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Abstract

Let D be any of the 10 digraphs obtained by orienting the edges of
K, — e. We establish necessary and sufficient conditions for the existence
of a (K}, D)-design for 8 of these digraphs. Partial results as well as some
nonexistence results are established for the remaining 2 digraphs.
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1. INTRODUCTION

Let Z,, denote the group of integers modulo m. For integers a and b with a < b,
let [a,b] = {a,a + 1,...,b}. For a graph (or digraph) H, let V(H) and E(H)
denote the vertex set of H and the edge (or arc) set of H, respectively. The order
and the size of a graph (or digraph) H are |V (H)| and |E(H)|, respectively.

We denote the complete multipartite graph with parts of sizes a; for 1 <
i < m by Kq as,. am If ai = a forall i € {1,2,...,m}, then we use the
notation K,,x,. Additionally, K,,x,p denotes the complete multipartite graph
with m parts of size a and one part of size b.

Let H be a graph and let G be a set of subgraphs of H. We will refer to a
graph G € G as a G-block. A G-decomposition of H is a set A = {G1,Ga,...,G,}


http://dx.doi.org/10.7151/dmgt.2101

816 R.C. BUNGE et al.

of pairwise edge-disjoint subgraphs of H such that for every ¢ € [1,7], G; = G
for some G € G and such that E(H) = |J;_, E(G;). Of particular importance
is when G = {G}, in which case we write “G-decomposition of H” instead of
“{G}-decomposition of H.” A G-decomposition of H is also known as an (H, G)-
design. The set of all n for which K, admits a G-decomposition is called the
spectrum of GG. The spectrum has been determined for many classes of graphs,
including for all graphs on at most 4 vertices [4] and all graphs on 5 vertices
(see [3] and [10]). We direct the reader to [2] and [5] for recent surveys on graph
decompositions.

By blowing up the vertices of a graph G by some positive integer ¢, we mean
replacing every vertex of G with ¢ independent vertices and replacing every edge
in G by a K;;. For example, assume we have a (K,x2, K3)-design. After blowing
up the vertices of K,x2 by 5, our corresponding (K, x2, K3)-design becomes a
(Kmxlo, K3X5)—design.

Similar concepts to the ones defined above for undirected graphs can be
defined for digraphs. First, we introduce additional notation. For an undirected
graph G, let G* denote the digraph obtained from G by replacing each edge
{u,v} € E(G) with the arcs (u,v) and (v,u). Thus K}, the complete symmetric
digraph of order n, is the digraph on n vertices with the arcs (u,v) and (v, u)
between every pair of distinct vertices v and v.

Let D and H be digraphs such that D is a subgraph of H. The reverse
orientation of D, denoted Rev(D), is the digraph with vertex set V(D) and arc set
{(v,u) : (u,v) € E(D)}. A D-decomposition of H is a set A = {D1,Ds,...,D,}
of pairwise arc-disjoint subgraphs of H each of which is isomorphic to D and
such that E(H) = {J;_; E(D;). As with the undirected case, a D-decomposition
of H is also known as an (H, D)-design, and the set of all n for which K admits
a D-decomposition is called the spectrum of D. Furthermore, we say D is self-
complementary in H if D is isomorphic to the digraph with arc set E(H)\ E(D).
That is, D is self-complementary in H if H has size 2 - |E(D)| and there exists
an (H, D)-design.

The spectra for several digraphs of small order have been determined. This
includes the spectra for all digraphs on at most 3 vertices [11] and all bipartite
digraphs on 4 vertices with up to 5 arcs [7].

In this paper, we extend the known results on small digraphs by determining
the spectrum for 8 of the 10 digraphs obtained by orienting the edges of K4 — e,
the graph obtained from removing a single edge from K. Some nonexistence
results are proven for the remaining 2 such digraphs. We use the naming conven-
tion found in An Atlas of Graphs [13] by Read and Wilson. The digraphs under
investigation are shown in Figures 1 and 2 with a key that denotes a labeled copy
for each of the 10 digraphs of interest. For example, D75[w, z, y, 2| refers to the di-
graph with vertex set {w, z,y, 2z} and arc set {(w,x), (w,y), (w, 2), (z,y), (z,y)}.
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D75[w, x,y, 2] | D87w,x,y,z] | D101|w,z,y, z] | D102[w,x,y, z]
w w w w
z X z T z xr z Xz
Y Y Y Y

Figure 1. The four orientations of K4 — e that are self-complementary in (K4 — e)*.

D69[w, z,y, z] || D74[w,z,y, 2] | D85[w,x,y, 2]
w w w

z T z x z T
Yy Yy Yy

D90[w, z,y, 2] || D89[w,x,y,z] | D105[w,z,y, 2]
w w w

z T z x z T
Yy Yy Yy

Figure 2. The six orientations of K4y — e that are not self-complementary in (K4 — e)*
shown paired with their reverse orientations.

Note that 6 of the digraphs of interest in this paper occur in pairs with
respect to their reverse orientations (see Figure 2). Namely, D69 = Rev(D90),
D74 = Rev(D89), and D85 = Rev(D105). The remaining 4 digraphs of interest
(see Figure 1) are isomorphic to their reverse orientations, e.g., D75 = Rev(D75),
which is shown in the proceeding section (see Lemma 4) to imply that these 4
digraphs are self-complementary in (K4 — e)*.

2. SOME BAsic RESULTS

The necessary conditions for a digraph D to decompose K include

(A) [V(D)| <n,
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(B) |E(D)| divides n(n — 1), and
(C) both ged{outdegree(v) : v € V(D)} and ged{indegree(v) : v € V(D)}
divide n — 1.

Applying these necessary conditions to the 10 digraphs under consideration, we

obtain the following necessary condition: For D € {D69,D74,D75, D85, D87,

D89,D90,D101,D102,D105}, a (K}, D)-design exists only if n = 0 or 1 (mod 5).
The following observation was stated in [6].

Observation 1. Let D and H be digraphs. A D-decomposition of H exists if and
only if a Rev(D)-decomposition of Rev(H) ezists.

The fact that K} = Rev(K};) leads to our next observation, also stated in [6].

Observation 2. Let D be a digraph. A (K}, D)-design exists if and only if a
(K, Rev(D))-design exists.

2.1. Results for self-complementary digraphs

We note that the existence of (K4 — e)-decompositions of complete multigraphs
(i.e., the spectrum of index A) is known [12]. However, we present here the
following theorem reduced to what is useful for characterizing the spectra of our
4 self-complementary digraphs.

Theorem 3 [4]. There ezists a (K4 —e)-decomposition of Ky, if and only if n = 0
or 1 (mod 5) and n > 6.

Since there does not exist a (K4 — e)-decomposition of K5, we must address
decompositions of KZ (see Section 3). To make use of the known spectrum of
Ky — e, we present the following.

Lemma 4. Let D be an orientation of a graph G. Then D is isomorphic to
Rev(D) if and only if D is self-complementary in G*.

Proof. Let D’ be the digraph with vertex set V(G*) and arc set E(G*) \ E(D).

Note that E(D') = {(v,u) : (u,v) € E(D)}, which implies that D’ is both the

reverse orientation of D and the complement of D in G*. The result then follows.

|

Since there exists a (K, G)-design if and only if a (K* G*)-design exists, we
arrive at the following corollary of the above lemma.

Corollary 5. Let D be an orientation of a simple graph G such that D is self-
complementary in G*. If there exists a (K, G)-design, then there exists a (K* D)-
design.
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In light of Corollary 5, we can combine Theorem 3 and Example 11 (see
Section 3) to characterize the spectra of the digraphs that are self-complementary
in (K4 — e)*, namely D75, D87, D101, and D102 (as seen in Figure 1).

Theorem 6. Let D € {D75,D87,D101,D102}. There exists a (K, D)-design if
and only if n =0 or 1 (mod 5) and n > 5.

2.2. Results for non-self-complementary digraphs

Our general constructions also use some basic results concerning decompositions
of both complete graphs and complete multipartite graphs into complete graphs
of orders 3 and 5. These are sometimes stated in the language of group divisible
designs and/or pairwise balanced designs. Note that these background results
concern graphs, as opposed to digraphs. Theorems 7, 8, and 9 can be found in
the Handbook of Combinatorial Designs [8] (see [1] and [9]).

Theorem 7. If n is odd, then a {Ks, K5}-decomposition of K, exists.

Theorem 8. The necessary and sufficient conditions for the existence of a Ks-
decomposition of Kyxm are (i) u >3, (i) (u—1)m =0 (mod 2), and (iii) u(u —
1)m? =0 (mod 6).

Theorem 9. Ifu > 3 and u =0 (mod 3), then there exists a Ksz-decomposition
Of Ku><2,4~

Our general constructions further rely on the following direct result of blowing
up the vertices in the graphs of a decomposition. This well-known building block
is a special case of Wilson’s Fundamental Construction.

Lemma 10. Let m, r, s, t, ui, uo,...,un all be positive integers. If there
exists a { K, K }-decomposition of Ky, v, u,., then there exists a { Ky, Ksxi}-
decomposition of Ky, tuy,... tum - I particular, if there exists a (Ky, ug,...um» Kr)-
design, then there exists a (K, tus,... tum s Krxt)-design.

3. EXAMPLES OF SMALL DESIGNS

We now turn our attention to the designs of small order which will be used for
the general constructions.

Given a digraph represented by the notation Da, b, ¢, d] and some i € Z,,, we
define Dla,b,c,d] +i = Dl[a+i,b+1i,c+i,d + i] where all addition is performed
in Z,. By convention, define co + 1 = oc.

Example 11. There exists a (K7, D)-design for D € {D74,D75,D85, D87, D89,
D101,D102,D105}.
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Let V(K?) = Zy U {o0}.
(KZ,D74)-design is given by {D74[0,00,2,1] +1i:i € Z4}.
(K2,D75)-design is given by {D75[0,00,3,1] 4+ : i € Zq4}.
(KZ,D85)-design is given by {D85[0,00,2,1] +1i: i € Zy}.
(KZ%,D87)-design is given by
{D87[0, 00, 1, 2], D870, 3, 2, 0], D87[3, 00, 2, 1], D87[3, 0, 1, 0] }.
A (K?,D101)-design is given by {D101[0,00,3,1] 4+ : i € Z4}.
A (K}¥,D102)-design is given by
{D102[0, 00, 1, 2], D102[1, 3, 0, 00], D102[2, 00, 3, 0], D102[3, 1,2, 0c] }.
Applying Observation 2, we obtain the remaining designs.
Example 12. There exists a (K¢, D)-design for D € {D69, D74, D85, D89, D90,
D105}.
Let V(K¢) = Zs.
A (K¢, D69)-design is given by {D69[0,2,1,4] +i: i € Zg}.
A (K¢, D74)-design is given by {D74[0,5,1,3] +i:i € Zg}.
A (K¢, D85)-design is given by {D85[0,3,5,4] +i:1i € Zg}.
Applying Observation 2, we obtain the remaining designs.
Example 13. There exists a (K7, D)-design for D e {D74,D85,D89,D105}.
Let V(K7,) = Zg U {o0}.
A (KF,,D74)-design is given by
(D740, 00,4,6] +i: i € Zo} U {D74[0,8,1,4] +1i : i € Zy}.
A (K7, D85)-design is given by
(D850, 00,4, 7] +i: i € Zo} U{D85[0,6,1,2] +1i: i € Zy}.
Applying Observation 2, we obtain the remaining designs.

Example 14. There exists a (K7, D)-design for D € {D69, D74, D85, D89, D90,
D105}.

Let V(K7,) = Z11.
A (K7j{,D69)-design is given by
{D69[0,2,7,5] +i:i € Z11} U{D69[0,1,4,3] +4 :i € Z11}.
A (K7j,,D74)-design is given by
{D74[0,7,1,3] +i : i € Z11} U{D74[0,4,10,8] +i : i € Z11 }.
A (K7, D85)-design is given by
{D85[0,6,10,7] +i :i € Z11} U{D85[0,9,8,2] +i:i € Z11}.

Applying Observation 2, we obtain the remaining designs.
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Example 15. There exists a (K3,

Let V(K;O) = Z1g U {OO}
A (K3,,D74)-design is given by

821

D)-design for D € {D74, D85, D89, D105}

{D74]0,00,13,2] + i : i € Zyg} U{D74[0,12,1,10] +i : i € Zyo}
U {D74[0,14,16,12] +i : i € Z19} U {D74[0,15,18,13] +i : i € Z19}.

A (K3,,D85)-design is given by

{D85[0,00,2,16] + i : i € Z19} U{D85[0,12,1,6] + i : i € Z1g}
U {D85[0,13,17,7] 4+ i : i € Zyo} U {D85[0,3,18,10] +i : i € Z1g}.

Applying Observation 2, we obtain the remaining designs.

Example 16. There exists a (K3,
D105}.

Let V(K;l) == Z21-
A (K3,,D69)-design is given by

D)-design for D € {D69, D74, D85, D89, D90,

{D69[0,4,1,12] +i : i € Zy1 } U{D69[0,7,2,16] +i : i € Zo1 }
U {D69[0,6,19,13] 4 i : i € Zyy } U {D69[0,17,20,9] +i : i € Zn, }.

A (K3,,D74)-design is given by

{D74[0,13,4,14] 4+ i : i € Zo1} U {D74[0,2,5,20] +i : i € Zo1}
U{D74[0,18,16,1] 4 : i € Zp1 } U{DT74[0,8,17,7] 4+ : i € Za1}.

A (K3,,D85)-design is given by

{D85[0,18,1,15] +i : i € Zoy } U{D85[0,17,2,7] +i : i € Zoy }
U {D85[0,16,19,11] 4+ : i € Zo1 } U {D85[0,12,20,9] +i : i € Zo1 }.

Applying Observation 2, we obtain the remaining designs.

Example 17. There exists a (K55,
Let V(K3s)

D)-design for D € {D69, D90}.
=75 x Zs. A (Kj5,D69)-design is given by

(D69[(1,4), (0,1 +1), (1,2 +14), (0,4)] : i € Zs}
U{D69[(2,4), (0,1 +1), (2,2 +1),(0,i)] : i € Zs}

U {D69((3,1), (0,1 + 1), (3,2 +1),(0,i)] : i € Z5}

U {D69[(0,1 + 1), (1,1), (4,4),(0,7)] : i € Z5}

U {D69[(0,2 + ), (1,4), (4,34 1),(0,4)] : i € Z5}

U {D69[(1,3 + 1), (1,4),(0,3 4 1),(0,4)] : i € Z5}
U{D69[(2,1+1),(1,1+1),(2,4+1),(1,%)] : 5 € Zs}
U{D69[(3,7), (1,1 +1), (3,3 +1), (1,4)] : i € Zs}
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U {D69[(0,4 + 1), (2,1 +1), (2,2 +1i),(1,4)] : i € Zs}
U{D69[(1,1 +1),(2,4), (4,2 +1),(1,i)] : i € Zs}

U {D69[(0,2 + 1), (2,2 + 1), (0,1 +4),(2,4)] : i € Z5}
U{D69[(1,1), (2,1 +14),(3,1+1),(2,i)] : i € Zs}
U{D69[(3,3 +14), (2,1 +1i),(4,i),(2,i)] : i € Zs}

U {D69[(3,4 + 1), (4,4), (1,2 + 1), (2,7)] : i € Zs}

U {D69[(0,3 +7), (4,4), (3,1 +1),(3,i)] : i € Zs}
U{D69[(0,4 +7), (4,2 + 1), (4,1 +14),(3,9)] : i € Zs}
U{D69[(1,1 + 1), (4,4), (1,4), (3,4)] : i € Zs}
U{D69[(1,4 + 1), (4,1 +1),(4,3+14),(3,9)] : i € Zs}
U{D69[(2,4 +1),(4,3+1),(1,2+1),(3,7)] : i € Zs}
U{D@K21+)(41+0( i),(3,1)] 11 € Zs}
U{D69[(2,3 4 1), (4,1 +1), (4,4 +1),(3,4)] : i € Zs}
U{DWK22+)(44+Q(4)( i)] 11 € Zs}

U {D69[(3,4 + 1), (4,4 +i),(0,i),(3,7)] : i € Zs}
U{D69[(3,3 + 1), (4,1 +1),(0,i),(4,i)] : i € Zs}.

Applying Observation 2, we obtain a (K35, D90)-design.
D)-d

Example 18. There exists a (K35, esign for D € {D69, D90}.

Let V(Kgo) = Z5 X Z(;.
A (K3,,D69)-design is given by

(D69[(1,), (0,1 +1), (1,2 + 1), (0,9)] : i € Zg}

U{D69[(1,4 +1), (0,1 +1), (2,4), (0,4)] : i € Zg}
U{D69[(2,2 + 1), (0,1 +1), (2,4 + 1), (0,4)] : i € Zg}
U {D69[(3,1), (0,1 + 1), (3,2 +1), (0,4)] : i € Zg}
U{D69](3,4 + 1), (0,1 +1), (4,4), (0,4)] : i € Zg}
U{D69[(0,1 + ), (1,7), (4,2 + ), (0,4)] : i € Zg}
U{D69](0,7), (1,1 +1), (0,3 +1), (1,4)] : i € Zg}
U {D69[(0,4 + 1), (2,4), (4,1 + 1), (1,4)] : i € Zg}
U{D69[(1,1 + 1), (2,4), (2,1 +1), (1,4)] : i € Zg}
U{D69[(1,4 + 1), (2,4), (2,3 +1), (1,4)] : i € Zg}
U{D69[(1,3 + 1), (2,4), (3,4), (1,4)] : i € Zg}
U{D69[(1,5 + 1), (2,4), (3,4 + 1), (1,1)] : i € Zg}
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U{D69[(2,4 + 1), (2,7), (3,1 4+ 19),(1,4)] : i € Zg}
U{D69[(3,2 + 1), (2,4), (4,4), (1,7)] : i € Zg}
U{D69[(4,3 + 1), (2,7), (4,4 4+ 7),(1,4)] : i € Zg}

U {D69[(0,%), (2,1 + 1), (0,2 + 1), (2,4)] : i € Zg}
U{D69[(3,5 + 1), (3,1), (2,5 + 1), (2,4)] : i € Zg}

U {D69[(0,14), (3, 1+z),(0 4+41),(3,4)] : i € Zg}

U {D69[(0,2 + 1), (4,1 +1),(4,7),(3,3)] : i € Zg}

U {D69[(1,4 + i), (4,1), (4,3 + 1), (3,4)] : ¢ € Zg}
U{D69[(2,4 + i), (4,1 +14), (0,1 +14),(3,4)] : 1 € Zg}
U{D69[(2,1+1),(4,3+14),(1,3+14),(3,i)] : i € Zg}
U{D69[(2,2 + 1), (4,3 +1),(4,1+14),(3,i)] : i € Zg}
U{D69[(2,3 + 1), (4,3 +1),(4,5+14),(3,i)] : i € Zg}
U{D69[(3,1+1),(4,2+14),(1,1+14),(3,i)] : i € Zg}
U{D69[(3,3 + 1), (4,5 +14),(1,2+1),(3,i)] : i € Zg}
U {D69[(0,5 + ), (4,2 + 1), (0,4 + 1), (4,7)] : i € Zg}
U{D69[(2,2 + 1), (4,1 +14),(1,2+ 1), (4,7)] : i € Zg}
U{D69[(3,3 + 1), (4,1 +14),(3,1+1),(4,7)] : i € Zg}

Applying Observation 2, we obtain a (K3, D90)-design.

Example 19. There exists a (K3, 5, D)-design for D € {D69,D74, D85, D89,
D90, D105}.

Let V(K3,5) = Z15 with vertex partition {V; : i € Z3}, where V; = {j € Zy5 :
j =1 (mod 3)}.
A (K3, 5,D69)-design is given by
{D69[0,8,10,11] + i : i € Z15} U{D69[0,4,5,7] + i : i € Z15}.

A (K3, 5,D74)-design is given by
{D74[0,2,10,11] +i : i € Zy5} U {D74[0,13,5,4] + i : i € Zy5}.

A (K3, 5,D85)-design is given by
{D85[0,7,5,1] +i:1i € Z15} U{D85[0,8,10,14] + i : i € Z15}.

Applying Observation 2, we obtain the remaining designs.

Example 20. There exists a (KZ, 5, D)-design for D € {D69,D74, D85, D89,
D90, D105}
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First, let V(K2 5) = Zos with vertex partition {V; : i € Zs}, where V; = {j €

Zos : j =1 (mod 5)}.
A (K%, 5,D69)-design is given by

{D69[1,14,0,24] + i : i € Zos} U{D69[2,8,0,18] +i : i € Zos}

U {D69[3,12,0,22] +i : i € Zgs} U {D69[4,11,0,21] +i : i € Zos}.
A (K%, 5,D90)-design follows from Observation 2.
Next, let D € {D74,D89,D105,D85}. A (K5x5, K5)-design can be obtained by
removing one parallel class from an affine plane of order 5. Thus, there exists
a (K%, 5, K¥)-design. Since a (KZ, D)-design exists by Example 11, the desired
(KZ,5, D)-design exists.

4. MAIN RESULTS

We first show some nonexistence results for (D69, K7)- and (D90, K)-designs.
Interestingly for n = 0 (mod 5), these designs do not exist for n € {5, 10, 15,20}
(see Theorem 21) but do exist for n € {25,30} (see Examples 17 and 18). By Wil-
son’s Theorem [14], there exists an integer ng such that for all n > ng that satisfy
the necessary conditions there exists both a (D69, K')-design and a (D90, K7)-
design. We conjecture that ng = 25 for this pair of digraphs.

Theorem 21. There does not exist a D69- or D90-decomposition of Kz, for
1<k <A4.

Proof. We prove by contradiction that a D69-decomposition of K7 cannot exist.
Note that by Observation 2, a D90-decomposition must also not exist.

Let A be a D69-decomposition of KZ,. Given a vertex v € V(KZ.), let
ny(v) denote the number of D69-blocks in A where vertex w in D69[w, z, y, z]
is identified with vertex v. Define n,(v), ny(v), and n.(v) similarly. Thus, the
following must hold:

11y (v) + 2ng(v) + Ony(v) + 2n,(v) = 5k — 1,
2N (V) + 0ng(v) + 3ny(v) + 0n,(v) = 5k — 1.
Substituting n(v) = ng(v) + n.(v), the above equations can be parameterized as
(1) ny(v) = 5k — 1 — 2a(v),
(2) ny(v) = —%(5k — 1 — 4n(v)).
Since n(v), nyw(v), and ny(v) must all be nonnegative integers, we have that

0<5k—1—2n(v)

0< —+(5k—1- 4ﬁ(v))} = ;(5k — 1) < 7(v) < 5(5k - 1).
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Furthermore, equation (2) implies that 5k — 1 — 4n(v) must be a multiple of 3;
hence, k +n(v) +1 =0 (mod 3).

Next, consider the case when & = 1. The above conditions require that for
every v € V(KZ), we have 1 < n(v) <2 and n(v) =1 (mod 3). Thus, n(v) can
only equal 1, and by equation (1), n,(v) = 2 for every v € V(K?). However, this
would imply |A| = 10, which is a contradiction (because |A| = 4 when k = 1).
Similarly if k is 2, 3, or 4, then n(v) can only equal 3, 5, or 7, respectively,
which further yields only one value for n,(v): 3, 4, or 5, respectively, for every
v € V(KZ,). However, this would imply |A[ is a multiple of 5k, which is a
contradiction because

B3| _ 5k(5k— 1)

Al = E(D69)] = = k(5k — 1),

which is not divisible by 5k. [

Next we turn our attention to developing the general constructions needed
to piece together the small designs presented in Section 3 and show sufficiency of
the necessary conditions for the remaining four non-self-complementary digraphs.

Theorem 22. Let D € {D74,D85,D89,D105}. If n = 0 (mod 5) with n > 5,
then a (K, D)-design exists.

Proof. Let D € {D74,D85,D89,D105} and let n =0 or 5 (mod 10).

Case 1. n =0 (mod 10). Let n = 10x = 5(2z) for some positive integer x.
When x is 1 or 2 the result follows from Examples 13 and 15, respectively, so we
now consider when x > 3. Let Hq, Ho, ..., H, be disjoint sets of 2 vertices each.

Subcase la. x =0 or 1 (mod 3). Let K, x2 have vertex partition {H; : 1 <
i < z}. By Theorem 8, a (K,x2, K3)-design exists. Therefore, by Lemma 10 a
(Kzx10, K3x5)-design exists. Let H! be the set obtained from H; after blowing
up each vertex in Kx2 by 5. Now consider K, to have vertex set |J;_, H]
where each H! induces a K7,. Thus, K, decomposes into copies of K}, and
K3, 5. Since both a (K7, D)-design and a (K3, 5, D)-design exist by Examples
13 and 19, respectively, we have our desired (K, D)-design.

Subcase 1b. x =2 (mod 3). Let Hy = H, 1 U H, and let K(,_2)x24 have
vertex partition {H; : 0 <i <z — 2}. By Theorem 9, a (K(;_2)x24, K3)-design
exists. Therefore, by Lemma 10 a (K (;_2)x10,20, K3x5)-design exists. Let H; be
the set obtained from H; after blowing up each vertex in K, _2)x24 by 5. Now
consider K to have vertex set | J*_7 H/ where H}, induces a K3, and, for 1 <i <
x —2, each H] induces a K7j,. Thus, K, decomposes into copies of K7, K3,, and
K3, 5. Since a (K7, D)-design, a (K3, D)-design, and a (K3, 5, D)-design exist
by Examples 13, 15, and 19, respectively, we have our desired (K, D)-design.
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Case 2. n =5 (mod 10). Let n = 10z + 5 = 5(2z + 1) for some positive
integer x. Let Hy, Ho, ..., Ho,11 be sets consisting of a single vertex each. By
Theorem 7 a {K3, K5}-decomposition of Ka,11 exists. Therefore, by Lemma 10
a {K3x5, Ksx5}-decomposition of Kg,1)x5 exists. Let H! be the set obtained
from H; after blowing up each vertex in Kaz41 by 5. Now consider K to have
vertex set Ufﬂ'l H! where each H induces a K¥. Thus, K} decomposes into
copies of KZ, K3, 5, and K?, 5. Since a (K7, D)-design, a (K3, 5, D)-design, and
a (KI5, D)-design all exist by Examples 11, 19, and 20, respectively, we have
our desired (K, D)-design. |

Theorem 23. Let D€ {D69,D74,D85,D89,D90,D105}. If n =1 (mod 5) with
n > 6, then a (K, D)-design ezists.

Proof. Let D € {D69,D74,D85,D89,D90,D105} and let n =1 or 6 (mod 10).

Casel. n =1 (mod 10). Let n = 10z+1 = 5(2x)+1 for some positive integer
x. When z is 1 or 2 the result follows from Examples 14 and 16, respectively, so
we now consider when x > 3.

Subcase la. = 0or 1 (mod 3). Here we can consider V(K}}) = (Ule H{) U

{0}, where each H/ is defined as in Subcase la of the proof of Theorem 22 with
the modification that each H U {oo} induces a K7;. Similarly to the proof of
that Subcase la, the desired (K, D)-design can be constructed using (K7, D)-
designs—in place of (K7, D)-designs—along with (K73, 5, D)-designs, which exist
by Examples 14 and 19, respectively.

Subcase 1b. x = 2 (mod 3). Here we can consider V(K}) = ( vz H{) U
{oc}, where each H] is defined as in Subcase 1b of the proof of Theorem 22
with the modifications that Hj U {oo} induces a Kj; and, for 1 < i < z — 2,
each H! U {oo} induces a K;;. Similarly to the proof of that Subcase 1b, the
desired (K, D)-design can be constructed using (K7, D)-designs and a (K3, D)-
design—in place of (K7, D)- and (K3, D)-designs—along with (K73, 5, D)-designs,
which exist by Examples 14, 16, and 19, respectively.

Case2. n =6 (mod 10). Here we can consider V(K}) = (U?f{l H{) U{oc},
where each H/ is defined as in Case 2 of the proof of Theorem 22 with the
modification that H] U {oco} induces a K. Similarly to the proof of that Case 2,
the desired (K}, D)-design can be constructed by using (K¢, D)-designs—in place
of (KZ, D)-designs—along with (K3, 5, D)-designs and (K35, D)-designs, which
exist by Examples 12, 19, and 20. [

Our results from this section along with those in Theorem 6 are summarized
in the following two main theorems.
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Theorem 24. Let D € {D74,D75,D85,D87,D89,D101,D102,D105}. There ez-
ists a (K, D)-design if and only if n =0 or 1 (mod 5) and n > 5.

Theorem 25. Let D € {D69,D90}. There exists a (K}, D)-design if n = 1
(mod 5) and n > 6.

Finally, we formally state our conjecture regarding the open results for the
{D69, D90} pair of digraphs.

Conjecture 26. Let D € {D69,D90}. There exists a (K, D)-design if n = 0
(mod 5) and n > 25.
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