DOMINATION SUBDIVISION AND DOMINATION MULTISUBDIVISION NUMBERS OF GRAPHS

Magda Dettlaff, Joanna Raczek
Faculty of Applied Physics and Mathematics Gdañsk University of Technology
Narutowicza 11/12, 80-233 Gdańsk, Poland
e-mail: magdadettlaff1@pg.edu.pl
Joanna.Raczek@pg.gda.pl

AND

Jerzy Topp
Faculty of Mathematics, Physics and Informatics University of Gdańsk Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: Jerzy.Topp@inf.ug.edu.pl

Abstract

The domination subdivision number $\operatorname{sd}(G)$ of a graph G is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number of G. It has been shown [10] that $\operatorname{sd}(T) \leq 3$ for any tree T. We prove that the decision problem of the domination subdivision number is NP-complete even for bipartite graphs. For this reason we define the domination multisubdivision number of a nonempty graph G as a minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. We show that $\operatorname{msd}(G) \leq 3$ for any graph G. The domination subdivision number and the domination multisubdivision number of a graph are incomparable in general, but we show that for trees these two parameters are equal. We also determine the domination multisubdivision number for some classes of graphs.

Keywords: domination, domination subdivision number, domination multisubdivision number, trees, computational complexity.

2010 Mathematics Subject Classification: 05C69, 05C05, 05C99.

1. Introduction and motivation

For domination problems, multiple edges and loops are irrelevant, so we forbid them. Additionally, in this paper we consider connected graphs only. We use $V(G)$ and $E(G)$ for the vertex set and the edge set of a graph G and denote $|V(G)|=n,|E(G)|=m$.

A subset D of $V(G)$ is dominating in G if every vertex of $V(G) \backslash D$ has at least one neighbour in D. The domination number of G, denoted by $\gamma(G)$, is the cardinality of a smallest dominating set in G. A minimum dominating set of a graph G is called a $\gamma(G)$-set.

For a graph $G=(V, E)$, subdivision of the edge $e=u v \in E$ with vertex x leads to a graph with vertex set $V \cup\{x\}$ and edge set $(E \backslash\{u v\}) \cup\{u x, x v\}$. Let $G_{e, t}$ denote graph obtained from G by subdivision of the edge e with t vertices (instead of edge $e=u v$ we put a path $\left(u, x_{1}, x_{2}, \ldots, x_{t}, v\right)$). For $t=1$ we write G_{e}.

The domination subdivision number, $\operatorname{sd}(G)$, of a graph G is the minimum number of edges which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Since the domination number of the graph K_{2} does not increase when its only edge is subdivided, we consider the subdivision number for connected graphs of order at least 3 . The domination subdivision number was defined by Velammal in 1997 (see [10]) and since then it has been studied widely in graph theory papers. This parameter was studied in trees by Aram, Sheikholeslami and Favaron [1] and also by Benecke and Mynhardt [3]. General bounds and properties have been studied for example by Haynes, Hedetniemi and Hedetniemi [8], by Bhattacharya and Vijayakumar [4], by Favaron, Haynes and Hedetniemi [5] and by Favaron, Karami and Sheikholeslami [6]. In this paper we continue the study of domination subdivision numbers of graphs by proving that the decision problem of domination subdivision number is NP-complete even for bipartite graphs. Additionally, we define $\operatorname{msd}(u v)$ to be the minimum number of subdivisions of the edge $u v$ such that $\gamma(G)$ increases. Moreover, let the domination multisubdivision number of a graph G, denoted by $\operatorname{msd}(G)$, be defined as

$$
\operatorname{msd}(G)=\min \{\operatorname{msd}(u v): u v \in E(G)\}
$$

The domination multisubdivision number is well defined for all graphs having at least one edge.

The concept of domination multisubdivision number has been studied for a total domination. A subset D of $V(G)$ is total dominating in G if every vertex of G has at least one neighbour in D and the total domination number of $G, \gamma_{t}(G)$, is the cardinality of a smallest total dominating set in G. The total domination multisubdivision number was defined by Avella-Alaminos et al. [2] as follows: $\operatorname{msd}_{\gamma_{t}}(u v)$ denotes the minimum number of subdivisions of the
edge $u v$ such that $\gamma_{t}(G)$ increases and the total domination multisubdivision number of a graph G of order at least two, denoted by $\operatorname{msd}_{\gamma_{t}}(G)$, is defined as $\operatorname{msd}_{\gamma_{t}}(G)=\min \left\{\operatorname{msd}_{\gamma_{t}}(u v): u v \in E(G)\right\}$.

2. Notation

The neighbourhood $N_{G}(v)$ of a vertex $v \in V(G)$ is the set of all vertices adjacent to v. The degree of a vertex v is $d_{G}(v)=\left|N_{G}(v)\right|$.

We say that a vertex v of a graph G is a leaf if v has exactly one neighbour in G. A vertex v is called a support vertex if it is adjacent to a leaf. If v is adjacent to more than one leaf, then we call v a strong support vertex.

We call a path $\left(x, v_{1}, \ldots, v_{l}, y\right)$ connecting two vertices x and y in a graph G an $(x-y)$-path. The vertices v_{1}, \ldots, v_{l} are its internal vertices. The length of a shortest such path is called the distance between x and y, and is denoted $d_{G}(x, y)$. The diameter $\operatorname{diam}(G)$ of a connected graph G is the maximum distance between two vertices of G. For subsets X and Y of $V(G)$, an $(X-Y)$-path is a path which starts at a vertex of X, ends at a vertex of Y, and whose internal vertices belong to neither X nor Y. If $X=\{x\}$, then we write $(x-Y)$-path.

The private neighbourhood of a vertex u with respect to a set $D \subseteq V(G)$, where $u \in D$, is the set $\mathrm{PN}_{G}[u, D]=N_{G}[u] \backslash N_{G}[D \backslash\{u\}]$. If $v \in \mathrm{PN}_{G}[u, D]$, then we say that v is a private neighbour of u with respect to the set D.

For any unexplained terms and symbols, see [9].

3. NP-Completeness of Domination Subdivision Problem

The decision problem of domination subdivision problem is in this paper stated as follows.
DOMINATION SUBDIVISION NUMBER (DSN)
INSTANCE: Graph $G=(V, E)$ and the domination number $\gamma(G)$.
QUESTION: Is $\operatorname{sd}(G)>1$?
Theorem 1. DOMINATION SUBDIVISION NUMBER is NP-hard even for bipartite graphs.

Proof. The proof is by a transformation from 3-SAT, which was proven to be NP-complete in [7]. The problem 3-SAT is the problem of determining whether there exists an interpretation that satisfies a given Boolean formula. The formula in 3-SAT is given in conjunctive normal form, where each clause contains three literals. We assume that the formula contains the instance of any literal u and its negation $\neg u$ (in the other case all clauses containing the literal u are satisfied by the true assignment of u).

Given an instance, the set of literals $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and the set of clauses $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of 3-SAT, we construct the following graph G. For each literal u_{i} construct a gadget G_{i} on 6 vertices, where u_{i} and $\neg u_{i}$ are the leaves (however u_{i} and $\neg u_{i}$ are not necessarily leaves in G), see Figure 1 .

Figure 1. A gadget G_{i}.
For each clause c_{j} we have a clause vertex c_{j}, where the vertex c_{j} is adjacent to the literal vertices that correspond to the three literals it contains. For example, if $c_{j}=\left(u_{1} \vee \neg u_{2} \vee u_{3}\right)$, then the clause vertex c_{j} is adjacent to the literal vertices $u_{1}, \neg u_{2}$ and u_{3}. Then add new vertices x_{0}, x_{1} in such a way that x_{1} is adjacent to every clause vertex c_{j} and to x_{0}. Hence x_{0} is of degree one and x_{1} is of degree $m+1$. Clearly we can see that G is a bipartite graph and it can be built in polynomial time (see Figure 2).

First observe that at least two vertices from each gadget G_{i} and either x_{1} or x_{0} must be contained in any minimum dominating set of G. Thus, $\gamma(G) \geq 2 n+1$. On the other hand, it is possible to construct a dominating set of G of cardinality $2 n+1$. Therefore, $\gamma(G)=2 n+1$.

Denote by $G_{1}, G_{2}, \ldots, G_{m(G)}$ the graph obtained from G by subdividing once edge $e_{1}, e_{2}, \ldots, e_{m(G)}$, respectively. For a given graph G and its domination number $\gamma(G)$ it is possible to verify a certificate for the DSN problem, which are dominating sets of cardinality $\gamma(G)$ in $G_{1}, G_{2}, \ldots, G_{m(G)}$, in polynomial time.

Assume first C has a satisfying truth assignment. If we subdivide any edge belonging to a gadget G_{i}, then we may construct a minimum dominating set of the resulting graph by adding to it two vertices from each gadget G_{i} and additionally x_{1}. The situation is similar if we subdivide any edge incident with a clause vertex. Now let x be the new vertex obtained by subdividing the edge $x_{0} x_{1}$ in G and denote by G_{x} the resulting graph. Since C has a satisfying truth assignment, a minimum dominating set of G_{x} is constructed by taking the vertices defined by the truth assignment together with one more vertex from each gadget G_{i} together with x. Therefore we conclude that $\operatorname{sd}(G)>1$.

Figure 2. A construction of G for $\left(u_{1} \vee u_{2} \vee u_{3}\right) \wedge\left(\neg u_{1} \vee u_{2} \vee u_{3}\right) \wedge\left(\neg u_{2} \vee \neg u_{3} \vee u_{4}\right) \wedge$ $\left(\neg u_{2} \vee \neg u_{3} \vee \neg u_{4}\right)$.

Assume now C does not have a satisfying truth assignment. Then subdivide the edge $x_{0} x_{1}$ to obtain the graph G_{x}. A minimum dominating set of G_{x} must contain at least two vertices from each gadget G_{i} and additionally x. However, since C does not have a satisfying truth assignment, no subset of $2 n$ vertices of $G_{1} \cup G_{2} \cup \cdots \cup G_{n}$ can dominate each gadget vertex and each clause vertex. Therefore, $\operatorname{sd}(G)=1$.

The decision problem of domination multisubdivision problem may be stated similarly.
DOMINATION MULTISUBDIVISION NUMBER (DMN)
INSTANCE: Graph $G=(V, E)$ and the domination number $\gamma(G)$.
QUESTION: Is $\operatorname{msd}(G)>1$?
Observation 2. Let G be a graph. Then

$$
\operatorname{sd}(G)=1 \text { if and only if } \operatorname{msd}(G)=1
$$

This observation implies that one may prove the following result in a similar manner as Theorem 1.

Theorem 3. DOMINATION MULTISUBDIVISION NUMBER is NP-hard even for bipartite graphs.

4. Results and Bounds for the Domination Multisubdivision Number

Determining the domination multisubdivision number is hard even for bipartite graphs, which is good motivation to study this parameter and give some general bounds and properties. Here we start with some basic properties of multisubdivision numbers.

The next two observations follow from Observation 2 and properties of graphs in which the subdivision number is one.

Observation 4. If a graph G has a strong support vertex, then

$$
\operatorname{sd}(G)=\operatorname{msd}(G)=1
$$

Observation 5. For a complete graph K_{n} and a wheel W_{n}, $n \geq 3$, we have

$$
\operatorname{msd}\left(K_{n}\right)=\operatorname{sd}\left(K_{n}\right)=\operatorname{msd}\left(W_{n}\right)=\operatorname{sd}\left(W_{n}\right)=1
$$

Since any cycle (any path) with an edge subdivided k times is isomorphic to the cycle (the path) with k edges subdivided once, we immediately obtain the following observation.

Observation 6. For a cycle C_{n} and a path $P_{n}, n \geq 3$, we have

$$
\begin{aligned}
& \operatorname{msd}\left(C_{n}\right)=\operatorname{sd}\left(C_{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 0 & (\bmod 3) \\
2 & \text { if } n \equiv 2 & (\bmod 3), \\
3 & \text { if } n \equiv 1 & (\bmod 3)
\end{array}\right. \\
& \operatorname{msd}\left(P_{n}\right)=\operatorname{sd}\left(P_{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 0 & (\bmod 3) \\
2 & \text { if } n \equiv 2 & (\bmod 3), \\
3 & \text { if } n \equiv 1 & (\bmod 3)
\end{array}\right.
\end{aligned}
$$

Theorem 7. For a connected graph G,

$$
1 \leq \operatorname{msd}(G) \leq 3
$$

Proof. Let $u v$ be an edge of a graph G. Since $\gamma\left(G_{u v}\right) \geq \gamma(G)$, we have $\operatorname{msd}(G)$ ≥ 1. Now, let us subdivide an edge $u v$ with three vertices x, y and z (we replace the edge $u v$ with the path $(u, x, y, z, v))$, and let D be a $\gamma\left(G_{u v, 3}\right)$-set. Since D is a minimum dominating set, it is easy to observe that $1 \leq|D \cap\{x, y, z\}| \leq 2$. It is again easy to observe that if $|D \cap\{x, y, z\}|=2$, then we can exchange one vertex from $D \cap\{x, y, z\}$ with u or v to obtain minimum dominating set of $G_{u v, 3}$ such that $|D \cap\{x, y, z\}|=1$. Thus, if $x \in D$, then v belongs to D to dominate z and $D \backslash\{x\}$ is a $\gamma(G)$-set. Similarly, if $z \in D$, then $u \in D$ and $D \backslash\{z\}$ a $\gamma(G)$-set. If $y \in D$, then obviously $D \backslash\{y\}$ is a $\gamma(G)$-set. In all the cases we can find a smaller dominating set in G then in $G_{u v, 3}$, it implies that $\operatorname{msd}(G) \leq 3$.

Proposition 8. For a complete bipartite graph $K_{p, q}, p \leq q$, we have

$$
\operatorname{msd}\left(K_{p, q}\right)= \begin{cases}1 & \text { if } p=1 \text { and } q>1 \\ 2 & \text { if } p=q=1 \\ 3 & \text { if } p \geq 2\end{cases}
$$

Proof. The result is obvious for $p=1$. Thus, we assume that $2 \leq p \leq q$.
Let $u v$ be any edge of $K_{p, q}$. Then $\{u, v\}$ is a minimum dominating set of the graph $K_{p, q}$ and of the graph $K_{p, q}$ with the edge $u v$ subdivided two times. This implies that $\operatorname{msd}\left(K_{p, q}\right)>2$ and therefore, by Theorem $7, \operatorname{msd}(G)=3$.

Although the multisubdivision number of a graph is bounded from above by 3 , it was proven by Favaron, Karami and Sheikholeslami [6] that the subdivision number can be arbitrary large: For each pair of positive integers r and q such that $r+q \geq 4$, there exists a graph G with $\delta(G)=r$ and $\operatorname{sd}(G) \geq r+q$. Hence, the difference between $\operatorname{sd}(G)$ and $\operatorname{msd}(G)$ also cannot be bounded from above by any integer in general case. Although the multisubdivision number is always at most three and the subdivision number cannot be bounded from above by any integer, the inequality $\operatorname{msd}(G) \leq \operatorname{sd}(G)$ is not true, since $\operatorname{msd}\left(K_{p, q}\right)=3$ and $\operatorname{sd}\left(K_{p, q}\right)=2$ for $3 \leq p \leq q$. Thus, the subdivision number and the multisubdivision number are incomparable in general. In the next section we show that for trees these two domination parameters are the same.

5. Domination Multisubdivision Number of a Tree

Now we consider multisubdivision numbers for trees. The main result of this section is what follows.

Theorem 9. Let T be a tree with $n \geq 3$. Then

$$
\operatorname{sd}(T)=\operatorname{msd}(T)
$$

Thus, in trees it does not matter if we subdivide a set of edges, each edge once, or if we multi-subdivide only one edge. In both cases the minimum number of subdivision vertices needed to increase the domination number is the same for a tree.

It has been shown by Velammal [10] that the domination subdivision number of a tree is either 1,2 or 3 . The classes of trees T with $\operatorname{sd}(T)=1$ and $\operatorname{sd}(T)=3$ are characterized (see [1, 3]). Thus by Observation 2, in order to prove Theorem 9 it suffices to show that for a tree T with at least 3 vertices we have

$$
\operatorname{sd}(T)=3 \text { if and only if } \operatorname{msd}(T)=3 .
$$

5.1. Trees with domination multisubdivision number equal to 3

The following constructive characterization of the family \mathcal{F} of labeled trees T with $\operatorname{sd}(T)=3$ was given by Aram, Sheikholeslami and Favaron [1]. The label of a vertex v is also called a status of v and is denoted by $\operatorname{sta}(v)$. Let \mathcal{F} be the family of labelled trees that

- contains P_{4} where the two leaves have status A and the two support vertices have status B; and
- is closed under the two operations \mathcal{T}_{1} and \mathcal{T}_{2}, which extend the tree T by attaching a path to a vertex $v \in V(T)$.

Operation \mathcal{T}_{1}. Assume $\operatorname{sta}(v)=A$. Then add a path (x, y, z) and the edge $v x$. Let $\operatorname{sta}(x)=\operatorname{sta}(y)=B$ and $\operatorname{sta}(z)=A$.

Operation \mathcal{T}_{2}. Assume $\operatorname{sta}(v)=B$. Then add a path (x, y) and the edge $v x$. Let $\operatorname{sta}(x)=B$ and $\operatorname{sta}(y)=A$.

If $T \in \mathcal{F}$, we let $A(T)$ and $B(T)$ be the set of vertices of statuses A and B, respectively, in T.

Theorem 10 [1]. For a tree T of order $n \geq 3$,

$$
\operatorname{sd}(T)=3 \text { if and only if } T \in \mathcal{F}
$$

In order to prove Theorem 9, we will need the following Observation 11 and Lemma 12 made for trees belonging to the family \mathcal{F}.

Observation 11 [1]. Let $T \in \mathcal{F}$ and $v \in V(T)$.
(1) If v is a leaf, then $\operatorname{sta}(v)=A$.
(2) If v is a support vertex, then $\operatorname{sta}(v)=B$.
(3) If $\operatorname{sta}(v)=A$, then $N(v) \subseteq B(T)$.
(4) If $\operatorname{sta}(v)=B$, then v is adjacent to exactly one vertex of $A(T)$ and at least one vertex of $B(T)$.
(5) The distance between any two vertices in $A(T)$ is at least 3 .

Lemma 12 [1]. If $T \in \mathcal{F}$, then $A(T)$ is a $\gamma(T)$-set.
Lemma 13. If T is a tree with $\operatorname{sd}(T)=3$, then $\operatorname{msd}(T)=3$.
Proof. Let T be a tree with $\operatorname{sd}(T)=3$. Thus, by Theorem $10, T \in \mathcal{F}$ and by Lemma $12, A(T)$ is a $\gamma(T)$-set.

By Theorem 7, in order to prove the statement, it is enough to show that $\operatorname{msd}(T)>2$.

Let $u v \in E(T)$ be any edge. Then by Observation 11 , two cases are possible: either $\{\operatorname{sta}(u), \operatorname{sta}(v)\}=\{B\}$ or $\{\operatorname{sta}(u), \operatorname{sta}(v)\}=\{A, B\}$. We subdivide $u v$ with two vertices x and y. Now we construct a minimum dominating set D of $T_{u v, 2}$ in a following way. First let $D:=A(T)$ and then replace every vertex $a \in A(T)$ with a vertex $a^{\prime} \in N(a)$ which belongs to the $(a-\{x, y\})$-path. If $\operatorname{sta}(u)=\operatorname{sta}(v)=B$, then $\{u, v\} \subset D$. If $\operatorname{sta}(u)=A$ and $\operatorname{sta}(v)=B$, then $\{x, v\} \subset D$. By Observation 11, it is easy to check that D is a dominating set of $T_{u v, 2}$ and that $|D|=|A(T)|$. Since subdivision of the edge cannot decrease the domination number of a graph, D is a $\gamma\left(T_{u v, 2}\right)$-set. Hence, $\gamma(T)=\gamma\left(T_{u v, 2}\right)$, which implies $\operatorname{msd}(T)=3$.

Lemma 14. If T is a tree with $\operatorname{msd}(T)=3$, then $\operatorname{sd}(T)=3$.
Proof. Let T be a tree with $\operatorname{msd}(T)=3$. By Theorem 10, it is enough to show that $T \in \mathcal{F}$. We consider trees with $\operatorname{diam}(T) \geq 3$ (because for trees with $\operatorname{diam}(T) \leq 2$ we have $\operatorname{msd}(T) \leq 2)$. Moreover, it is no problem to check that the result is true for all trees with at most 4 vertices: the only tree T with $\operatorname{msd}(T)=3$ and with at most 4 vertices is P_{4} which belongs to \mathcal{F}. We continue the proof by induction on n, the order of T. Assume that every tree T^{\prime} with $n^{\prime}<n$ vertices such that $\operatorname{msd}\left(T^{\prime}\right)=3$ belongs to the family \mathcal{F}.

Now, let T be a tree with $\operatorname{msd}(T)=3, \operatorname{diam}(T) \geq 3$ and $n>4$. Then $\gamma(T)=\gamma\left(T_{e, 2}\right)$ for every edge $e \in E(T)$. Let $P=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right)$ be a longest path of T such that the degree of a vertex v_{2} is as big as possible. It follows by Observation 4 that $d\left(v_{1}\right)=2$ (as otherwise v_{1} is a strong support vertex and then $\operatorname{msd}(T)=1)$. Now we consider three cases.

Case 1. $d\left(v_{2}\right)=2$. Since $\operatorname{msd}(T)=3, v_{3}$ is neither a support vertex nor a neighbor of a support vertex (as otherwise $\gamma\left(T_{v_{1} v_{2}, 2}\right)>\gamma(T)$). Thus, outside the path P, only P_{3} 's may be attached to v_{3}. We consider the tree $T^{\prime}=T-$ $\left\{v_{0}, v_{1}, v_{2}\right\}$. It is no problem to see that $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Moreover, for every edge $e \in E\left(T^{\prime}\right)$ we have $\gamma\left(T_{e, 2}^{\prime}\right)=\gamma\left(T_{e, 2}\right)-1=\gamma(T)-1=\gamma\left(T^{\prime}\right)$. Hence, $\operatorname{msd}\left(T^{\prime}\right)=3$ and from the induction hypothesis $T^{\prime} \in \mathcal{F}$. From the construction of the family \mathcal{F} we know $\operatorname{sta}\left(v_{3}\right)=A$. Thus T can be obtained from T^{\prime} by Operation \mathcal{T}_{1}, where $\operatorname{sta}\left(v_{2}\right)=\operatorname{sta}\left(v_{1}\right)=B$ and $\operatorname{sta}\left(v_{0}\right)=A$.

Case 2. $d\left(v_{2}\right)>2$ and v_{2} is a support vertex, say v_{2}^{\prime} is the leaf adjacent to v_{2}. By Observation $4, v_{2}$ is adjacent to only one leaf. We consider the tree $T^{\prime}=T-\left\{v_{0}, v_{1}\right\}$. It is obvious that $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Since $\operatorname{msd}(T)=3$ and v_{1}, v_{2} are support vertices, we have $\gamma\left(T_{e, 2}^{\prime}\right)=\gamma\left(T_{e, 2}\right)-1=\gamma(T)-1=\gamma\left(T^{\prime}\right)$ for every edge $e \in E\left(T^{\prime}\right) \backslash\left\{v_{2} v_{2}^{\prime}\right\}$. This also implies that there exists a $\gamma\left(T^{\prime}\right)$-set D^{\prime} containing v_{2} and v_{3}. We subdivide the edge $v_{2}^{\prime} v_{2}$ with vertices x and y. Then $\left(D^{\prime} \backslash\left\{v_{2}\right\}\right) \cup\{x\}$ is a γ-set in $T_{v_{2} v_{2}^{\prime}, 2}^{\prime}$ and $\gamma\left(T^{\prime}\right)=\gamma\left(T_{v_{2} v_{2}^{\prime}, 2}^{\prime}\right)$. Therefore $T^{\prime} \in \mathcal{F}$ with
$\operatorname{sta}\left(v_{2}\right)=B$, and T can be obtained from T^{\prime} by Operation \mathcal{T}_{2}, where sta $\left(v_{1}\right)=B$ and $\operatorname{sta}\left(v_{0}\right)=A$.

Case 3. $d\left(v_{2}\right)>2$ and v_{2} is not a support vertex. Then v_{2} is adjacent to at least two support vertices (otherwise T has a longer path). Let $T^{\prime}=T-\left\{v_{0}, v_{1}\right\}$. Again $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Since $\operatorname{msd}(T)=3$, there exists a minimum dominating set which contains v_{2}. Therefore for every edge $e \in E\left(T^{\prime}\right)$ we obtain $\gamma\left(T_{e, 2}^{\prime}\right)=$ $\gamma\left(T_{e, 2}\right)-1=\gamma(T)-1=\gamma\left(T^{\prime}\right)$. Hence, $T^{\prime} \in \mathcal{F}, \operatorname{sta}\left(v_{2}\right)=B$ and T can be obtained from T^{\prime} by Operation \mathcal{T}_{2}, where $\operatorname{sta}\left(v_{1}\right)=B$ and $\operatorname{sta}\left(v_{0}\right)=A$.

In all these cases $T \in \mathcal{F}$.
Now, Theorem 9 is an immediate consequence of Lemmas 13, 14 and Observation 2.

5.2. Trees with domination multisubdivision number equal to 1

In this subsection we briefly present a characterization of all trees T with $\operatorname{msd}(T)=$ 1. This characterization is an immediate consequence of Observation 2 and a result of Benecke and Mynhardt in [3], where they have characterized all trees with domination subdivision number equal to 1 . Let $\mathcal{N}(G)$ consists of those vertices which are not contained in any $\gamma(G)$-set.

Corollary 15. For a tree T of order $n \geq 3, \operatorname{msd}(T)=1$ if and only if T has
(i) a leaf $u \in \mathcal{N}(T)$ or
(ii) an edge $x y$ with $x, y \in \mathcal{N}(T)$.

6. Open Problems

We close with the following list of open problems that we have yet to settle.
Problem 16. Determine the class of graphs G for which $\operatorname{sd}(G)=\operatorname{msd}(G)=1$.
Problem 17. Do there exist domination multisubdivision critical graphs, i.e., if $\operatorname{msd}(G)=k$ for some $k \in\{1,2,3\}$, then subdivision of any edge exactly k times leads to a graph with domination number greater than $\gamma(G)$?

Problem 18. Determine the computational complexity of subdivision and multisubdivision numbers for another classes of graphs (chordal graphs, planar graphs etc.).

References

[1] H. Aram, S.M. Sheikholeslami and O. Favaron, Domination subdivision numbers of trees, Discrete Math. 309 (2009) 622-628.
doi:10.1016/j.disc.2007.12.085
[2] D. Avella-Alaminos, M. Dettlaff, M. Lemańska and R. Zuazua, Total domination multisubdivision number of a graph, Discuss. Math. Graph Theory 35 (2015) 315327.
doi:10.7151/dmgt. 1798
[3] S. Benecke and C.M. Mynhardt, Trees with domination subdivision number one, Australas. J. Combin. 42 (2008) 201-209.
[4] A. Bhattacharya and G.R. Vijayakumar, Effect of edge-subdivision on vertexdomination in a graph, Discuss. Math. Graph Theory 22 (2002) 335-347. doi:10.7151/dmgt. 1179
[5] O. Favaron, T.W. Haynes and S.T. Hedetniemi, Domination subdivision numbers in graphs, Util. Math. 66 (2004) 195-209.
[6] O. Favaron, H. Karami and S.M. Sheikholeslami, Disproof of a conjecture on the subdivision domination number of a graph, Graphs Combin. 24 (2008) 309-312. doi:10.1007/s00373-008-0788-6
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[8] T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, Domination and independence subdivision numbers of graphs, Discuss. Math. Graph Theory 20 (2000) 271-280. doi:10.7151/dmgt. 1126
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[10] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D.Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).

