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Abstract

Let D be a digraph of minimum in-degree at least 1. We prove that for
any two natural numbers k, l such that 1 ≤ l ≤ k, the number of (k, l)-kernels
of D is less than or equal to the number of (k, l)-kernels of any partial line
digraph LD. Moreover, if l < k and the girth of D is at least l+1, then these
two numbers are equal. We also prove that the number of semikernels of
D is equal to the number of semikernels of LD. Furthermore, we introduce
the concept of (k, l)-Grundy function as a generalization of the concept of
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Grundy function and we prove that the number of (k, l)-Grundy functions
of D is equal to the number of (k, l)-Grundy functions of any partial line
digraph LD.
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1. Introduction

Throughout the paper, D = (V,A) denotes a loopless digraph with vertex set
V and arc set A. Let ω−(x) stand for the set of arcs having vertex x as their
terminal vertex, and ω+(x) stand for the set of arcs having vertex x as their
initial vertex. Thus, the in-degree of x is d−(x) = |ω−(x)| and the out-degree
of x is d+(x) = |ω+(x)|. The minimum in-degree (minimum out-degree) of D
is δ−(D) = min{d−D(x) : x ∈ V } (δ+(D) = min{d+D(x) : x ∈ V } respectively).
Moreover, given a set U ⊆ V , ω−(U) = {(x, y) ∈ A : y ∈ U and x /∈ U}. Given a
set of arcs Ω ⊆ A, the heads of Ω are the vertices in the set H(Ω) = {y : (x, y) ∈
Ω}. For any pair of vertices x, y ∈ V , a directed path (x, x1, . . . , xn−1, y) from x
to y is called an x → y path. The distance from x to y is denoted by dD(x, y)
and it is defined to be the length of a shortest x → y path.

A set K ⊂ V (D) is said to be a kernel if it is both independent (for every two
vertices x, y ∈ K, dD(x, y) ≥ 2) and absorbing (a vertex not in K has a successor
in K). This concept was first introduced in [13] by Von Neumann and Morgensten
in the context of Game Theory as a solution for cooperative n-player games.
The concept of a kernel is important to the theory of digraphs because it arises
naturally in applications such as Nim-type games, logic, and facility location, to
name a few. Several authors have been investigating sufficient conditions for the
existence of kernels in digraphs, for a comprehensive survey see for example [4]
and [7]. Also see Chapter 15 of [12] for a summary.

Let l, k be two integers such that l ≥ 1 and k ≥ 2. A (k, l)-kernel of a digraph
D is a subset of vertices K which is both k-independent (dD(u, v) ≥ k for all
u, v ∈ K) and l-absorbing (dD(x,K) ≤ l for all x ∈ V \ K). Observe that any
kernel is a (2, 1)-kernel and a quasikernel, introduced in [10], is a (2, 2)-kernel.
The concept of (k, l)-kernel is a nice and wide generalization of the concept of
kernel; (k, l)-kernels have been deeply studied by several authors, see for example
[8, 9, 18–20].

Grundy functions are very useful in the context of game theory and they are
nearly related to kernels since a digraph with Grundy function has also a kernel.
Also the concept of semikernel is very close to that of kernel, because a digraph
such that every induced subdigraph has a nomempty semikernel has a kernel.

The line digraph technique is a good general method for obtaining large
digraphs with fixed degree and diameter. In the line digraph L(D) of a digraph
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D, each vertex represents an arc of D. Thus, V (L(D)) = {uv : (u, v) ∈ A(D)},
and a vertex uv is adjacent to a vertex xz if and only if v = x, that is, when
the arc (u, v) is adjacent to the arc (x, z) in D. For any h > 1, the h-iterated
line digraph, Lh(D), is defined recursively by Lh(D) = L(Lh−1(D)). For more
information about line digraphs see, for instance, Aigner [1], Fiol, Yebra and
Alegre [5] and Reddy, Kuhl, Hosseini and Lee [17].

A wider family of digraphs, called partial line digraphs, was introduced in [6]
as a generalization of line digraphs. Let D = (V,A) be a digraph and consider
an arc subset A′ ⊆ A and a surjective mapping φ : A → A′ such that

(i) the set of heads of A′ is H(A′) = V ;

(ii) the map φ fixes the elements of A′, that is, φ|A′ = id, and for every vertex
j ∈ V , φ(ω−(j)) ⊂ ω−(j) ∩A′.

Hence, |V | ≤ |A′| ≤ |A|. Note that the existence of such a subset A′ is guaranteed
when δ−(i) ≥ 1 for every i ∈ V . Then, the partial line digraph of D, denoted by
L(A′,φ)D (for short LD if the pair (A′, φ) is clear from the context), is the digraph
with vertex set V (LD) = A′ and set of arcs

A(LD) = {(ij, φ((j, k))) : (j, k) ∈ A}.

Remark 1. If A′ = A, then φ = id and the partial line digraph LD coincides
with the line digraph L(D).

In what follows we write φ(jk) instead φ((j, k)) for clarity. Figure 1 shows
an example of a digraph D with 12 arcs and its partial line digraph with |A′| = 9
vertices. The arcs not in A′ are drawn with dotted lines and have images φ(12) =
42, φ(34) = 54, and φ(65) = 25.

1

36

2

45

φ(12) = 42

φ(34) = 54

φ(65) = 25

21

56

43

25

54

42

36

1361

Figure 1. A digraph and its partial line digraph.
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In this paper we study the relationship between the number of (k, l)-kernels
(respectively, semikernels) of a digraph D and the corresponding number in any
partial line digraph LD. Also we introduce the concept of (k, l)-Grundy function
as a generalization of the concept of Grundy function and we prove that the
number of (k, l)-Grundy functions of D is equal to the number of (k, l)-Grundy
functions of any partial line digraph LD.

2. (k, l)-Kernels and Semikernels

In this section we will prove that the number of (k, l)-kernels of a digraph is less
than or equal to the number of (k, l)-kernels of its partial line digraphs, and under
certain conditions these two numbers are equal.

We start by proving a result concerning independent sets of a digraph and
of those of their partial line digraphs.

Lemma 2. Let D be a digraph with minimum in-degree at least 1. Let A′ and φ
satisfy the requirements of the definition of a partial line digraph, i.e., L(A′,φ)D =
LD. Let k ≥ 2 be an integer number. Denote by I the set of all k-independent
sets of D, and by I∗ the set of all k-independent sets of LD. Then the assignment
f : I → I∗ defined by f(I) = ω−(I) ∩ A′ for all I ∈ I is an injective function.
Therefore the number of k-independent sets of D is less than or equal to the
number of k-independent sets of LD.

Proof. First of all let us see that f is a function. Let ab, cd ∈ ω−(I)∩A′ be such
that dLD(ab, cd) = t, and observe that dD(b, d) ≥ k because b, d ∈ I. By definition
of φ any shortest path from ab to cd in LD is ab, φ(bb1), φ(b1b2), . . . , φ(bt−1bt) =
cd, where bi ∈ V (D) and (b, b1), (bi, bi+1) ∈ A(D), i = 1, . . . , t − 1. Since
φ(bt−1bt) = αbt for some α ∈ V (D), then bt = d yielding that a walk b, b1, . . . , bt =
d from b to d of length t exists in D. This means that t ≥ dD(b, d) ≥ k and hence
every two vertices of ω−(I) ∩A′ are mutually at distance at least k.

Let us prove that f is an injective function. Let I1, I2 ∈ I be such that
f(I1) = f(I2), that is ω−(I1) ∩ A′ = ω−(I2) ∩ A′. Let us show that I1 = I2. Let
u ∈ I1. Note that by item (i) of definition of LD there is y ∈ V (D) such that
yu ∈ A′. Clearly, yu ∈ ω−(I1) ∩ A′ which implies that yu ∈ ω−(I2) ∩ A′, then
u ∈ I2, that is, I1 ⊆ I2. Reasoning analogously, I2 ⊆ I1 yielding that I1 = I2.
Therefore f is an injective function and the lemma holds.

The concept of Fibonacci number for a graph G was introduced in [15] and it
is defined as the number of independent subsets of G including the empty set. We
extend this concept for digraphs, and we give an upper bound on the Fibonacci
number of a digraph in terms of the Fibonacci number of its partial line digraph.
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Corollary 3. Let D be a digraph with minimum in-degree at least 1. Let A′

and φ satisfy the requirements of the definition of a partial line digraph, i.e.,
L(A′,φ)D = LD. Then the Fibonacci number of D is less than or equal to the
Fibonacci number of LD.

2.1. (k, l)-kernels

Some known results about the existence of kernels and (k, l)-kernels in line di-
graphs can be seen in [11, 16]. The following theorem is proved in [2].

Theorem 4 [2]. Let k, l be two natural numbers such that 1 ≤ l < k, and let D
be a digraph with minimum in-degree at least 1 and girth at least l + 1. Then D
has a (k, l)-kernel if and only if any partial line digraph LD has a (k, l)-kernel.

Note that, since a kernel is a (2, 1)-kernel, it follows that D has a kernel if and
only if any partial line digraph LD has a kernel. Next, we establish a relationship
between the number of (k, l)-kernels of D and the number of (k, l)-kernels of LD.

Theorem 5. Let k, l be two natural numbers such that l ≥ 1 and k ≥ 2, and
let D be a digraph with minimum in-degree at least 1. Let A′ and φ satisfy the
requirements of the definition of a partial line digraph, i.e., L(A′,φ)D = LD.
Then the number of (k, l)-kernels of D is less than or equal to the number of
(k, l)-kernels of LD. Moreover, if l < k and the girth of D is at least l + 1, then
these numbers are equal.

Proof. Denote by K the set of all (k, l)-kernels of D, and by K∗ denote the set
of all (k, l)-kernels of LD.

Let f : K → K∗ be defined by f(K) = ω−(K)∩A′ for all K ∈ K. In the proof
of Theorem 2.1 of [2] it was proved that f is well defined. And from Lemma 2 it
follows that f is injective. Therefore |K| ≤ |K∗|.

Let h : K∗ → K be defined by h(K̂) = H(K̂) for all K̂ ∈ K∗. In the
proof of Theorem 2.1 of [2] it was proved that h is well defined if l < k and
the girth of D is at least l + 1. Moreover, we can check that h = f−1 because
h(f(K)) = H(ω−(K) ∩A′) = K. Therefore the theorem holds.

Corollary 6. Let D be a digraph with minimum in-degree at least 1. Let A′

and φ satisfy the requirements of the definition of a partial line digraph, i.e.,
L(A′,φ)D = LD. Then the following assertions hold.

(i) The number of kernels of D is equal to the number of kernels of LD.

(ii) The number of quasikernels of D is less than or equal to the number of
quasikernels of LD.

Let us observe that the number of quasikernels of D can be strictly less than
the number of quasikernels of its line digraph L(D). A quasikernel is a (2, 2)-
kernel as we mentioned before, i.e., k = l = 2. The digraphs shown in Figure 2
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have different number of quasikernels. This proves that the hypothesis l < k
of Theorem 5 cannot be avoided to guarantee that the number of quasikernels
of D and L(D) is equal. In this example the digraph D on the left side has 3
quasikernels, namely, {x}, {z} and {y, t}, while its line digraph on the right side
has 5 quasikernels which are {zx}, {tz, yz}, {xy, xt}, {xt, yz} and {xy, tz}.

x

zy

t xy

zxyz tz

xt

Figure 2. A digraph with 3 quasikernels and its line digraph with 5 quasikernels.

2.2. Semikernels

Let S be an independent set of D. We say that S is a semikernel of D if for all
sx ∈ ω+(S) there exists xs′ ∈ ω−(S). Thus, a vertex of out-degree zero forms a
semikernel. Also a vertex only incident with symmetric arcs forms a semikernel.
Figure 3 depicts a digraph having a semikernel but not a kernel. In [14] it was
proved that if every induced subdigraph of D has a (nonempty) semikernel, then
every induced subdigraph of D has a kernel, and so D.

x

Figure 3. A digraph with semikernel {x} but without kernels.

In Theorem 2.1 of [10] it was proved that the number of semikernels of a
digraph with minimum in-degree at least one is less than or equal to the number
of semikernels of the line digraph. Next we improve and generalize this result by
stating the equality for every partial line digraph.

Theorem 7. Let D be a digraph with minimum in-degree at least 1. Let A′

and φ satisfy the requirements of the definition of a partial line digraph, i.e.,
L(A′,φ)D = LD. Then the number of semikernels of D is less than or equal to
the number of semikernels of LD.
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Proof. Denote by S the set of all semikernels of D, and by S∗ denote the set of
all semikernels of LD. Let f : S → S∗ be defined by f(K) = ω−(K) ∩ A′ for all
K ∈ S. Let us see that f(K) ∈ S∗.

By Lemma 2, we know that f is an injective function and f(K) is an in-
dependent set. It remains to prove that if (e′, e) ∈ ω+(f(K)), then there ex-
ists (e, e′′) ∈ ω−(f(K)). Let (e′, e) ∈ ω+(f(K)). Then e′ = x′y′ ∈ f(K) =
ω−(K)∩A′, yielding that y′ ∈ K. Moreover, e = φ(y′y) because (e′, e) ∈ A(LD),
which implies that (y′, y) ∈ ω+(K) since y′ ∈ K. Since K is a semikernel, there
exists (y, y′′) ∈ ω−(K), implying e′′ = φ(yy′′) ∈ ω−(K) ∩ A′ = f(K), then
(e, e′′) ∈ ω−(f(K)), implying that f(K) is a semikernel.

Figure 4 shows both a digraph and its line digraph with different number of
semikernels.

1

2

3 4

5 6

3

45

6

1
2

Figure 4. A digraph with 4 semikernels and its line digraph, with 8 semikernels.

Theorem 8. Let D be a digraph with minimum in-degree at least 1. Let A′

and φ satisfy the requirements of the definition of a partial line digraph, i.e.,
L(A′,φ)D = LD. Then LD has a semikernel if and only if D has a semikernel.

Proof. From Theorem 7 it follows that if D has a semikernel, then LD has a
semikernel. To see the converse let us consider the function h : S∗ → S defined
by h(K∗) = H(K∗). First, let us see that H(K∗) is an independent set of
D. Let u, v ∈ H(K∗). Then u′u, v′v ∈ K∗ for some u′, v′ ∈ V (D), yielding
that u′u, v′v are not adjacent in LD. We reason by contradiction assuming that
uv ∈ A(D). Then (u′u, φ(uv)) ∈ ω+(K∗). Since K∗ is a semikernel, there is
(φ(uv), φ(vw)) ∈ ω−(K∗). But v′v, φ(vw) ∈ K∗ and they are adjacent which is a
contradiction. Therefore u, v are not adjacent and so H(K∗) is independent.

Second, vu ∈ ω+(H(K∗)). As v ∈ H(K∗), there is v′v ∈ K∗ and (v′v, φ(vu))
∈ ω+(K∗). Since K∗ is a semikernel, it follows that there exists (φ(vu), φ(uw)) ∈
ω−(K∗). Then φ(uw) ∈ K∗ and so w ∈ H(K∗). Therefore uw ∈ ω−(H(K∗))
and the proof is finished.
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3. Grundy Function

Definition. Consider a simple digraph D = (V,A). Following Berge [3], a non-
negative integer function g on V is defined as a Grundy function if the following
two requirements hold:

(1) g(x) = k > 0 implies that for each j < k, there is y ∈ N+(x) with g(y) = j;

(2) g(x) = k implies that each y ∈ N+(x) satisfies g(y) 6= k.

This concept was first defined by Grundy in 1939 for acyclic digraphs as
follows.

For every x ∈ V , g(x) = min(N \ {g(y) : y ∈ N+(x)}).
Furthermore, Grundy proved that every acyclic digraph has a unique Grundy
function. However, there are digraphs without Grundy function, for instance the
odd directed cycles. One of the most relevant properties of a Grundy function is
that if D has a Grundy function g, then D has a kernel K = {x ∈ V : g(x) = 0}.

Next, we propose a generalization of a Grundy function called (k, l)-Grundy
function. To do that we need to introduce some notation. The out-neighborhood
at distance r from a vertex x ∈ V is N+

r (x) = {y ∈ V : 1 ≤ d(x, y) ≤ r}.

Definition. Consider a simple digraph D = (V,A) and let l ≥ 1 and k ≥ 2 be
two integers. A non-negative integer function g on V is defined as a (k, l)-Grundy
function if the following two requirements hold:

(1) g(x) = t > 0 implies that for each j < t, there is y ∈ N+
l (x) with g(y) = j;

(2) g(x) = t implies that each y ∈ N+
k−1(x) satisfies g(y) 6= t.

Figure 5 depicts on the left side a digraph with a (2, 2)-Grundy function and
on the right side a digraph with a (3, 2)-Grundy function.

2

10

0 2

10 0

2

Figure 5. A digraph with a (2, 2)-Grundy function and a digraph with a (3, 2)-Grundy
function.

Remark 9. If a digraph D has a (k, l)-Grundy function g, then D has a (k, l)-
kernel K = {x ∈ V : g(x) = 0}.

The number of Grundy functions of D has been proved to be equal to the
number of Grundy functions of its line digraph, see [10]. Next, we extend this
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result to (k, l)-Grundy functions and to partial line digraphs. First we prove that
a digraph has a (k, l)-Grundy function if and only if any partial line digraph has
a (k, l)-Grundy function.

Lemma 10. Let l ≥ 1 and k ≥ 2 be two integers. Let D be a digraph with mini-
mum in-degree at least 1 having a (k, l)-Grundy function g. Let A′ and φ satisfy
the requirements of the definition of a partial line digraph, i.e., L(A′,φ)D = LD.
Then gL : A′ → N defined as gL(yx) = g(x) is a (k, l)-Grundy function on LD.

Proof. Let g : V → N be a (k, l)-Grundy function on D = (V,A). Next, we
prove that gL : A′ → N be defined as gL(yx) = g(x) is a (k, l)-Grundy function
on LD. Let yx ∈ V (LD). First, suppose that gL(yx) = t > 0. Since gL(yx) =
g(x) = t > 0, by (1) of Definition 3, it follows that for each j < t, there is
w ∈ N+

l (x) with g(w) = j. Hence, there is a path (x, x1, . . . , xr = w) in D
with r ≤ l, which produces a path (yx, φ(xx1), . . . , φ(xr−1xr)) in LD of length
r, yielding that φ(xr−1w) ∈ N+

l (yx) ⊂ V (LD). Therefore for each j < t, there
is φ(xr−1w) ∈ N+

l (yx) ⊂ V (LD) and gL(φ(xr−1w)) = g(w) = j. Thus, gL meets
requirement (1) of Definition 3. Now suppose that gL(yx) = t, so g(x) = t. Let
uv ∈ N+

k−1(yx) ⊂ V (LD), then there is a path (yx, φ(xx1), . . . , φ(xr−1xr) = uv)
of length r ≤ k − 1 in LD. Hence there is a path (x, x1, . . . , xr = v) in D with
r ≤ k − 1, yielding that g(v) 6= t because v ∈ N+

k−1(x) applying (2) of Definition

3. Therefore for all uv ∈ N+
k−1(yx), we have gL(uv) = gL(φ(xr−1xr)) = g(v) 6= t.

Thus, gL meets requirement (2) of Definition 3, concluding that gL is a (k, l)-
Grundy function on LD.

Lemma 11. Let l ≥ 1 and k ≥ 2 be two integers such that l ≤ k− 1. Let D be a
digraph with minimum in-degree at least 1. Let A′ and φ satisfy the requirements
of the definition of a partial line digraph, i.e., L(A′,φ)D = LD. Suppose that g is
a (k, l)-Grundy function on LD. Then gD : V → N defined as gD(x) = g(yx),
yx ∈ A′, is a (k, l)-Grundy function on D.

Proof. Let g : A′ → N be a (k, l)-Grundy function on LD. First, let us prove
that gD : V → N defined as gD(x) = g(yx) with x ∈ V and yx ∈ A′ is a
function. So assume that there are two arcs yx, y′x ∈ A′, such that g(yx) 6=
g(y′x). Suppose 0 ≤ h = g(yx) < g(y′x), then there exists uv ∈ N+

l (y′x) ⊂
V (LD) such that g(uv) = h by condition (1) of Definition 3. Then there is a
path (y′x, φ(xx1), . . . , φ(xr−1xr) = uv) of length r ≤ l in LD, and also a path
(yx, φ(xx1), . . . , φ(xr−1xr) = uv) of length r ≤ l in LD implying that uv ∈
N+

l (yx) ⊆ N+
k−1(yx) because l ≤ k − 1, and g(yx) = g(uv) = h which is a

contradiction with (2) of Definition 3. Therefore g(yx) = g(y′x). Furthermore,
for every x ∈ V , there is an arc yx ∈ A′ by definition of LD. Hence, gD(x) exists
for all x ∈ V . Thus gD is a function.
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Next, we prove that gD is a (k, l)-Grundy function on D. Let x ∈ V . First,
suppose that gD(x) = t > 0. Since gD(x) = g(wx) = t > 0 where wx ∈ A′, by (1)
of Definition 3, it follows that for each j < t, there is uv ∈ N+

l (wx) ⊂ V (LD) with
g(uv) = j. Then there is a path (wx, φ(xx1), . . . , φ(xr−1xr) = uv) of length r in
LD, implying that v ∈ N+

l (x) ⊂ V (D) and gD(v) = j. Hence, gD satisfies (1) of
Definition 3. Finally, suppose that gD(x) = t, let us see that for all y ∈ N+

k−1(x),

gD(y) 6= t. We have t = gD(x) = g(wx) for wx ∈ A′. Since for all y ∈ N+
k−1(x),

there exists a path (x, x1, . . . , xr = y) of length r ≤ k − 1 in D, it follows that
φ(xr−1y) ∈ N+

l (wx) ⊂ V (LD), yielding that g(φ(xr−1y)) 6= g(wx) = t because
(2) of Definition 3. As gD(y) = g(φ(xr−1y)) it turns out that gD(y) 6= t. Thus, gD
meets requirement (2) of Definition 3, and we conclude that gD is a (k, l)-Grundy
function.

As an immediate consequence of both Lemma 10 and Lemma 11, we can
write the following theorem.

Theorem 12. Let l ≥ 1 and k ≥ 2 be two integers with l ≤ k − 1. A digraph D
with minimum in-degree at least 1 has a (k, l)-Grundy function if and only if any
partial line digraph LD has a (k, l)-Grundy function.

Theorem 13. Let l ≥ 1 and k ≥ 2 be two integers with l ≤ k − 1. Let D be
a digraph with minimum in-degree at least 1. Then the number of (k, l)-Grundy
functions of D is equal to number of (k, l)-Grundy functions of any partial line
digraph LD.

Proof. Let A′ and φ satisfy the requirements of the definition of a partial line
digraph, i.e., L(A′,φ)D = LD. Denote by F the set of all (k, l)-Grundy functions
on D, and by F∗ the set of all (k, l)-Grundy functions on LD. If g ∈ F , then the
function gL given by Lemma 10, belongs to F∗; and if h ∈ F∗, then the function
hD given by Lemma 11, belongs to F .

Let f : F → F∗ be defined by f(g) = gL. Let us prove that f is an injective
function.

Let g, g′ ∈ F be such that f(g) = f(g′), that is gL = g′L. Let us show that
g = g′. Since for all x ∈ V there exists yx ∈ A′, and gL(yx) = g′L(yx), it follows
that gL(yx) = g(x) = g′(x) = g′L(yx). Hence g = g′. Thus, f is an injective
function yielding that |F| ≤ |F∗|.

Let f∗ : F∗ → F be defined by f∗(h) = hD. Let us prove that f∗ is an
injective function.

Let h, h′ ∈ F∗ be such that f∗(h) = f∗(h′), that is hD = h′D. Let us show
that h = h′. Since for all yx ∈ A′ we have h(yx) = hD(x) = h′D(x) = h′(yx), it
follows that h = h′. Thus, f∗ is an injective function yielding that |F∗| ≤ |F|.

Hence we conclude that |F| = |F∗|.
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Matemáticas de la Universidad Nacional Autónoma de México II (1971) 55–62.
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