$. Let $H \cong\left(C_{5} \square K_{2}\right)^{-}$, where $V(H)=\left\{p_{1}, p_{2}, \ldots, p_{5}, q_{1}, q_{2}, \ldots, q_{5}\right\}$, where $p_{1} p_{2} \cdots p_{5} p_{1}$ and $q_{1} q_{2} \cdots q_{5} q_{1}$ are the two 5 -cycles in H and $p_{i} q_{i} \in E(H)$ for $i \in\{2,3,4,5\}$. An infinite family, $\mathcal{G}_{\text {cubic }}$, of 2-connected, planar, cubic graphs can be constructed as follows. For $k \geq 1$, define the graph G_{k} as described below. Consider two copies of the path $P_{4 k+2}$ with respective vertex sequences
$c_{0} d_{0} a_{1} b_{1} c_{1} d_{1} \cdots a_{k} b_{k} c_{k} d_{k}$ and $y_{0} z_{0} w_{1} x_{1} y_{1} z_{1} \cdots w_{k} x_{k} y_{k} z_{k}$. Join c_{0} to z_{0}, and join d_{0} to y_{0}, and for each $i \in[k]$, join a_{i} to w_{i}, b_{i} to x_{i}, c_{i} to z_{i}, and d_{i} to y_{i}. To complete G_{k} add a disjoint copy of F and H, and join c_{0} to r_{1}, y_{0} to s_{1}, d_{k} to p_{1}, and z_{k} to q_{1}. We note that the graph G_{k} has order $8 k+24$. Let $\mathcal{G}_{\text {cubic }}=\left\{G_{k}: k \geq 1\right\}$. An embedding of the graph $G_{2} \in \mathcal{G}_{\text {cubic }}$ (of order 40) in the plane is illustrated in Figure 3.

Figure 3. A planar drawing of the graph G_{2}.
For simplicity, the graph G_{2} is redrawn in Figure 4.

Figure 4. The graph G_{2}.
We are now in a position to prove the following result.
Proposition 9. If $G \in \mathcal{G}_{\text {cubic }}$ has order n, then $i(G)=\frac{3}{8} n$.
Proof. Let $G \in \mathcal{G}_{\text {cubic }}$ have order n. Then, $G=G_{k}$ for some $k \geq 1$, and so G has order $n=8 k+24$. We show that $i(G)=3 k+9$. Let $V_{0}=\left\{c_{0}, d_{0}, y_{0}, z_{0}\right\}$, and let $V_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}, w_{i}, x_{i}, y_{i}, z_{i}\right\}$ for $i \in[k]$. The set

$$
\left\{r_{2}, r_{4}, s_{1}, s_{3}\right\} \cup\left\{p_{2}, p_{4}, q_{1}, q_{3}\right\} \cup\left\{z_{0}\right\} \cup\left(\bigcup_{i=1}^{k}\left\{a_{i}, c_{i}, y_{i}\right\}\right)
$$

is an ID-set of G of cardinality $3 k+9$, implying that $i(G) \leq 3 k+9$. We show next that $i(G) \geq 3 k+9$. We adopt the following notation. If X is a subset of vertices of G, we let $X_{F}=X \cap V(F)$ and let $X_{H}=X \cap V(H)$. Further, we let $X_{0}=V_{0} \cap X$, and for $i \in[k]$, we let $X_{i}=V_{i} \cap X$.

Let X be an $i(G)$-set. In order to dominate $\left\{d_{0}, z_{0}\right\}$, we note that $\left|X_{0}\right| \geq 1$ since at most one of a_{1} and w_{1} belong to X. In order to dominate $\left\{b_{i}, c_{i}, x_{i}, y_{i}\right\}$, we note that $\left|X_{i}\right| \geq 2$. Let $I_{X}=\left\{i \in[k]:\left|X_{i}\right|=2\right\}$. Among all $i(G)$-sets, let X be chosen so that
(1) $\left|X_{F}\right|+\left|X_{H}\right|$ is maximum.
(2) Subject to (1), $\left|X_{0}\right|$ is minimum.
(3) Subject to (2), $\left|I_{X}\right|$ is minimum.

We proceed further with the following series of claims. The statement and proof of our first claim is analogous to the statement and proof of a similar claim in [4]. For completeness, we include the proof of this claim.

Claim A. If $\left\{d_{i}, z_{i}\right\} \subseteq X_{i}$ for some $i \in[k]$, then $\left|X_{i}\right|=3$ or $\left|X_{i}\right|=4$. Further, if $\left|X_{i}\right|=3$, then either a_{i} or w_{i} is not dominated by X_{i}.

Proof. If $\left\{a_{i}, w_{i}\right\} \cap X_{i} \neq \emptyset$, then either $a_{i} \in X_{i}$, in which case $x_{i} \in X_{i}$ in order to dominate x_{i}, or $w_{i} \in X_{i}$, in which case $b_{i} \in X_{i}$ in order to dominate b_{i}. In both cases, $\left|X_{i}\right|=4$. On the other hand, if $\left\{a_{i}, w_{i}\right\} \cap X_{i}=\emptyset$, then either $b_{i} \in X_{i}$, in which case w_{i} is not dominated by X_{i}, or $x_{i} \in X_{i}$, in which case a_{i} is not dominated by X_{i}.

Claim B. $3 \leq\left|X_{H}\right| \leq 4$. Further, if $\left|X_{H}\right|=3$, then neither p_{1} nor q_{1} belongs to X_{H}, and exactly one of p_{1} and q_{1} is not dominated by X_{H}.

Proof. Suppose that $\left\{p_{1}, q_{1}\right\} \subseteq X_{H}$. In this case, $p_{3} \in X_{H}$ or $q_{3} \in X_{H}$. We may assume, by symmetry, that $p_{3} \in X_{H}$, which forces q_{4} to belong to X_{H}, and so $\left|X_{H}\right|=4$. Suppose that exactly one of p_{1} and q_{1} belongs to X_{H}. We may assume, by symmetry, that $p_{1} \in X_{H}$, and so $q_{1} \notin X_{H}$. In order to dominate q_{2}, either $q_{2} \in X_{H}$ or $q_{3} \in X_{H}$. If $q_{2} \in X_{H}$, then in order to dominate p_{3} and q_{5}, we note that X_{H} contains two vertices in addition to p_{1} and q_{2}, and so $\left|X_{H}\right|=4$. If $q_{3} \in X_{H}$, then $X_{H}=\left\{p_{1}, p_{4}, q_{3}, q_{5}\right\}$, and once again $\left|X_{H}\right|=4$. Suppose that neither p_{1} nor q_{1} belongs to X_{H}. In this case, either $p_{2} \in X_{H}$ or $q_{2} \in X_{H}$. We may assume, by symmetry, that $p_{2} \in X_{H}$. Now, either $\left|X_{H}\right|=4$ or $X_{H}=\left\{p_{2}, p_{5}, q_{3}\right\}$ or $X_{H}=\left\{p_{2}, p_{5}, q_{4}\right\}$. In particular, if $\left|X_{H}\right|=3$, then q_{1} is not dominated by X_{H}.

By symmetry, the proof of Claim C is analogous to that of Claim B, and is therefore omitted.

Claim C. $3 \leq\left|X_{F}\right| \leq 4$. Further, if $\left|X_{F}\right|=3$, then neither r_{1} nor s_{1} belongs to X_{F}, and exactly one of r_{1} and s_{1} is not dominated by X_{F}.

Claim D. $\left|X_{F}\right|=\left|X_{H}\right|=4$.

Proof. Suppose, to the contrary, that $\left|X_{F}\right| \neq 4$ or $\left|X_{H}\right| \neq 4$. By symmetry, we may assume that $\left|X_{H}\right| \neq 4$. Then, by Claim $\mathrm{B},\left|X_{H}\right|=3$, neither p_{1} nor q_{1} belongs to X_{H}, and exactly one of p_{1} and q_{1} is not dominated by X_{H}. We may assume, by symmetry, that p_{1} is not dominated by X_{H}. In order to dominate the vertex p_{1}, we have that $d_{k} \in X_{k}$. But then $z_{k} \in X_{k}$ in order to dominate z_{k}, noting that $q_{1} \notin X_{H}$. Thus, $\left\{d_{k}, z_{k}\right\} \subseteq X_{k}$. By Claim A, $\left|X_{k}\right|=3$ or $\left|X_{k}\right|=4$.

Suppose that $\left|X_{k}\right|=4$. In this case, either $X_{k}=\left\{a_{k}, d_{k}, x_{k}, z_{k}\right\}$ or $X_{k}=$ $\left\{b_{k}, d_{k}, w_{k}, z_{k}\right\}$. We may assume, by symmetry, that $X_{k}=\left\{a_{k}, d_{k}, x_{k}, z_{k}\right\}$. But then removing the five vertices in $X_{H} \cup\left\{d_{k}, z_{k}\right\}$ from X, and replacing them with the five vertices $\left\{c_{k}, p_{1}, p_{3}, q_{1}, q_{4}\right\}$ produces a new $i(G)$-set X^{\prime} satisfying $\left|X_{F}^{\prime}\right|=\left|X_{F}\right|$ and $\left|X_{H}^{\prime}\right|>\left|X_{H}\right|$, which is contrary to our choice of the set X. Hence, $\left|X_{k}\right|=3$.

Since $\left|X_{k}\right|=3$, either $X_{k}=\left\{b_{k}, d_{k}, z_{k}\right\}$ or $X_{k}=\left\{x_{k}, d_{k}, z_{k}\right\}$. We may assume, by symmetry, that $X_{k}=\left\{b_{k}, d_{k}, z_{k}\right\}$. But then removing the five vertices in $X_{H} \cup\left\{d_{k}, z_{k}\right\}$ from X, and replacing them with the five vertices $\left\{y_{k}, p_{1}, p_{3}, q_{1}, q_{4}\right\}$ produces a new $i(G)$-set X^{\prime} satisfying $\left|X_{F}^{\prime}\right|=\left|X_{F}\right|$ and $\left|X_{H}^{\prime}\right|>\left|X_{H}\right|$, which is contrary to our choice of the set X.

Claim E. $\left|X_{0}\right|=1$.
Proof. As observed earlier, $\left|X_{0}\right| \geq 1$. Suppose, to the contrary, that $\left|X_{0}\right| \geq 2$. Then, either $X_{0}=\left\{c_{0}, y_{0}\right\}$ or $X_{0}=\left\{d_{0}, z_{0}\right\}$. If $X_{0}=\left\{c_{0}, y_{0}\right\}$, then removing the four vertices in X_{F} from X, and replacing them with the three vertices $\left\{r_{2}, r_{5}, s_{3}\right\}$ produces an ID-set of G of cardinality $|X|-1$, contradicting the fact that X is an $i(G)$-set. Hence, $X_{0}=\left\{d_{0}, z_{0}\right\}$. This implies that neither a_{1} nor w_{1} belongs to X, and at most one of b_{1} and x_{1} belongs to X. By symmetry, we may assume that $b_{1} \notin X$. The set $X^{\prime}=\left(X \backslash\left\{d_{0}\right\}\right) \cup\left\{a_{1}\right\}$ produces a new $i(G)$-set satisfying $\left|X_{F}^{\prime}\right|+\left|X_{H}^{\prime}\right|=\left|X_{F}\right|+\left|X_{H}\right|$ and $\left|X_{0}^{\prime}\right|<\left|X_{0}\right|$, which is contrary to our choice of the set X.

The proof of the following claim uses some of the arguments presented in [4].
Claim F. $I_{X}=\emptyset$.
Proof. Suppose, to the contrary, that $\left|I_{X}\right| \geq 1$. Let i be the largest integer such that $\left|X_{i}\right|=2$. In order to dominate $\left\{b_{i}, c_{i}, x_{i}, y_{i}\right\}$, we may assume, by symmetry, that $X_{i}=\left\{b_{i}, y_{i}\right\}$ or $X_{i}=\left\{b_{i}, z_{i}\right\}$ or $X_{i}=\left\{b_{i}, d_{i}\right\}$ or $X_{i}=\left\{c_{i}, y_{i}\right\}$. In all four cases, the vertex w_{i} is not dominated by X_{i}. If $i=1$, then this would imply that in order to dominate the vertex w_{i}, we have that $z_{0} \in X_{0}$. But then $d_{0} \in X_{0}$, and so $X_{0}=\left\{d_{0}, z_{0}\right\}$, contradicting Claim E.

Thus, $i \geq 2$. We now consider the set X_{i-1}. In order to dominate the vertex w_{i}, we have that $z_{i-1} \in X_{i-1}$. But then $d_{i-1} \in X_{i-1}$ in order to dominate d_{i-1}. Thus, $\left\{d_{i-1}, z_{i-1}\right\} \subseteq X_{i-1}$. By Claim A, either $\left|X_{i-1}\right|=3$ or $\left|X_{i-1}\right|=4$.

Suppose that $\left|X_{i-1}\right|=4$. We may assume, by symmetry, that $a_{i-1} \in$ X_{i-1}; that is, $X_{i-1}=\left\{a_{i-1}, d_{i-1}, x_{i-1}, z_{i-1}\right\}$. But then the set $X^{\prime}=(X \backslash$ $\left.\left\{d_{i-1}, x_{i-1}, z_{i-1}\right\}\right) \cup\left\{c_{i-1}, y_{i-1}, w_{i}\right\}$ is an $i(G)$-set such that $\left|X_{F}^{\prime}\right|+\left|X_{H}^{\prime}\right|=\left|X_{F}\right|+$ $\left|X_{H}\right|,\left|X_{0}^{\prime}\right|=\left|X_{0}\right|$, and $\left|I_{X^{\prime}}\right|<\left|I_{X}\right|$, contradicting our choice of the set X. Hence, $\left|X_{i-1}\right|=3$.

Since $\left|X_{i-1}\right|=3$, either $X_{i-1}=\left\{b_{i-1}, d_{i-1}, z_{i-1}\right\}$ or $X_{i-1}=\left\{x_{i-1}, d_{i-1}, z_{i-1}\right\}$. We may assume, by symmetry, that $X_{i-1}=\left\{b_{i-1}, d_{i-1}, z_{i-1}\right\}$. Thus, w_{i-1} is not dominated by X_{i-1}. If $i=2$, then this would imply that in order to dominate the vertex w_{i-1}, we have that $z_{0} \in X_{0}$. But then $d_{0} \in X_{0}$, and so $X_{0}=\left\{d_{0}, z_{0}\right\}$, contradicting Claim E. Thus, $i \geq 3$. We now consider the set X_{i-2}. In order to dominate the vertex w_{i-1}, we have that $\left\{d_{i-2}, z_{i-2}\right\} \subseteq X_{i-2}$.

Continuing this process, there is a smallest positive integer $j<i$ such that $\left\{d_{i-j}, z_{i-j}\right\} \subseteq X_{i-j}$ and $\left|X_{i-j}\right|=4$. We may assume, by symmetry, that $a_{i-j} \in$ X_{i-j}; that is, $X_{i-j}=\left\{a_{i-j}, d_{i-j}, x_{i-j}, z_{i-j}\right\}$. We now define the set X^{\prime} of vertices of G as follows. For $\ell \in[k]$, let $X_{\ell}^{\prime}=V_{i} \cap X^{\prime}$ be the set defined as follows. Let $X_{i}^{\prime}=X_{i} \cup\left\{w_{i}\right\}$ and let $X_{i-j}^{\prime}=\left\{a_{i-j}, c_{i-j}, y_{i-j}\right\}$. If $j \geq 2$, then for $i-j+1 \leq$ $\ell \leq i-1$, let $X_{\ell}^{\prime}=\left\{a_{\ell}, c_{\ell}, y_{\ell}\right\}$. If $j \leq i-1$, then for $0 \leq \ell \leq i-j-1$, let $X_{\ell}^{\prime}=X_{\ell}$. If $i<k$, then for $i+1 \leq \ell \leq k$, let $X_{\ell}^{\prime}=X_{\ell}$. Then, $\left|X_{i}^{\prime}\right|=\left|X_{i}\right|+1=3$, $\left|X_{i-j}^{\prime}\right|=\left|X_{i-j}\right|-1=3$, and $\left|X_{\ell}^{\prime}\right|=\left|X_{\ell}\right|$ for all $\ell \notin\{i, i-j\}$, where $\ell \in[k] \cup\{0\}$. Further, let $X_{F}^{\prime}=X_{F}$ and $X_{H}^{\prime}=X_{H}$. Thus,

$$
X^{\prime}=X_{F}^{\prime} \cup X_{H}^{\prime} \cup\left(\bigcup_{i=1}^{k} X_{i}^{\prime}\right)
$$

and $\left|X^{\prime}\right|=|X|$. Since the set X is an ID-set, by construction so too is the set X^{\prime}, implying that the set X^{\prime} is an $i(G)$-set. However, $\left|X_{F}^{\prime}\right|=\left|X_{F}\right|,\left|X_{H}^{\prime}\right|=\left|X_{H}\right|$, $\left|X_{0}^{\prime}\right|=\left|X_{0}\right|$ and $\left|I_{X^{\prime}}\right|<\left|I_{X}\right|$, contradicting our choice of the set X. Consequently, $I_{X}=\emptyset$.

By Claim F, $I_{X}=\emptyset$, implying that $\left|X_{i}\right| \geq 3$ for all $i \in[k]$. Thus, by Claim D and Claim E, we note that $i(G)=|X| \geq 3 k+9$. As observed earlier, $i(G) \leq 3 k+9$. Consequently, $i(G)=3 k+9=3 n / 8$. This completes the proof of Proposition 9 .

3. The Graph Family $\mathcal{F}_{\text {cubic }}$

Following the notation introduced in Section 2, we construct an infinite family, $\mathcal{F}_{\text {cubic }}$, of connected, planar, cubic graphs that are not 2 -connected as follows. Let G_{1}^{*} be the graph obtained from the graph $G_{1} \in \mathcal{G}_{\text {cubic }}$ by deleting the vertices in $V(F)$, and adding a new vertex v and adding the edges $v c_{0}$ and $v y_{0}$. The resulting graph, G_{1}^{*}, is illustrated in Figure 5.

Figure 5. The graph G_{1}^{*}.

We note that G_{1}^{*} has order 23. An analogous, but simpler, proof than that of Proposition 9 (or simple use a computer) shows that $i\left(G_{1}^{*}\right)=9$. The set $\left\{p_{1}, p_{3}, q_{1}, q_{4}, c_{1}, y_{1}, d_{0}, z_{0}, v\right\}$ is an example of an $i\left(G_{1}^{*}\right)$-set.

For $k \geq 3$, let $F_{1}, F_{2}, \ldots, F_{k}$ be k vertex-disjoint copies of the graph G_{1}^{*}, and let v_{i} be the vertex of degree 2 in F_{i} for $i \in[k]$. Let $C: u_{1} u_{2} \cdots u_{k} u_{1}$ be a k-cycle that has no vertex in common with these k copies of the graph G_{1}^{*}. Let F_{k}^{*} be the graph obtained from the disjoint union, $F_{1} \cup F_{2} \cup \cdots \cup F_{k} \cup C$, of these $k+1$ graphs by adding the k edges $u_{i} v_{i}$ for $i \in[k]$. Let $\mathcal{F}_{\text {cubic }}=\left\{F_{k}^{*}: k \geq 3\right\}$. The graph F_{4}^{*} (of order 96) in the family $\mathcal{F}_{\text {cubic }}$ is illustrated in Figure 6.

Figure 6. The graph $F_{4}^{*} \in \mathcal{F}_{\text {cubic }}$.
For each $k \geq 3$, the graph F_{k}^{*} has order $n=24 k$. Further, since $i\left(G_{1}^{*}\right)=9$ and there exists an $i\left(G_{1}^{*}\right)$-set containing the vertex v of degree 2 in G_{1}^{*}, we observe that $i\left(F_{k}^{*}\right)=9 k=3 n / 8$. We state this formally as follows.

Proposition 10. If $G \in \mathcal{F}_{\text {cubic }}$ has order n, then G is a connected, planar, cubic graph satisfying $i(G)=\frac{3}{8} n$.

4. The Graph Family $\mathcal{H}_{\text {cubic }}$

An infinite family, $\mathcal{H}_{\text {cubic }}$, of bipartite, planar, cubic graphs can be constructed as follows. For $k \geq 2$, define the graph H_{k} as described below. Consider two copies of the cycle $C_{2 k}$ with respective vertex sequences $a_{1} b_{1} a_{2} b_{2} \cdots a_{k} b_{k} a_{1}$ and $c_{1} d_{1} c_{2} d_{2} \cdots c_{k} d_{k} c_{1}$. To complete H_{k}, add $2 k$ new vertices $e_{1}, e_{2}, \ldots, e_{k}$ and
$f_{1}, f_{2}, \ldots, f_{k}$, and for each $i \in[k]$, join e_{i} to a_{i}, c_{i} and f_{i}, and join f_{i} to b_{i} and d_{i}. We note that the graph H_{k} has order $6 k$. Let $\mathcal{H}_{\text {cubic }}=\left\{H_{k}: k \geq 2\right\}$. The graph H_{5} (of order 30) in the family $\mathcal{H}_{\text {cubic }}$ is illustrated in Figure 7.

Figure 7. The bipartite, planar, cubic graph H_{5}.
Let S be a set of vertices in a graph G and let $v \in S$. The open neighborhood of v in G is $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. The S-private neighborhood of v is defined by $\operatorname{pn}[v, S]=\left\{w \in V(G): N_{G}[w] \cap S=\{v\}\right\}$. A classical result of Ore [11] states that if S is dominating set in a graph G, then S is a minimal dominating set of G if and only if for each $v \in S, \operatorname{pn}[v, S] \neq \emptyset$.

We are now in a position to prove the following result.
Proposition 11. If $G \in \mathcal{H}_{\text {cubic }}$ has order n, then $\gamma(G)=i(G)=\frac{1}{3} n$.
Proof. Let $G \in \mathcal{H}_{\text {cubic }}$ have order n. Then, $G=H_{k}$ for some $k \geq 2$, and so G has order $n=6 k$. We show that $\gamma(G)=i(G)=2 k$. Let $X_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}\right\}$ for $i \in[k]$. The set $D_{k}=\bigcup_{i=1}^{k}\left\{a_{i}, d_{i}\right\}$ is an ID-set of G of cardinality $2 k$, implying that $i(G) \leq\left|D_{k}\right|=2 k$. We show next that $\gamma(G) \geq 2 k$. Let S be a $\gamma(G)$-set. By the minimality of S, and by construction of the graph G, we note that $1 \leq\left|S \cap X_{i}\right| \leq 4$ for all $i \in[k]$. For $j \in[4]$, let $S_{j}=\left\{i \in[k]:\left|S \cap X_{i}\right|=j\right\}$. Thus, $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ is a (weak) partition of the set $[k]$, where some of the sets may be empty. We note that $|S|=\sum_{i=1}^{4} i\left|S_{i}\right|$ and $k=\sum_{i=1}^{4}\left|S_{i}\right|$.

In what follows, we take addition modulo k. Among all $\gamma(G)$-sets, we choose S so that $\left|S_{4}\right|$ is a minimum. We proceed further with the following two claims.

Claim I. $\left|S_{4}\right|=0$.
Proof. Suppose, to the contrary, that $\left|S_{4}\right| \geq 1$. Thus, $\left|S \cap X_{i}\right|=4$ for some $i \in$ [k]. By the minimality of the set S, we note that $S \cap X_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$. By Ore's Theorem [11] and the structure of the graph G, we note that $\operatorname{pn}\left[a_{i}, S\right]=\left\{b_{i-1}\right\}$ and $\operatorname{pn}\left[c_{i}, S\right]=\left\{d_{i-1}\right\}$. This implies that $S \cap X_{i-1}=\left\{e_{i-1}\right\}$. We now consider the set $S^{\prime}=\left(S \backslash\left\{a_{i}, c_{i}\right\}\right) \cup\left\{e_{i}, f_{i-1}\right\}$. The resulting set S^{\prime} is a dominating set of G satisfying $\left|S^{\prime}\right|=|S|$, and is therefore a $\gamma(G)$-set. However, $\left|S_{4}^{\prime}\right|=\left|S_{4}\right|-1$, contradicting our choice of the set S. Therefore, $\left|S_{4}\right|=0$.

Claim II. $\left|S_{3}\right| \geq\left|S_{1}\right|$.
Proof. Suppose that $i \in S_{1}$ for some $i \in[k]$, and so $\left|S \cap X_{i}\right|=1$. In order to dominate e_{i} and f_{i}, we note that either $e_{i} \in S$ or $f_{i} \in S$. Suppose that $e_{i} \in S$. In order to dominate b_{i}, the vertex $a_{i+1} \in S$, while in order to dominate d_{i}, the vertex $c_{i+1} \in S$. In order to dominate the vertex f_{i+1}, the set S contains a vertex of X_{i+1} different from a_{i+1} and c_{i+1}, implying that $\left|S \cap X_{i+1}\right| \geq 3$. By Claim I, $\left|S \cap X_{i+1}\right| \leq 3$. Consequently, $\left|S \cap X_{i+1}\right|=3$, and so $i+1 \in S_{3}$. Hence, if $e_{i} \in S$, then $i+1 \in S_{3},\left\{a_{i+1}, c_{i+1}\right\} \subset S$ and $\left|S \cap\left\{b_{i+1}, d_{i+1}\right\}\right| \leq 1$. Analogously, if $f_{i} \in S$, then $i-1 \in S_{3},\left\{b_{i-1}, d_{i-1}\right\} \subset S$ and $\left|S \cap\left\{a_{i-1}, c_{i-1}\right\}\right| \leq 1$. This implies that if $i \in S_{1}$, then either $e_{i} \in S$, in which case we can uniquely associate $i+1 \in S_{3}$ with i, or $f_{i} \in S$, in which case we can uniquely associate $i-1 \in S_{3}$ with i. Therefore, $\left|S_{3}\right| \geq\left|S_{1}\right|$.

We now return to the proof of Proposition 11. By Claim I, $\left|S_{4}\right|=0$, and so $|S|=\sum_{i=1}^{3} i\left|S_{i}\right|$ and $k=\sum_{i=1}^{3}\left|S_{i}\right|$.

By Claim II, $\left|S_{3}\right| \geq\left|S_{1}\right|$, and so $k=\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right| \geq 2\left|S_{1}\right|+\left|S_{2}\right|$, or, equivalently, $k-2\left|S_{1}\right|-\left|S_{2}\right| \geq 0$. Thus,

$$
\begin{aligned}
|S| & =\left|S_{1}\right|+2\left|S_{2}\right|+3\left|S_{3}\right|=\left|S_{1}\right|+2\left|S_{2}\right|+3\left(k-\left|S_{1}\right|-\left|S_{2}\right|\right) \\
& =3 k-2\left|S_{1}\right|-\left|S_{2}\right|=2 k+\left(k-2\left|S_{1}\right|-\left|S_{2}\right|\right) \geq 2 k
\end{aligned}
$$

Thus, $2 k \leq|S|=\gamma(G) \leq i(G) \leq 2 k$. Consequently, we must have equality throughout this inequality chain. In particular, $\gamma(G)=i(G)=2 k=\frac{1}{3} n$.

5. Summary of Results

In this paper, we consider five conjectures which we name as Conjectures $2,5,6,7$ and 8. We first consider Conjecture 2. We prove in Theorem 4 that Conjecture 2 is true for 2 -connected graphs. Our first main result constructs an infinite family, $\mathcal{G}_{\text {cubic }}$, of 2-connected, planar, cubic graphs in Section 2 to show that in this case the bound is tight.

We next consider Conjecture 5. By of our previous result, it suffices to prove Conjecture 5 for connected, planar, cubic graphs that contain cut-vertices. Our second result constructs an infinite family, $\mathcal{F}_{\text {cubic }}$, of connected, planar, cubic graphs that contain cut-vertices in Section 3 to show that if Conjecture 5 is true for graphs with cut-vertices, then the bound is tight.

We finally consider Conjectures 6,7 and 8 . Our third result constructs an infinite family, $\mathcal{H}_{\text {cubic }}$, of bipartite, planar, cubic graphs in Section 4 to show that if Conjectures 7 and 8 are true, then the bounds are tight.

Acknowledgments

The authors wish to express their thanks to Amin Abrishami for his assistance with computer computations.

References

[1] C. Barefoot, F. Harary and K.F. Jones, What is the difference between the domination and independent domination numbers of a cubic graph?, Graphs Combin. $\mathbf{7}$ (1991) 205-208. doi:10.1007/BF01788145
[2] P. Dorbec, M.A. Henning, M. Montassier and J. Southey, Independent domination in cubic graphs, J. Graph Theory 80 (2015) 329-349.
doi:10.1002/jgt. 21855
[3] W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (2013) 839-854. doi:10.1016/j.disc.2012.11.031
[4] W. Goddard, M. A. Henning, J. Lyle and J. Southey, On the independent domination number of regular graphs, Ann. Comb. 16 (2012) 719-732. doi:10.1007/s00026-012-0155-4
[5] W. Goddard and J. Lyle, Independent dominating sets in triangle-free graphs, J. Comb. Optim. 23 (2012) 9-20. doi:10.1007/s10878-010-9336-4
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[7] M.A. Henning, C. Löwenstein and D. Rautenbach, Independent domination in subcubic bipartite graphs of girth at least six, Discrete Appl. Math. 162 (2014) 399-403. doi:10.1016/j.dam.2013.08.035
[8] A.V. Kostochka, The independent domination number of a cubic 3-connected graph can be much larger than its domination number, Graphs Combin. 9 (1993) 235-237. doi:10.1007/BF02988312
[9] P.C.B. Lam, W.C. Shiu and L. Sun, On independent domination number of regular graphs, Discrete Math. 202 (1999) 135-144. doi:10.1016/S0012-365X(98)00350-1
[10] J. Lyle, A note on independent sets in graphs with large minimum degree and small cliques, Electron. J. Combin. 21 (2014) \#P2.38.
[11] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38 (1962) 206-212. doi:10.1090/coll/038
[12] J. Southey and M.A. Henning, Domination versus independent domination in cubic graphs, Discrete Math. 313 (2013) 1212-1220.
doi:10.1016/j.disc.2012.01.003
[13] T. Zhu and B. Wu, Domination of maximal K_{4}-minor free graphs and maximal $K_{2,3}$-minor free graphs, and disproofs of two conjectures on planar graphs, Discrete Appl. Math. 194 (2015) 147-153. doi:10.1016/j.dam.2015.05.029

Received 2 August 2017
Revised 1 December 2017
Accepted 1 December 2017

[^0]: ${ }^{1}$ Research supported in part by the South African National Research Foundation and the University of Johannesburg.
 ${ }^{2}$ Corresponding author.

