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Abstract

Let D be any of the 10 digraphs obtained by orienting the edges of
K4 − e. We establish necessary and sufficient conditions for the existence
of a (K∗

n
, D)-design for 8 of these digraphs. Partial results as well as some

nonexistence results are established for the remaining 2 digraphs.
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1. Introduction

Let Zm denote the group of integers modulo m. For integers a and b with a ≤ b,
let [a, b] = {a, a + 1, . . . , b}. For a graph (or digraph) H, let V (H) and E(H)
denote the vertex set of H and the edge (or arc) set of H, respectively. The order
and the size of a graph (or digraph) H are |V (H)| and |E(H)|, respectively.

We denote the complete multipartite graph with parts of sizes ai for 1 ≤
i ≤ m by Ka1,a2,...,am . If ai = a for all i ∈ {1, 2, . . . ,m}, then we use the
notation Km×a. Additionally, Km×a,b denotes the complete multipartite graph
with m parts of size a and one part of size b.

Let H be a graph and let G be a set of subgraphs of H. We will refer to a
graph G ∈ G as a G-block. A G-decomposition of H is a set ∆ = {G1, G2, . . . , Gr}
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of pairwise edge-disjoint subgraphs of H such that for every i ∈ [1, r], Gi
∼= G

for some G ∈ G and such that E(H) =
⋃r

i=1E(Gi). Of particular importance
is when G = {G}, in which case we write “G-decomposition of H” instead of
“{G}-decomposition of H.” A G-decomposition of H is also known as an (H,G)-
design. The set of all n for which Kn admits a G-decomposition is called the
spectrum of G. The spectrum has been determined for many classes of graphs,
including for all graphs on at most 4 vertices [4] and all graphs on 5 vertices
(see [3] and [10]). We direct the reader to [2] and [5] for recent surveys on graph
decompositions.

By blowing up the vertices of a graph G by some positive integer t, we mean
replacing every vertex of G with t independent vertices and replacing every edge
in G by a Kt,t. For example, assume we have a (Kx×2,K3)-design. After blowing
up the vertices of Kx×2 by 5, our corresponding (Kx×2,K3)-design becomes a
(Kx×10,K3×5)-design.

Similar concepts to the ones defined above for undirected graphs can be
defined for digraphs. First, we introduce additional notation. For an undirected
graph G, let G∗ denote the digraph obtained from G by replacing each edge
{u, v} ∈ E(G) with the arcs (u, v) and (v, u). Thus K∗

n, the complete symmetric

digraph of order n, is the digraph on n vertices with the arcs (u, v) and (v, u)
between every pair of distinct vertices u and v.

Let D and H be digraphs such that D is a subgraph of H. The reverse

orientation of D, denoted Rev(D), is the digraph with vertex set V (D) and arc set
{(v, u) : (u, v) ∈ E(D)}. A D-decomposition of H is a set ∆ = {D1, D2, . . . , Dr}
of pairwise arc-disjoint subgraphs of H each of which is isomorphic to D and
such that E(H) =

⋃r
i=1E(Di). As with the undirected case, a D-decomposition

of H is also known as an (H,D)-design, and the set of all n for which K∗

n admits
a D-decomposition is called the spectrum of D. Furthermore, we say D is self-

complementary in H if D is isomorphic to the digraph with arc set E(H)\E(D).
That is, D is self-complementary in H if H has size 2 · |E(D)| and there exists
an (H,D)-design.

The spectra for several digraphs of small order have been determined. This
includes the spectra for all digraphs on at most 3 vertices [11] and all bipartite
digraphs on 4 vertices with up to 5 arcs [7].

In this paper, we extend the known results on small digraphs by determining
the spectrum for 8 of the 10 digraphs obtained by orienting the edges of K4 − e,
the graph obtained from removing a single edge from K4. Some nonexistence
results are proven for the remaining 2 such digraphs. We use the naming conven-
tion found in An Atlas of Graphs [13] by Read and Wilson. The digraphs under
investigation are shown in Figures 1 and 2 with a key that denotes a labeled copy
for each of the 10 digraphs of interest. For example, D75[w, x, y, z] refers to the di-
graph with vertex set {w, x, y, z} and arc set

{

(w, x), (w, y), (w, z), (x, y), (z, y)
}

.
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Figure 1. The four orientations of K4 − e that are self-complementary in (K4 − e)∗.
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Figure 2. The six orientations of K4 − e that are not self-complementary in (K4 − e)∗,
shown paired with their reverse orientations.

Note that 6 of the digraphs of interest in this paper occur in pairs with
respect to their reverse orientations (see Figure 2). Namely, D69 ∼= Rev(D90),
D74 ∼= Rev(D89), and D85 ∼= Rev(D105). The remaining 4 digraphs of interest
(see Figure 1) are isomorphic to their reverse orientations, e.g., D75 ∼= Rev(D75),
which is shown in the proceeding section (see Lemma 4) to imply that these 4
digraphs are self-complementary in (K4 − e)∗.

2. Some Basic Results

The necessary conditions for a digraph D to decompose K∗

n include

(A) |V (D)| ≤ n,
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(B) |E(D)| divides n(n− 1), and

(C) both gcd{outdegree(v) : v ∈ V (D)} and gcd{indegree(v) : v ∈ V (D)}
divide n− 1.

Applying these necessary conditions to the 10 digraphs under consideration, we
obtain the following necessary condition: For D ∈ {D69,D74,D75,D85,D87,
D89,D90,D101,D102,D105}, a (K∗

n, D)-design exists only if n ≡ 0 or 1 (mod 5).

The following observation was stated in [6].

Observation 1. Let D and H be digraphs. A D-decomposition of H exists if and

only if a Rev(D)-decomposition of Rev(H) exists.

The fact that K∗

n
∼= Rev(K∗

n) leads to our next observation, also stated in [6].

Observation 2. Let D be a digraph. A (K∗

n, D)-design exists if and only if a

(K∗

n,Rev(D))-design exists.

2.1. Results for self-complementary digraphs

We note that the existence of (K4 − e)-decompositions of complete multigraphs
(i.e., the spectrum of index λ) is known [12]. However, we present here the
following theorem reduced to what is useful for characterizing the spectra of our
4 self-complementary digraphs.

Theorem 3 [4]. There exists a (K4−e)-decomposition of Kn if and only if n ≡ 0
or 1 (mod 5) and n ≥ 6.

Since there does not exist a (K4 − e)-decomposition of K5, we must address
decompositions of K∗

5 (see Section 3). To make use of the known spectrum of
K4 − e, we present the following.

Lemma 4. Let D be an orientation of a graph G. Then D is isomorphic to

Rev(D) if and only if D is self-complementary in G∗.

Proof. Let D′ be the digraph with vertex set V (G∗) and arc set E(G∗) \E(D).
Note that E(D′) =

{

(v, u) : (u, v) ∈ E(D)
}

, which implies that D′ is both the
reverse orientation of D and the complement of D in G∗. The result then follows.

Since there exists a (K,G)-design if and only if a (K∗, G∗)-design exists, we
arrive at the following corollary of the above lemma.

Corollary 5. Let D be an orientation of a simple graph G such that D is self-

complementary in G∗. If there exists a (K,G)-design, then there exists a (K∗, D)-
design.
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In light of Corollary 5, we can combine Theorem 3 and Example 11 (see
Section 3) to characterize the spectra of the digraphs that are self-complementary
in (K4 − e)∗, namely D75, D87, D101, and D102 (as seen in Figure 1).

Theorem 6. Let D ∈ {D75,D87,D101,D102}. There exists a (K∗

n, D)-design if

and only if n ≡ 0 or 1 (mod 5) and n ≥ 5.

2.2. Results for non-self-complementary digraphs

Our general constructions also use some basic results concerning decompositions
of both complete graphs and complete multipartite graphs into complete graphs
of orders 3 and 5. These are sometimes stated in the language of group divisible
designs and/or pairwise balanced designs. Note that these background results
concern graphs, as opposed to digraphs. Theorems 7, 8, and 9 can be found in
the Handbook of Combinatorial Designs [8] (see [1] and [9]).

Theorem 7. If n is odd, then a {K3,K5}-decomposition of Kn exists.

Theorem 8. The necessary and sufficient conditions for the existence of a K3-

decomposition of Ku×m are (i) u ≥ 3, (ii) (u− 1)m ≡ 0 (mod 2), and (iii) u(u−
1)m2 ≡ 0 (mod 6).

Theorem 9. If u ≥ 3 and u ≡ 0 (mod 3), then there exists a K3-decomposition

of Ku×2,4.

Our general constructions further rely on the following direct result of blowing
up the vertices in the graphs of a decomposition. This well-known building block
is a special case of Wilson’s Fundamental Construction.

Lemma 10. Let m, r, s, t, u1, u2, . . . , um all be positive integers. If there

exists a {Kr,Ks}-decomposition of Ku1,u2,...,um
, then there exists a {Kr×t,Ks×t}-

decomposition of Ktu1,tu2,...,tum
. In particular, if there exists a (Ku1,u2,...,um

,Kr)-
design, then there exists a (Ktu1,tu2,...,tum

,Kr×t)-design.

3. Examples of Small Designs

We now turn our attention to the designs of small order which will be used for
the general constructions.

Given a digraph represented by the notation D[a, b, c, d] and some i ∈ Zn, we
define D[a, b, c, d] + i = D[a+ i, b+ i, c+ i, d+ i] where all addition is performed
in Zn. By convention, define ∞+ 1 = ∞.

Example 11. There exists a (K∗

5 , D)-design for D ∈ {D74,D75,D85,D87,D89,
D101,D102,D105}.
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Let V (K∗

5 ) = Z4 ∪ {∞}.
A (K∗

5 ,D74)-design is given by {D74[0,∞, 2, 1] + i : i ∈ Z4}.
A (K∗

5 ,D75)-design is given by {D75[0,∞, 3, 1] + i : i ∈ Z4}.
A (K∗

5 ,D85)-design is given by {D85[0,∞, 2, 1] + i : i ∈ Z4}.
A (K∗

5 ,D87)-design is given by

{D87[0,∞, 1, 2],D87[0, 3, 2,∞],D87[3,∞, 2, 1],D87[3, 0, 1,∞]}.

A (K∗

5 ,D101)-design is given by {D101[0,∞, 3, 1] + i : i ∈ Z4}.
A (K∗

5 ,D102)-design is given by

{D102[0,∞, 1, 2],D102[1, 3, 0,∞],D102[2,∞, 3, 0],D102[3, 1, 2,∞]}.

Applying Observation 2, we obtain the remaining designs.

Example 12. There exists a (K∗

6 , D)-design for D ∈ {D69,D74,D85,D89,D90,
D105}.

Let V (K∗

6 ) = Z6.
A (K∗

6 ,D69)-design is given by {D69[0, 2, 1, 4] + i : i ∈ Z6}.
A (K∗

6 ,D74)-design is given by {D74[0, 5, 1, 3] + i : i ∈ Z6}.
A (K∗

6 ,D85)-design is given by {D85[0, 3, 5, 4] + i : i ∈ Z6}.
Applying Observation 2, we obtain the remaining designs.

Example 13. There exists a (K∗

10, D)-design for D∈{D74,D85,D89,D105}.

Let V (K∗

10) = Z9 ∪ {∞}.
A (K∗

10,D74)-design is given by

{D74[0,∞, 4, 6] + i : i ∈ Z9} ∪ {D74[0, 8, 1, 4] + i : i ∈ Z9}.

A (K∗

10,D85)-design is given by

{D85[0,∞, 4, 7] + i : i ∈ Z9} ∪ {D85[0, 6, 1, 2] + i : i ∈ Z9}.

Applying Observation 2, we obtain the remaining designs.

Example 14. There exists a (K∗

11, D)-design for D ∈ {D69,D74,D85,D89,D90,
D105}.

Let V (K∗

11) = Z11.
A (K∗

11,D69)-design is given by

{D69[0, 2, 7, 5] + i : i ∈ Z11} ∪ {D69[0, 1, 4, 3] + i : i ∈ Z11}.

A (K∗

11,D74)-design is given by

{D74[0, 7, 1, 3] + i : i ∈ Z11} ∪ {D74[0, 4, 10, 8] + i : i ∈ Z11}.

A (K∗

11,D85)-design is given by

{D85[0, 6, 10, 7] + i : i ∈ Z11} ∪ {D85[0, 9, 8, 2] + i : i ∈ Z11}.

Applying Observation 2, we obtain the remaining designs.



Decomposing into Orientations of K4 − e 821

Example 15. There exists a (K∗

20, D)-design for D∈{D74,D85,D89,D105}.

Let V (K∗

20) = Z19 ∪ {∞}.
A (K∗

20,D74)-design is given by

{D74[0,∞, 13, 2] + i : i ∈ Z19} ∪ {D74[0, 12, 1, 10] + i : i ∈ Z19}

∪ {D74[0, 14, 16, 12] + i : i ∈ Z19} ∪ {D74[0, 15, 18, 13] + i : i ∈ Z19}.

A (K∗

20,D85)-design is given by

{D85[0,∞, 2, 16] + i : i ∈ Z19} ∪ {D85[0, 12, 1, 6] + i : i ∈ Z19}

∪ {D85[0, 13, 17, 7] + i : i ∈ Z19} ∪ {D85[0, 3, 18, 10] + i : i ∈ Z19}.

Applying Observation 2, we obtain the remaining designs.

Example 16. There exists a (K∗

21, D)-design for D ∈ {D69,D74,D85,D89,D90,
D105}.

Let V (K∗

21) = Z21.
A (K∗

21,D69)-design is given by

{D69[0, 4, 1, 12] + i : i ∈ Z21} ∪ {D69[0, 7, 2, 16] + i : i ∈ Z21}

∪ {D69[0, 6, 19, 13] + i : i ∈ Z21} ∪ {D69[0, 17, 20, 9] + i : i ∈ Z21}.

A (K∗

21,D74)-design is given by

{D74[0, 13, 4, 14] + i : i ∈ Z21} ∪ {D74[0, 2, 5, 20] + i : i ∈ Z21}

∪ {D74[0, 18, 16, 1] + i : i ∈ Z21} ∪ {D74[0, 8, 17, 7] + i : i ∈ Z21}.

A (K∗

21,D85)-design is given by

{D85[0, 18, 1, 15] + i : i ∈ Z21} ∪ {D85[0, 17, 2, 7] + i : i ∈ Z21}

∪ {D85[0, 16, 19, 11] + i : i ∈ Z21} ∪ {D85[0, 12, 20, 9] + i : i ∈ Z21}.

Applying Observation 2, we obtain the remaining designs.

Example 17. There exists a (K∗

25, D)-design for D ∈ {D69,D90}.

Let V (K∗

25) = Z5 × Z5. A (K∗

25,D69)-design is given by

{D69[(1, i), (0, 1 + i), (1, 2 + i), (0, i)] : i ∈ Z5}

∪ {D69[(2, i), (0, 1 + i), (2, 2 + i), (0, i)] : i ∈ Z5}

∪ {D69[(3, i), (0, 1 + i), (3, 2 + i), (0, i)] : i ∈ Z5}

∪ {D69[(0, 1 + i), (1, i), (4, i), (0, i)] : i ∈ Z5}

∪ {D69[(0, 2 + i), (1, i), (4, 3 + i), (0, i)] : i ∈ Z5}

∪ {D69[(1, 3 + i), (1, i), (0, 3 + i), (0, i)] : i ∈ Z5}

∪ {D69[(2, 1 + i), (1, 1 + i), (2, 4 + i), (1, i)] : i ∈ Z5}

∪ {D69[(3, i), (1, 1 + i), (3, 3 + i), (1, i)] : i ∈ Z5}
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∪ {D69[(0, 4 + i), (2, 1 + i), (2, 2 + i), (1, i)] : i ∈ Z5}

∪ {D69[(1, 1 + i), (2, i), (4, 2 + i), (1, i)] : i ∈ Z5}

∪ {D69[(0, 2 + i), (2, 2 + i), (0, 1 + i), (2, i)] : i ∈ Z5}

∪ {D69[(1, i), (2, 1 + i), (3, 1 + i), (2, i)] : i ∈ Z5}

∪ {D69[(3, 3 + i), (2, 1 + i), (4, i), (2, i)] : i ∈ Z5}

∪ {D69[(3, 4 + i), (4, i), (1, 2 + i), (2, i)] : i ∈ Z5}

∪ {D69[(0, 3 + i), (4, i), (3, 1 + i), (3, i)] : i ∈ Z5}

∪ {D69[(0, 4 + i), (4, 2 + i), (4, 1 + i), (3, i)] : i ∈ Z5}

∪ {D69[(1, 1 + i), (4, i), (1, i), (3, i)] : i ∈ Z5}

∪ {D69[(1, 4 + i), (4, 1 + i), (4, 3 + i), (3, i)] : i ∈ Z5}

∪ {D69[(2, 4 + i), (4, 3 + i), (1, 2 + i), (3, i)] : i ∈ Z5}

∪ {D69[(2, 1 + i), (4, 1 + i), (2, i), (3, i)] : i ∈ Z5}

∪ {D69[(2, 3 + i), (4, 1 + i), (4, 4 + i), (3, i)] : i ∈ Z5}

∪ {D69[(2, 2 + i), (4, 4 + i), (4, i), (3, i)] : i ∈ Z5}

∪ {D69[(3, 4 + i), (4, 4 + i), (0, i), (3, i)] : i ∈ Z5}

∪ {D69[(3, 3 + i), (4, 1 + i), (0, i), (4, i)] : i ∈ Z5}.

Applying Observation 2, we obtain a (K∗

25,D90)-design.

Example 18. There exists a (K∗

30, D)-design for D ∈ {D69,D90}.

Let V (K∗

30) = Z5 × Z6.
A (K∗

30,D69)-design is given by

{D69[(1, i), (0, 1 + i), (1, 2 + i), (0, i)] : i ∈ Z6}

∪ {D69[(1, 4 + i), (0, 1 + i), (2, i), (0, i)] : i ∈ Z6}

∪ {D69[(2, 2 + i), (0, 1 + i), (2, 4 + i), (0, i)] : i ∈ Z6}

∪ {D69[(3, i), (0, 1 + i), (3, 2 + i), (0, i)] : i ∈ Z6}

∪ {D69[(3, 4 + i), (0, 1 + i), (4, i), (0, i)] : i ∈ Z6}

∪ {D69[(0, 1 + i), (1, i), (4, 2 + i), (0, i)] : i ∈ Z6}

∪ {D69[(0, i), (1, 1 + i), (0, 3 + i), (1, i)] : i ∈ Z6}

∪ {D69[(0, 4 + i), (2, i), (4, 1 + i), (1, i)] : i ∈ Z6}

∪ {D69[(1, 1 + i), (2, i), (2, 1 + i), (1, i)] : i ∈ Z6}

∪ {D69[(1, 4 + i), (2, i), (2, 3 + i), (1, i)] : i ∈ Z6}

∪ {D69[(1, 3 + i), (2, i), (3, i), (1, i)] : i ∈ Z6}

∪ {D69[(1, 5 + i), (2, i), (3, 4 + i), (1, i)] : i ∈ Z6}
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∪ {D69[(2, 4 + i), (2, i), (3, 1 + i), (1, i)] : i ∈ Z6}

∪ {D69[(3, 2 + i), (2, i), (4, i), (1, i)] : i ∈ Z6}

∪ {D69[(4, 3 + i), (2, i), (4, 4 + i), (1, i)] : i ∈ Z6}

∪ {D69[(0, i), (2, 1 + i), (0, 2 + i), (2, i)] : i ∈ Z6}

∪ {D69[(3, 5 + i), (3, i), (2, 5 + i), (2, i)] : i ∈ Z6}

∪ {D69[(0, i), (3, 1 + i), (0, 4 + i), (3, i)] : i ∈ Z6}

∪ {D69[(0, 2 + i), (4, 1 + i), (4, i), (3, i)] : i ∈ Z6}

∪ {D69[(1, 4 + i), (4, i), (4, 3 + i), (3, i)] : i ∈ Z6}

∪ {D69[(2, 4 + i), (4, 1 + i), (0, 1 + i), (3, i)] : i ∈ Z6}

∪ {D69[(2, 1 + i), (4, 3 + i), (1, 3 + i), (3, i)] : i ∈ Z6}

∪ {D69[(2, 2 + i), (4, 3 + i), (4, 1 + i), (3, i)] : i ∈ Z6}

∪ {D69[(2, 3 + i), (4, 3 + i), (4, 5 + i), (3, i)] : i ∈ Z6}

∪ {D69[(3, 1 + i), (4, 2 + i), (1, 1 + i), (3, i)] : i ∈ Z6}

∪ {D69[(3, 3 + i), (4, 5 + i), (1, 2 + i), (3, i)] : i ∈ Z6}

∪ {D69[(0, 5 + i), (4, 2 + i), (0, 4 + i), (4, i)] : i ∈ Z6}

∪ {D69[(2, 2 + i), (4, 1 + i), (1, 2 + i), (4, i)] : i ∈ Z6}

∪ {D69[(3, 3 + i), (4, 1 + i), (3, 1 + i), (4, i)] : i ∈ Z6}.

Applying Observation 2, we obtain a (K∗

30,D90)-design.

Example 19. There exists a (K∗

3×5, D)-design for D ∈ {D69,D74,D85,D89,
D90,D105}.

Let V (K∗

3×5) = Z15 with vertex partition {Vi : i ∈ Z3}, where Vi = {j ∈ Z15 :
j ≡ i (mod 3)}.
A (K∗

3×5,D69)-design is given by

{D69[0, 8, 10, 11] + i : i ∈ Z15} ∪ {D69[0, 4, 5, 7] + i : i ∈ Z15}.

A (K∗

3×5,D74)-design is given by

{D74[0, 2, 10, 11] + i : i ∈ Z15} ∪ {D74[0, 13, 5, 4] + i : i ∈ Z15}.

A (K∗

3×5,D85)-design is given by

{D85[0, 7, 5, 1] + i : i ∈ Z15} ∪ {D85[0, 8, 10, 14] + i : i ∈ Z15}.

Applying Observation 2, we obtain the remaining designs.

Example 20. There exists a (K∗

5×5, D)-design for D ∈ {D69,D74,D85,D89,
D90,D105}.
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First, let V (K∗

5×5) = Z25 with vertex partition {Vi : i ∈ Z5}, where Vi = {j ∈
Z25 : j ≡ i (mod 5)}.
A (K∗

5×5,D69)-design is given by

{D69[1, 14, 0, 24] + i : i ∈ Z25} ∪ {D69[2, 8, 0, 18] + i : i ∈ Z25}

∪ {D69[3, 12, 0, 22] + i : i ∈ Z25} ∪ {D69[4, 11, 0, 21] + i : i ∈ Z25}.

A (K∗

5×5,D90)-design follows from Observation 2.
Next, let D ∈ {D74,D89,D105,D85}. A (K5×5,K5)-design can be obtained by
removing one parallel class from an affine plane of order 5. Thus, there exists
a (K∗

5×5,K
∗

5 )-design. Since a (K∗

5 , D)-design exists by Example 11, the desired
(K∗

5×5, D)-design exists.

4. Main Results

We first show some nonexistence results for (D69,K∗

n)- and (D90,K∗

n)-designs.
Interestingly for n ≡ 0 (mod 5), these designs do not exist for n ∈ {5, 10, 15, 20}
(see Theorem 21) but do exist for n ∈ {25, 30} (see Examples 17 and 18). By Wil-
son’s Theorem [14], there exists an integer n0 such that for all n ≥ n0 that satisfy
the necessary conditions there exists both a (D69,K∗

n)-design and a (D90,K∗

n)-
design. We conjecture that n0 = 25 for this pair of digraphs.

Theorem 21. There does not exist a D69- or D90-decomposition of K∗

5k for

1 ≤ k ≤ 4.

Proof. We prove by contradiction that a D69-decomposition ofK∗

5k cannot exist.
Note that by Observation 2, a D90-decomposition must also not exist.

Let ∆ be a D69-decomposition of K∗

5k. Given a vertex v ∈ V (K∗

5k), let
nw(v) denote the number of D69-blocks in ∆ where vertex w in D69[w, x, y, z]
is identified with vertex v. Define nx(v), ny(v), and nz(v) similarly. Thus, the
following must hold:

1nw(v) + 2nx(v) + 0ny(v) + 2nz(v) = 5k − 1,

2nw(v) + 0nx(v) + 3ny(v) + 0nz(v) = 5k − 1.

Substituting n̄(v) = nx(v) + nz(v), the above equations can be parameterized as

nw(v) = 5k − 1− 2n̄(v),(1)

ny(v) = −1
3(5k − 1− 4n̄(v)).(2)

Since n̄(v), nw(v), and ny(v) must all be nonnegative integers, we have that

0 ≤ 5k − 1− 2n̄(v)

0 ≤ −1
3(5k − 1− 4n̄(v))

}

=⇒ 1
4(5k − 1) ≤ n̄(v) ≤ 1

2(5k − 1).
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Furthermore, equation (2) implies that 5k − 1 − 4n̄(v) must be a multiple of 3;
hence, k + n̄(v) + 1 ≡ 0 (mod 3).

Next, consider the case when k = 1. The above conditions require that for
every v ∈ V (K∗

5 ), we have 1 ≤ n̄(v) ≤ 2 and n̄(v) ≡ 1 (mod 3). Thus, n̄(v) can
only equal 1, and by equation (1), nw(v) = 2 for every v ∈ V (K∗

5 ). However, this
would imply |∆| = 10, which is a contradiction (because |∆| = 4 when k = 1).
Similarly if k is 2, 3, or 4, then n̄(v) can only equal 3, 5, or 7, respectively,
which further yields only one value for nw(v): 3, 4, or 5, respectively, for every
v ∈ V (K∗

5k). However, this would imply |∆| is a multiple of 5k, which is a
contradiction because

|∆| =
|E(K∗

5k)|

|E(D69)|
=

5k(5k − 1)

5
= k(5k − 1),

which is not divisible by 5k.

Next we turn our attention to developing the general constructions needed
to piece together the small designs presented in Section 3 and show sufficiency of
the necessary conditions for the remaining four non-self-complementary digraphs.

Theorem 22. Let D ∈ {D74,D85,D89,D105}. If n ≡ 0 (mod 5) with n ≥ 5,
then a (K∗

n, D)-design exists.

Proof. Let D ∈ {D74,D85,D89,D105} and let n ≡ 0 or 5 (mod 10).

Case 1. n ≡ 0 (mod 10). Let n = 10x = 5(2x) for some positive integer x.
When x is 1 or 2 the result follows from Examples 13 and 15, respectively, so we
now consider when x ≥ 3. Let H1, H2, . . . , Hx be disjoint sets of 2 vertices each.

Subcase 1a. x ≡ 0 or 1 (mod 3). Let Kx×2 have vertex partition {Hi : 1 ≤
i ≤ x}. By Theorem 8, a (Kx×2,K3)-design exists. Therefore, by Lemma 10 a
(Kx×10,K3×5)-design exists. Let H ′

i be the set obtained from Hi after blowing
up each vertex in Kx×2 by 5. Now consider K∗

n to have vertex set
⋃x

i=1H
′

i

where each H ′

i induces a K∗

10. Thus, K∗

n decomposes into copies of K∗

10 and
K∗

3×5. Since both a (K∗

10, D)-design and a (K∗

3×5, D)-design exist by Examples
13 and 19, respectively, we have our desired (K∗

n, D)-design.

Subcase 1b. x ≡ 2 (mod 3). Let H0 = Hx−1 ∪ Hx and let K(x−2)×2,4 have
vertex partition {Hi : 0 ≤ i ≤ x − 2}. By Theorem 9, a (K(x−2)×2,4,K3)-design
exists. Therefore, by Lemma 10 a (K(x−2)×10,20,K3×5)-design exists. Let H ′

i be
the set obtained from Hi after blowing up each vertex in K(x−2)×2,4 by 5. Now

consider K∗

n to have vertex set
⋃x−2

i=0 H ′

i where H
′

0 induces a K∗

20 and, for 1 ≤ i ≤
x− 2, each H ′

i induces a K∗

10. Thus, K
∗

n decomposes into copies of K∗

10, K
∗

20, and
K∗

3×5. Since a (K∗

10, D)-design, a (K∗

20, D)-design, and a (K∗

3×5, D)-design exist
by Examples 13, 15, and 19, respectively, we have our desired (K∗

n, D)-design.
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Case 2. n ≡ 5 (mod 10). Let n = 10x + 5 = 5(2x + 1) for some positive
integer x. Let H1, H2, . . . , H2x+1 be sets consisting of a single vertex each. By
Theorem 7 a {K3,K5}-decomposition of K2x+1 exists. Therefore, by Lemma 10
a {K3×5,K5×5}-decomposition of K(2x+1)×5 exists. Let H ′

i be the set obtained
from Hi after blowing up each vertex in K2x+1 by 5. Now consider K∗

n to have
vertex set

⋃2x+1
i=1 H ′

i where each H ′

i induces a K∗

5 . Thus, K∗

n decomposes into
copies of K∗

5 , K
∗

3×5, and K∗

5×5. Since a (K∗

5 , D)-design, a (K∗

3×5, D)-design, and
a (K∗

5×5, D)-design all exist by Examples 11, 19, and 20, respectively, we have
our desired (K∗

n, D)-design.

Theorem 23. Let D∈{D69,D74,D85,D89,D90,D105}. If n ≡ 1 (mod 5) with

n ≥ 6, then a (K∗

n, D)-design exists.

Proof. Let D ∈ {D69,D74,D85,D89,D90,D105} and let n ≡ 1 or 6 (mod 10).

Case 1. n ≡ 1 (mod 10). Let n = 10x+1 = 5(2x)+1 for some positive integer
x. When x is 1 or 2 the result follows from Examples 14 and 16, respectively, so
we now consider when x ≥ 3.

Subcase 1a. x ≡ 0 or 1 (mod 3). Here we can consider V (K∗

n) =
(

⋃x
i=1H

′

i

)

∪

{∞}, where each H ′

i is defined as in Subcase 1a of the proof of Theorem 22 with
the modification that each H ′

i ∪ {∞} induces a K∗

11. Similarly to the proof of
that Subcase 1a, the desired (K∗

n, D)-design can be constructed using (K∗

11, D)-
designs—in place of (K∗

10, D)-designs—along with (K∗

3×5, D)-designs, which exist
by Examples 14 and 19, respectively.

Subcase 1b. x ≡ 2 (mod 3). Here we can consider V (K∗

n) =
(

⋃x−2
i=0 H ′

i

)

∪

{∞}, where each H ′

i is defined as in Subcase 1b of the proof of Theorem 22
with the modifications that H ′

0 ∪ {∞} induces a K∗

21 and, for 1 ≤ i ≤ x − 2,
each H ′

i ∪ {∞} induces a K∗

11. Similarly to the proof of that Subcase 1b, the
desired (K∗

n, D)-design can be constructed using (K∗

11, D)-designs and a (K∗

21, D)-
design—in place of (K∗

10, D)- and (K∗

20, D)-designs—along with (K∗

3×5, D)-designs,
which exist by Examples 14, 16, and 19, respectively.

Case 2. n ≡ 6 (mod 10). Here we can consider V (K∗

n) =
(

⋃2x+1
i=1 H ′

i

)

∪{∞},

where each H ′

i is defined as in Case 2 of the proof of Theorem 22 with the
modification that H ′

i ∪ {∞} induces a K∗

6 . Similarly to the proof of that Case 2,
the desired (K∗

n, D)-design can be constructed by using (K∗

6 , D)-designs—in place
of (K∗

5 , D)-designs—along with (K∗

3×5, D)-designs and (K∗

5×5, D)-designs, which
exist by Examples 12, 19, and 20.

Our results from this section along with those in Theorem 6 are summarized
in the following two main theorems.
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Theorem 24. Let D ∈ {D74,D75,D85,D87,D89,D101,D102,D105}. There ex-

ists a (K∗

n, D)-design if and only if n ≡ 0 or 1 (mod 5) and n ≥ 5.

Theorem 25. Let D ∈ {D69,D90}. There exists a (K∗

n, D)-design if n ≡ 1
(mod 5) and n ≥ 6.

Finally, we formally state our conjecture regarding the open results for the
{D69,D90} pair of digraphs.

Conjecture 26. Let D ∈ {D69,D90}. There exists a (K∗

n, D)-design if n ≡ 0
(mod 5) and n ≥ 25.
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