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Abstract

Let G be a graph with vertex set V and a distribution of pebbles on
the vertices of V . A pebbling move consists of removing two pebbles from
a vertex and placing one pebble on a neighboring vertex, and a rubbling
move consists of removing a pebble from each of two neighbors of a vertex
v and placing a pebble on v. We seek an initial placement of a minimum
total number of pebbles on the vertices in V , so that no vertex receives more
than one pebble and for any given vertex v ∈ V , it is possible, by a sequence
of pebbling and rubbling moves, to move at least one pebble to v. This
minimum number of pebbles is the 1-restricted optimal rubbling number. We
determine the 1-restricted optimal rubbling numbers for Cartesian products.
We also present bounds on the 1-restricted optimal rubbling number.
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1. Introduction

We consider a variation of graph rubbling. Let G be a graph with vertex set V .
A placement of pebbles on the vertices such that each vertex of V is assigned
a non-negative integer number of pebbles is called a pebble distribution on G.
Figure 1 gives an example of a pebble distribution where two pebbles are placed
on u, one pebble is placed on x, and no pebbles are placed on the other vertices
of V .
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Figure 1. A pebble distribution.

Two moves, namely a pebbling move and a rubbling move, are defined as
follows.

Definition. Let f be a pebble distribution on a graph G such that f(u) ≥ 2
for some vertex u ∈ V , and let v be adjacent to u. Then a pebbling move,
denoted p(u → v), removes two pebbles from u and places one on v. This defines
a new pebble distribution f ′ such that f ′(u) = f(u) − 2, f ′(v) = f(v) + 1, and
f ′(z) = f(z) for z ∈ V \ {u, v}.

Definition. Let w be a vertex of G, and let v and x be distinct vertices adjacent
to w. Let f be a pebble distribution such that f(v) ≥ 1 and f(x) ≥ 1. Then
a rubbling move, denoted r(v, x → w), removes one pebble from each of v and
x and places one pebble on w. This defines a new pebble distribution f ′ such
that f ′(v) = f(v) − 1, f ′(x) = f(x) − 1, f ′(w) = f(w) + 1, and f ′(z) = f(z) for
z ∈ V \ {v, x, w}.

For the graph in Figure 1, we can place a pebble on ℓ1, ℓ2, and v using the
pebbling moves p(u → ℓ1), p(u → ℓ2), and p(u → v), respectively. After the
move p(u → v), we can place a pebble on w using the rubbling move r(v, x → w).

In graph pebbling, only the pebbling move is allowed; while in graph rubbling
both pebbling and rubbling moves are available. For graph rubbling, a vertex v
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is reachable if there is a way to place a pebble on v using a sequence of pebbling
and rubbling moves. If every vertex of a graph G is reachable under some pebble
distribution f , then we say that f is a rubbling configuration. Thus, the example
in Figure 1 is a rubbling configuration. The rubbling number of a graph G,
denoted ρ(G), is the smallest k such that every pebble distribution of k pebbles
results in a rubbling configuration. The optimal rubbling number ρ∗(G) is the
smallest number of pebbles required for some rubbling configuration on a graph
G. Rubbling and optimal rubbling were introduced in [2] and studied in [7, 8].
Optimal rubbling was generalized to t-restricted optimal rubbling in [1] as follows.

Definition. The t-restricted optimal rubbling number ρ∗t (G) of a graph G is the
least k such that there exists some rubbling configuration f on k pebbles where
for each v ∈ V , f(v) ∈ {0, 1, . . . , t}. A rubbling configuration of G having ρ∗t (G)
pebbles is called a ρ∗t -configuration.

The focus in this paper is the 1-restricted rubbling number. This is the
minimum number of pebbles required by a rubbling configuration which assigns
each vertex in V either no pebbles or one pebble. Note that the restriction of
at most one pebble per vertex applies only to the initial distribution of pebbles.
Background and preliminary observations are given in Section 2. In Section 3,
we determine bounds of the 1-restricted optimal rubbling numbers of Cartesian
products of graphs. In Section 4, we give other bounds on the 1-restricted rub-
bling number.

Before proceeding, some additional terminology is needed. The open neigh-

borhood of a vertex v ∈ V is the set N(v) = {u : uv ∈ E}, and its closed

neighborhood is N [v] = N(v) ∪ {v}. The degree of a vertex v, denoted deg(v), is
|N(v)|. A vertex of degree 1 is called a leaf and its neighbor is a support vertex.

2. Background and Preliminaries

It follows immediately from the definition that assigning a pebble to each vertex
is trivially a t-restricted optimal rubbling distribution for all t ≥ 1. Thus, ρ∗t (G)
is defined for all graphs G, and we have the following observation.

Observation 1 [1]. For any graph G having n vertices,

ρ∗(G) ≤ ρ∗t (G) ≤ ρ∗t−1(G) ≤ · · · ≤ ρ∗2(G) ≤ ρ∗1(G) ≤ n.

The following bounds on the optimal rubbling number were given in [8].

Theorem 2 [8]. For every graph G on n vertices with diameter d,
⌈

d+2
2

⌉

≤
ρ∗(G) ≤

⌈

n+1
2

⌉

.
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Observation 1 implies the following useful corollary to Theorem 2.

Corollary 3. For every graph G with diameter d,
⌈

d+2
2

⌉

≤ ρ∗1(G).

As we shall see in Section 3, the upper bound of Theorem 2 also holds for
ρ∗1(G). Let Pn and Cn be the path and cycle on n vertices, respectively. Belford,
et al. [2] proved that ρ∗(Pn) =

⌈

n+1
2

⌉

and ρ∗(Cn) =
⌈

n
2

⌉

. Moreover, they gave
ρ∗-configurations that placed at most one pebble on any vertex, that is, ρ1∗-
configurations. Hence, as noted in [1], the optimal rubbling and 1-restricted
optimal rubbling numbers are equal for paths and cycles.

Proposition 4 [1]. For a path Pn, ρ
∗(Pn) = ρ∗1(Pn) =

⌈

n+1
2

⌉

. For a cycle Cn,

ρ∗(Cn) = ρ∗1(Cn) =
⌈

n
2

⌉

.

Thus, ρ∗1(G) and ρ∗(G) are the same for some graphs. On the other hand,
it was shown in [1] that the difference between ρ∗1(G) and ρ∗2(G) can be made
arbitrarily large implying that the difference ρ∗1(G) − ρ∗(G) is also arbitrarily
large. To see, this consider the tree G formed as follows. Begin with the path
P4k−3 with vertex set p1, . . . , p4k−3. Identify the center of the star K1,ni

, where
ni ≥ 3, with the vertex p4i+1 on the path for i = 0, 1, . . . , k − 1. For a ρ∗1-
configuration, place a pebble on the vertex p4i+1 and a pebble on each of two
leaf neighbors of p4i+1, and for a ρ∗2-configuration, place two pebbles on the
vertex p4i+1 for i = 0, 1, . . . , k − 1. Hence, ρ∗1(G) = 3k and ρ∗2(G) = 2k, and so,
ρ∗1(G)− ρ∗2(G) = k. Since ρ∗(G) ≤ ρ∗2(G), the gap between ρ∗1(G) and ρ∗(G) is at
least k.

For our main results, we will need the 1-restricted optimal rubbling number
for other classes of graphs. Let Kn denote the complete graph on n vertices. The
star is the complete bipartite graph K1,n, and the double star Sr,s is a tree with
exactly two non-leaf vertices, one of which is adjacent to r leaves and the other
to s leaves. The following values were determined in [1].

Theorem 5 [1]. (i) For the complete graph Kn, where n ≥ 3, ρ∗1(Kn) = 2.

(ii) For the star K1,n, where n ≥ 3, ρ∗1(K1,n) = 3.

(iii) Let Sr,s be a double star with 1 ≤ r ≤ s. Then ρ∗1(Sr,s) = 3 if r = 1 and

s ≤ 2, and ρ∗1(Sr,s) = 4 otherwise.

It is natural to assume that if G is a proper subgraph of H, then ρ∗1(G) ≤
ρ∗1(H). This assumption proves to be false, even for connected graphs, as seen in
Figure 2, where G is a proper subgraph of H, ρ∗1(G) = 5 , and ρ∗1(H) = 4.

The following useful result was also given in [1].

Theorem 6 [1]. If G is a graph of order n and maximum degree ∆(G), then

ρ∗1(G) ≤ n−∆(G) + 2.
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Figure 2. An example where G ⊂ H, but ρ∗
1
(G) > ρ∗

1
(H).

We conclude this section by giving bounds on ρ∗1(G) in terms of the domina-
tion number and the 2-domination number. The domination number of a graph
G, denoted γ(G), is the minimum cardinality among all subsets S of V such that
each vertex in V \ S is adjacent to at least one vertex in S. The 2-domination

number of a graph G, denoted γ2(G), is the minimum cardinality among all sub-
sets S of V such that each vertex in V \ S is adjacent to at least two vertices in
S.

Observation 7. For every graph G, ρ∗1(G) ≤ γ2(G).

We note that for the path P3, ρ
∗

1(P3) = γ2(P3) = 2. On the other hand, the
difference ρ∗1(G)− γ2(G) can be made arbitrarily large with stars K1,n for n ≥ 3,
because ρ∗1(K1,n) = 3 and γ2(K1,n) = n− 1.

For a set S of vertices and a vertex v ∈ S, the vertices in N(v) ∩ (V \ S)
whose only neighbor in S is v are called the external private neighbors of v (with
respect to S). Let epn(v, S) denote the set of external private neighbors of v with
respect to S.

Theorem 8. For every graph G, ρ∗1(G) ≤ 3γ(G).

Proof. Let S be a minimum dominating set of G. Place a pebble on each
vertex in S. Let v ∈ S. If |epn(v, S)| = 1, then place a pebble on the external
private neighbor of v. If |epn(v, S)| ≥ 2, then choose exactly two external private
neighbors of v and place a pebble on each. This distribution of at most 3γ(G)
pebbles is 1-restricted rubbling configuration. To see this, let x ∈ V be a vertex
with no pebble. Since S is a dominating set of G, x has a neighbor in S. If x has
at least two neighbors in S, then a rubbling move from these two neighbors places
a pebble on x. Thus, we can assume x ∈ epn(v, S) for some v ∈ S. The way we
distributed the pebbles implies that |epn(v, S)| ≥ 3 and two vertices, say w and
y, in epn(v, S) \ {x} have one pebble each. Then the rubbling move r(w, y → v)
results in two pebbles on v, and a pebbling move p(v → x) places a pebble on x,
and so, ρ∗1(G) ≤ 3γ(G).

Interestingly, while stars K1,n for n ≥ 3 provide a case where ρ∗1(K1,n) is
smaller than γ2(K1,n), ρ

∗

1(K1,n) = 3γ(K1,n).
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3. Cartesian Products

The Cartesian product G2H of graphs G and H has vertex set V (G) × V (H)
and (g, h) is adjacent to (g′, h′) if and only if g = g′ and hh′ ∈ E(H) or h = h′

and gg′ ∈ E(G). The optimal rubbling number of a prism Cn2P2 is determined
in [7].

Theorem 9 [7]. The optimal rubbling number for the prism Cn2P2 is as follows

ρ∗(C32P2) = 3 and ρ∗(Cn2P2) =
⌈

2n
3

⌉

for n ≥ 4.

In the proof to Theorem 9, a ρ∗-configuration is given for Cn2P2 that places
at most one pebble on any vertex when n ≡ 0, 2 (mod 3). Hence, the optimal
rubbling and 1-restricted optimal rubbling numbers are equal for these cases.
Our next result shows that, with the exception n = 4, equality holds when n ≡ 1
(mod 3) as well.

Theorem 10. The 1-restricted optimal rubbling number for the prism Cn2P2 is

as follows ρ∗1(C32P2) = 3, ρ∗1(C42P2) = 4, and ρ∗1(Cn2P2) =
⌈

2n
3

⌉

for n ≥ 5.

Proof. It is straightforward to check that ρ∗1(C32P2) = 3 and ρ∗1(C42P2) =
4. As previously mentioned, the proof of Theorem 9 gives the result for n ≡
0, 2 (mod 3). Hence, we may assume that n ≡ 1 (mod 3) and n ≥ 7. Since
ρ∗(G) ≤ ρ∗1(G), we have that ρ∗(Cn2P2) =

⌈

2n
3

⌉

≤ ρ∗1(Cn2P2). It suffices to
give a 1-rubbling configuration of Cn2P2 using

⌈

2n
3

⌉

pebbles. We note that this
configuration works for n ≡ 0, 2 (mod 3) as well.

For ease of discussion, let v0, v1, . . . , vn−1 be the vertices of one copy of Cn and
let u0, u1, . . . , un−1 be the vertices of the other copy of Cn such that uivi ∈ E(G)
for 0 ≤ i ≤ n− 1. Assume that all computations on the indices are done modulo
three. Place a pebble on each vi for i ≡ 0 (mod 3) and each uj for j ≡ 1 (mod 3).
Then the number of pebbles placed is

⌈

2n
3

⌉

. We claim that this distribution is
a 1-restricted rubbling configuration. Consider a vertex ui that has no pebble.
Then i ≡ 0, 2 (mod 3). If i ≡ 0 (mod 3) and i 6= n − 1, then ui+1 and vi begin
with a pebble and a rubbling move r(ui+1, vi → ui) will reach ui. If i ≡ 0 (mod 3)
and i = n − 1, then the rubbling move r(v0, u1 → u0) followed by the rubbling
move r(u0, vi → ui) reaches ui.

If i ≡ 2 (mod 3) and i 6= n− 2, then the rubbling move r(ui+2, vi+1 → ui+1)
places a pebble on ui+1. A subsequent rubbling move r(ui−1, ui+1 → ui) will
reach ui. If i ≡ 2 (mod 3) and i = n− 2, then the following sequence of rubbling
moves result in a pebble placed on ui: r(v0, u1 → u0), r(u0, vi+1 → ui+1), and
r(ui−1, ui+1 → ui).

Next consider a vertex vi that has no pebble. Then i ≡ 1, 2 (mod 3). If i ≡ 1
(mod 3), then the rubbling move r(vi−1, ui → vi) places a pebble on vi. If i ≡ 2
(mod 3), then the rubbling move r(vi−2, ui−1 → vi−1), followed by the rubbling
move r(vi−1, vi+1 → vi) reaches vi.
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Graham’s Conjecture asserts that the pebbling number of a Cartesian prod-
uct is at most the product of the pebbling numbers of the graphs in that product.
This conjecture has received a lot of attention in the literature [3, 4, 6, 9], but
remains unresolved. It is shown in [2] that the rubbling analog of the conjecture
does not hold. On the other hand, in [5], it is proven that the conjecture holds for
optimal pebbling. Since optimal pebbling is optimal rubbling sans the rubbling
move, it follows that Graham’s conjecture holds for optimal rubbling. We show
that the conjecture holds even with the added restriction of at most one pebble
per vertex in the initial rubbling configuration.

Let (g, h) be the vertex of G2H corresponding to g ∈ V (G) and h ∈ V (H).
For h ∈ V (H), let Gh denote the copy of G in G2H induced by the set of vertices
{(g, h) : g ∈ V (G)}. Analogously, Hg denotes the copy of H in G2H induced by
the set of vertices {(g, h) : h ∈ V (H)}.

Theorem 11. For graphs G and H, ρ∗1(G2H) ≤ ρ∗1(G)ρ∗1(H).

Proof. Let ρ∗1(G) = k and ρ∗1(H) = m. Let fG be a ρ∗1-configuration of G and
fH be a ρ∗1-configuration of H. Let {g1, . . . , gk} and {h1, . . . , hm} be the vertices
containing a pebble under fG and fH , respectively.

Consider the pebble distribution f on G2H obtained by placing one pebble
on each vertex in the set {(gi, hj) : i = 1, . . . , k, j = 1, . . . ,m}. Clearly, every
vertex in Ghj

is reachable for all j as {(gi, hj) : i = 1, . . . , k} is a rubbling
configuration on Ghj

. Similarly, every vertex in Hgi is reachable for all i.

Suppose that (g, h) ∈ V (G2H) such that (g, h) has no pebble under f . Since
fH is a rubbling configuration on H, we can perform rubbling and pebbling moves
on Hgi to place a pebble on (gi, h) for each i = 1, . . . , k. Since fG is a rubbling
configuration on G, we can perform rubbling and pebbling moves on Gh to place
a pebble on (g, h).

Hence, f is a rubbling configuration of G2H containing km = ρ∗1(G)ρ∗1(H)
pebbles, and so, ρ∗1(G2H) ≤ ρ∗1(G)ρ∗1(H).

Note that ρ∗1(P2) = 2, and by Proposition 4, ρ∗1(Cn) =
⌈

n
2

⌉

. From Theo-
rem 10, the bound of Theorem 11 is sharp for C42P2. However, by Theorem 10,
ρ∗1(Cn2P2) = ⌈2n/3⌉ for n ≥ 5. Thus, for n ≥ 5, ρ∗1(P2)ρ

∗

1(Cn) − ρ∗1(P22Cn) =
2
⌈

n
2

⌉

−
⌈

2n
3

⌉

≈ n
3 . Hence, this difference can be made arbitrarily large.

Our next result deals with prisms. Recall that γ(G) is the domination number
of G.

Theorem 12. For any graph G, ρ∗1(G2P2) ≤ γ(G) + ρ∗1(G).

Proof. Label the two copies of G created by G2P2 as G1 and G2. Place pebbles
on G1 in a ρ∗1-configuration of G. Then each vertex in G1 is reachable. Now place
one pebble on each vertex in some minimum dominating set S of G2. Let v be a
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vertex in G2 having no pebble and let v′ be the neighbor of v in G1. Then v′ is
reachable by some sequence of pebbling and rubbling moves using only pebbles
on vertices in G1. Moreover, since S is a dominating set of G2, v has a neighbor,
say u, in S. Hence, after v′ is reached in G1, the rubbling move r(u, v′ → v)
reaches v. Thus, this distribution of pebbles is a rubbling configuration using
γ(G) + ρ∗1(G) pebbles, and so, ρ∗1(G2P2) ≤ γ(G) + ρ∗1(G).

4. Bounds

We begin with an upper bound on the 1-restricted rubbling number of a tree in
terms of its order and number of leaves. A non-leaf vertex of a tree is called an
internal vertex.

Theorem 13. If T is a tree on n vertices with ℓ leaves, then ρ∗1(T ) ≤ n− ℓ+ 2.
Further, this bound is sharp.

Proof. Let T be a tree of order n with ℓ leaves. If T is the trivial graph or the
P2, the bound clearly holds. If T is the path Pn for n ≥ 3, then by Proposition 4,
ρ∗1(T ) =

⌈

n+1
2

⌉

< n = n − ℓ + 2. Hence, we may assume that T 6= Pn, n ≥ 4,
and ℓ ≥ 3. If T is a star of order n ≥ 4, then by Theorem 5, ρ∗1(T ) = 3 =
n− (n− 1) + 2 = n− ℓ+2. Thus, this bound is sharp for stars. We may assume
that T is not a star, that is, T has at least two internal vertices. We build a
1-restricted rubbling configuration of T as follows. Begin by placing a pebble on
each internal vertex. We consider two cases.

Case 1. T has a support vertex v that is adjacent to two internal vertices.

Let x and y be two internal vertex neighbors of v, and let w be a support
vertex of T different from v. Complete the initial configuration by placing a
pebble on a leaf neighbor, say u, of v. Since there is a unique path via internal
vertices from v to any other support vertex, there exists a vw-path that does not
include at least one of x and y, say x. Hence, a rubbling move r(u, x → v) places
two pebbles on v. Then a sequence of pebbling moves on the v − w-path will
result in two pebbles on w. Hence, the leaves adjacent to w are reachable. Since
w is an arbitrary support vertex, it follows that this is a 1-rubbling configuration
of T . Hence, ρ∗1(T ) ≤ n− ℓ+ 1 < n− ℓ+ 2.

Case 2. Every support vertex is adjacent to exactly one internal vertex.

First assume that T has a vertex v that is adjacent to at least two leaves.
In this case, complete the initial configuration by placing one pebble on each of
two leaf neighbors of v. Then a rubbling move between these two leaves results
in two pebbles on v. Repeating the argument in case one shows that this is a
1-rubbling configuration. Hence, ρ∗1(T ) ≤ n− ℓ+ 2.
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Henceforth, we can assume that every support vertex of T is adjacent to
exactly one leaf and exactly one internal vertex, that is, every support vertex
of T has degree two. Since T 6= Pn, it follows that T has at least one internal
vertex, say x, with degree three or more. Note that x is not a support vertex by
assumption. Hence, every neighbor of x is an internal vertex of T . Recall that
there is a unique path from x to any support vertex, say v. Since x has degree
three or more, at least two neighbors of x, say y and z, are not on the x−v-path.
Moreover, y and z are internal vertices, so they each have one pebble. A rubbling
move r(y, z → x) places two pebbles on x, and a sequence of pebbling moves
results in two pebbles on v. Hence, the leaf neighbors of v can be pebbled. Since
v is an arbitrary support vertex, it follows that this is a 1-rubbling configuration
of T . Hence, ρ∗1(T ) ≤ n− ℓ < n− ℓ+ 2.

We next characterize the trees achieving the bound of Theorem 13. To do
this, we define two families of graphs. Let S′

r,s be the tree formed from the double
star Sr,s by subdividing the edge between the two non-leaf vertices exactly once,
and let S′′

r,s be the tree formed from the double star Sr,s by subdividing the edge
between the two non-leaf vertices exactly twice. Let F be the family of trees
consisting of non-trivial stars K1,m for m 6= 2, double stars Sr,s for 1 ≤ r ≤ s and
r + s ≥ 4, the trees S′

r,s for r ≥ 2 and s ≥ 3, and the trees S′′

r,s for 3 ≤ r ≤ s.

Theorem 14. A tree T with n ≥ 2 vertices and ℓ leaves has ρ∗1(T ) = n − ℓ + 2
if and only if T ∈ F .

Proof. Assume that T is a tree of order n ≥ 2 with ℓ leaves having ρ∗1(T ) =
n− ℓ+2. First if n = 2, then T ∈ F . We note that n 6= 3, for otherwise, T = P3

and ρ∗1(T ) = 2 < n− 2 + 2. Hence, we can assume that n ≥ 4.
The proof of Theorem 13 implies that every internal, non-support vertex of

T has degree two. Moreover, every support vertex of T is adjacent to at most
one internal vertex. If T = K1,m for m ≥ 3, then ρ∗1(T ) = 3 = n− (n−1)+2 and
T ∈ F . Thus, we can assume that every support vertex is adjacent to exactly one
internal vertex. It follows that T is a tree with exactly two support vertices, say
x and y, connected by the x − y-path where every vertex except possibly x and
y on this path has degree two in T . Let x = u0, u1, . . . , uk = y be the vertices on
the x− y-path in T .

By Theorem 4, ρ∗(Pn) = ρ∗1(Pn) =
⌈

n+1
2

⌉

< n = n − 2 + 2 = n − ℓ + 2.
Thus we can assume that at least one of x and y has degree three or more. If
k = 1, then x and y are adjacent and T is the double star Sr,s for 1 ≤ r ≤ s. By
Theorem 5, ρ∗1(Sr,s) = 3 < n−ℓ+2 if r = 1 and s ≤ 2, and ρ∗1(Sr,s) = 4 = n−ℓ+2
otherwise, so the result holds. Hence, we may assume that k ≥ 2. If k = 2, then
T is the tree S′

r,s. It is straightforward to check that ρ∗1(S
′

r,s) = 5 = n − ℓ + 2 if
and only if r ≥ 2 and s ≥ 3. Hence, we can assume that k ≥ 3. If k ≥ 4, then
placing one pebble on each ui except for i = 2, one pebble on a leaf adjacent to
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u0 = x and one on a leaf adjacent to y gives a 1-restricted rubbling configuration
having at most n− ℓ− 1 + 2 = n− ℓ+ 1 < n− ℓ+ 2 pebbles. Therefore, we can
assume that k = 3. Thus, T is the tree S′′

r,s. It is straightforward to check that
ρ∗1(S

′′

r,s) = 6 = n− ℓ+ 2 if and only if 3 ≤ r ≤ s.

Our next result involves trees T with a given diameter, denoted diam(T),
and with centers having large degree.

Theorem 15. Let T be a tree with center u if diam(T ) is even, and centers u
and v if diam(T ) is odd. Let k = ⌊diam(T )/2⌋.

(1) If diam(T ) = 2k and deg(u) ≥ 2k+1 − 5, then ρ∗1(T ) ≤ 2k+1 − 1.

(2) If diam(T ) = 2k+1, deg(u) ≥ 2k+1 − 5, and deg(v) ≥ 2k − 2, then ρ∗1(T ) ≤
2k+1 + 2k − 2.

Proof. (1) Let T be a tree with diameter 2k. If diam(T ) = 2, then T is a star
and the result holds, so we can assume that k ≥ 2. Then the center of T is a
unique vertex u. Let deg(u) = n and the neighbors of u be u1,. . . ,un.

Suppose that 2k+1−5 ≤ n ≤ 2k+1−2. For our initial configuration, place one
pebble on each of u, u1,. . . ,un. Let w be a vertex in T having no pebble. Without
loss of generality, assume that the shortest path from u to w passes through un.
Using rubbling moves to move pebbles from u1,. . . ,un−1 onto u, it is possible
to move an additional

⌊

n−1
2

⌋

pebbles to u. This results in
⌊

n+1
2

⌋

pebbles on u.
Using pebbling moves from u to un can result in

⌊

n+1
4

⌋

+ 1 pebbles on un. Since
n ≥ 2k+1−5, it follows that

⌊

n+1
4

⌋

+1 ≥ 2k−1. Hence, we can reach any vertex on
the branch rooted at un. It follows that this placement of pebbles is a 1-restricted
optimal rubbling configuration of T using 1+n ≤ 1+2k+1−2 = 2k+1−1 pebbles.
Therefore, ρ∗1(T ) ≤ 2k+1 − 1.

Suppose that n ≥ 2k+1 − 1. For our initial configuration, place a pebble on
each of u, u1,. . . ,u2k+1

−2. Again, using rubbling move, u can obtain 2k pebbles.
Hence, it is possible to reach any vertex in the graph using a series of pebbling
moves. Again, we used 2k+1−1 pebbles in our initial configuration, so the bound
holds for trees having even diameter.

(2) Suppose that T is a tree of diameter 2k + 1 with center vertices u and
v such that deg(u) ≥ 2k+1 − 5 and deg(v) ≥ 2k − 2. Note that the bound
ρ∗1(T ) ≤ 2k+1 + 2k − 2 was shown to hold true for trees of diameter three (i.e.,
double stars) in [1]. For this reason, we will assume that k ≥ 2. Suppose that
the non-center neighbors of u are u1,. . . ,un, and that the non-center neighbors
of v are v1,. . . ,vm. If 2k+1 − 6 ≤ n ≤ 2k+1 − 2 and 2k − 3 ≤ m ≤ 2k − 2, then
begin by placing a pebble on each of u, v, u1,. . . ,un, v1,. . . ,vm. Let w be a vertex
having no pebble. If w is a vertex in the branch rooted at un, then move the
needed pebbles from u1,. . . ,un−1, and v to u using rubbling moves. This results
in u having

⌊

n+2
2

⌋

pebbles. Move the needed pebbles from u to un using pebbling
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moves. This results in
⌊

n+6
4

⌋

pebbles on un. Since n ≥ 2k+1−6, there are at least
2k−1 pebbles on un. Hence, w can be reached by pebbling moves. Similarly, if w
is the branch rooted at vm, we move pebbles from u1,. . . ,un to u using rubbling
moves. We then move pebbles from u to v using pebbling moves. We also move
pebbles from v1,. . . ,vm−1 (and possibly u) to v using rubbling moves. This results
in

⌊

n+2m+4
4

⌋

pebbles on v. Moving pebbles from v to vm using pebbling moves
results in

⌊

n+2m+12
8

⌋

pebbles on vm. Since n ≥ 2k+1 − 6 and m ≥ 2k − 3, there
are at least 2k−1 pebbles on vm. Hence, we can reach any vertex in the branch
rooted at vm. Note that we used 2 + n+m pebbles in our initial configuration.
Since n ≤ 2k+1 − 2 and m ≤ 2k − 2, it follows that ρ∗1(T ) ≤ 2k+1 + 2k − 2.

A similar argument gives the remaining cases. For this reason, we simply
provide the required initial rubbling configurations and leave the details of the
proof to the reader. If n ≥ 2k+1 − 1 and 2k − 3 ≤ m ≤ 2k − 2, then place one
pebble on each of u, v, u1,. . . ,u2k+1

−2, v1,. . . ,vm in the initial configuration. If
2k+1 − 6 ≤ n ≤ 2k+1 − 5 and m = 2k − 1, then place one pebble on each of u,
v, u1,. . . ,un, v1,. . . ,vm in the initial configuration. If 2k+1 − 6 ≤ n ≤ 2k+1 − 5
and m ≥ 2k, then place one pebble on each of u, v, u1,. . . ,un, v1,. . . ,v2k in the
initial configuration. If 2k+1 − 4 ≤ n ≤ 2k+1 − 2 and m = 2k − 1, then place
one pebble on each of u, v, u1,. . . ,u2k+1

−4, v1,. . . ,vm in the initial configuration.
If 2k+1 − 4 ≤ n ≤ 2k+1 − 2 and m ≥ 2k, then place one pebble on each of u,
v, u1,. . . ,u2k+1

−4, v1,. . . ,v2k in the initial configuration. If n ≥ 2k+1 − 1 and
m ≥ 2k − 1, then place one pebble on each of u, v, u1,. . . ,u2k+1

−2, v1,. . . ,v2k−2 in
the initial configuration.

In their work on optimal rubbling, Katona and Sieben [8] proved that for
any connected graph G of order n, ρ∗(G) ≤

⌈

n+1
2

⌉

. They showed that the path
requires the most pebbles for optimal rubbling amongst the graphs with a given
number of vertices. However, their proof uses rubbling configurations that ini-
tially place more than one pebble on each the vertex, so it does not extend to give
the upper bound for 1-restricted rubbling. But our next result shows the bound
does indeed hold for the 1-restricted rubbling number of connected graphs G.
Since deleting an edge cannot decrease the 1-restricted optimal rubbling number,
it suffices to prove the result for trees.

Theorem 16. For any tree T on n vertices, ρ∗1(T ) ≤
⌈

n+1
2

⌉

.

Proof. Let T be a tree on n vertices. We proceed by induction on n. If n ≤ 3,
the result holds. By Theorem 5, the claim holds for stars and double stars with
at least four vertices. Hence, we may assume that the diameter of T is at least
four and n ≥ 5.

Assume for any tree T ′ with order n′ < n, that ρ∗1(T
′) ≤

⌈

n′+1
2

⌉

. Root T at

some leaf r, and let leaf w be of maximum distance from r. Let v be the parent
of w, and let u be the parent of v. We consider three cases.
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Case 1. Vertex v has exactly one child, w. Let T ′ = T − {v, w}. Then
n′ = n − 2. From our inductive hypothesis, there is a ρ∗1-configuration f(T ′) of

T ′, such that |f(T ′)| ≤
⌈

(n−2)+1
2

⌉

. In this rubbling configuration of T ′, u can

obtain a pebble. Thus, f(T ′) can be extended to a rubbling configuration of T
by placing a pebble on w. Note that a rubbling move r(u,w → v) places a pebble

on v. Thus, ρ∗1(T ) ≤
⌈

(n−2)+1
2 + 1

⌉

=
⌈

n+1
2

⌉

.

Case 2. Vertex v has exactly two children, say x and w. By our choice of w,
x is a leaf in T . Define T ′ = T − {w, x}. Then from our inductive hypothesis,

there exists a ρ∗1-configuration f(T ′) of T ′ such that f(T ′) ≤
⌈

(n−2)+1
2

⌉

. We are

now presented with two subcases.

(a) In the configuration f(T ′), v begins with a pebble. Place pebbles on T
in the form of f(T ′). Remove the pebble from v and place one pebble on each of
w and x. A rubbling move r(w, x → v) places a pebble on v, giving the previous
configuration f(T ′). Hence, this is a rubbling configuration for T , implying that

ρ∗1(T ) ≤
⌈

(n−2)+1
2 + 1

⌉

=
⌈

n+1
2

⌉

.

(b) In f(T ′), v does not begin with a pebble. Thus, there must exist some
sequence of moves using only the vertices of T ′ that places a pebble on v. Place
pebbles on T in the form of f(T ′) and place one additional pebble on v. Then v
can receive a second pebble, and a pebbling move from v reaches w and x. Clearly,

this is a rubbling configuration of T , and so, ρ∗1(T ) ≤
⌈

(n−2)+1
2 + 1

⌉

=
⌈

n+1
2

⌉

.

Case 3. Vertex v has three or more children. Let w = ℓ1, . . . , ℓk be the leaves
adjacent to v, where k ≥ 3. Define T ′ = T −{v, ℓ1, . . . , ℓk}. By inductive hypoth-

esis, there exists some ρ∗1-configuration f(T ′), such that
∣

∣f(T ′)
∣

∣ ≤
⌈

(n−k−1)+1
2

⌉

.

Note that n′ ≤ n− 4.
We place pebbles on T ′ in the form of f(T ′) and place one pebble on each of v

and ℓ1. Note that we can place a pebble on u using pebbling and rubbling moves
on T ′. Then a rubbling move r(u, ℓ1 → v) places a second pebble on v. It follows
that every other leaf neighbor of v is reachable via a pebbling move. Thus, this

is a rubbling configuration on T . Hence, ρ∗1(T ) ≤
⌈

(n−k−1)+1
2 + 2

⌉

≤
⌈

n+1
2

⌉

.

We have now shown inductively that ρ∗1(T ) ≤
⌈

n+1
2

⌉

for every tree T .

Corollary 17. For any connected graph G on n vertices, ρ∗1(G) ≤
⌈

n+1
2

⌉

.

Our final result will show that for each integer value 2 ≤ b ≤
⌈

n+1
2

⌉

, there
exists a graph of order n whose 1-restricted optimal rubbling number equals b.
To do so, we define the double pencil Pn,x having order n as follows: begin with
the path p1, . . . , pn−2, along with two additional vertices u and v each adjacent
to p1, . . . , px for some x, where 1 ≤ x ≤ n − 2. Therefore, deg(u) = deg(v) = x.
For an example, see Figure 3.
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Figure 3. The graph P7,3.

Theorem 18. For any ordered pair (n, b) of positive integers, where n ≥ 3 and

2 ≤ b ≤
⌈

n+1
2

⌉

, there exists a graph G of order n having ρ∗1(G) = b.

Proof. By Proposition 4, the path Pn is a graph of order n with ρ∗1(Pn) =
⌈

n+1
2

⌉

.
Further, if n = 3, then

⌈

n+1
2

⌉

= 2. Hence, we may assume that n ≥ 4 and
b <

⌈

n+1
2

⌉

.

Given positive integers n and b, where n ≥ 4 and 2 ≤ b <
⌈

n+1
2

⌉

, consider
the double pencil Pn,x with x = n−2b+2. Clearly, Pn,x has n vertices. We show
that ρ∗1(Pn,x) = b.

Note first that the diameter d of Pn,x is n−x, except for the case, where n ≥ 6
is even and x = 2, for which d = n − 3. By Corollary 3,

⌈

d+2
2

⌉

≤ ρ∗1(Pn,x). In

either case,
⌈

d+2
2

⌉

=
⌈

(n−x)+2
2

⌉

, so
⌈

(n−x)+2
2

⌉

=
⌈

n−(n−2b+2)+2
2

⌉

= b ≤ ρ∗1(Pn,x).

To see that ρ∗1(Pn,x) ≤ b, we give a rubbling configuration using b pebbles as
follows. Begin by placing one pebble on each of u and v. If b = 2, then we are
finished. Hence, assume that b ≥ 3, and so, x 6= n−2. For this case, complete the
configuration by placing a pebble on pn−2 and px+2i, for i = 1, . . . ,

⌊

(n−x−3)/2
⌋

.
A rubbling move will reach each vertex in N(u) ∪N(v), and every vertex on the
px+2 − pn−2 path is reachable. Finally, px+1 is reachable by the rubbling move
r(px, px+2 → px+1). Thus, ρ

∗

1(Pn,x) ≤ 3 +
⌊

n−x−3
2

⌋

= b.
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