ON THE TOTAL ROMAN DOMINATION IN TREES

Jafar Amjadi ${ }^{1}$, Seyed Mahmoud Sheikholeslami
AND
Marzieh Soroudi
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: \{j-amjadi;s.m.sheikholeslami;m.soroudi\}@azaruniv.ac.ir

Abstract

A total Roman dominating function on a graph G is a function f : $V(G) \rightarrow\{0,1,2\}$ satisfying the following conditions: (i) every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$ and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function f is the value $f(V(G))=\Sigma_{u \in V(G)} f(u)$. The total Roman domination number $\gamma_{t R}(G)$ is the minimum weight of a total Roman dominating function of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501-517] recently showed that for any graph G without isolated vertices, $2 \gamma(G) \leq \gamma_{t R}(G) \leq 3 \gamma(G)$, where $\gamma(G)$ is the domination number of G, and they raised the problem of characterizing the graphs G achieving these upper and lower bounds. In this paper, we provide a constructive characterization of these trees.

Keywords: total Roman dominating function, total Roman domination number, trees.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, G is a simple graph without isolated vertices, with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$.

[^0]For every vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in$ $V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=\operatorname{deg}_{G}(v)=|N(v)|$. A leaf of T is a vertex of degree 1, a support vertex of T is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves and an end support vertex is a support vertex having at most one non-leaf neighbor. A pendant path P of a graph G is an induced path such that one of the end points has degree one in G, and its other end point is the only vertex of P adjacent to some vertex in $G-P$. The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u v$-path in G. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a (rooted) tree T, let $C(v)$ and $D(v)$ denote the set of children and descendants of v, respectively and let $D[v]=D(v) \cup\{v\}$. Also, the depth of v, $\operatorname{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. We write P_{n} for the path of order n. A double star is a tree with exactly two vertices that are not leaves. If $A \subseteq V(G)$ and f is a mapping from $V(G)$ into some set of numbers, then $f(A)=\sum_{x \in A} f(x)$. The sum $f(V(G))$ is called the weight $\omega(f)$ of f.

A vertex set S of a graph G is a dominating set if each vertex of G either belongs to S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality over all dominating sets of G. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$-set. The domination problem consists of finding the domination number of a graph. The domination problem has many applications and has attracted considerable attention [11, 15]. The literature on the subject of domination parameters in graphs has been surveyed and detailed in the two books $[12,13]$.

A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) on G if every vertex $u \in V$ for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_{R}(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [10] and was inspired by the work of ReVelle and Rosing [17], Stewart [18]. It is worth mentioning that since 2004, a hundred papers have been published on this topic, where several new variations were introduced: weak Roman domination [14], Roman \{2\}domination [9], maximal Roman domination [2], mixed Roman domination [4], double Roman domination [8] and recently total Roman domination introduced by Liu and Chang [16].

A total Roman dominating function of a graph G with no isolated vertex, abbreviated TRDF, is a Roman dominating function f on G with the additional property that the subgraph of G induced by the set of all vertices of positive weight under f has no isolated vertex. The total Roman domination number
$\gamma_{t R}(G)$ is the minimum weight of a TRDF on G. A TRDF of G with weight $\gamma_{t R}(G)$ is called a $\gamma_{t R}(G)$-function. The concept of the total Roman domination was introduced by Liu and Chang [16] and has been studied in [1,3,5-7].

Ahangar et al. [3] showed that for any graph G,

$$
\begin{equation*}
2 \gamma(G) \leq \gamma_{t R}(G) \leq 3 \gamma(G) \tag{1}
\end{equation*}
$$

and they posed the following problems.
Problem 1. Characterize the graphs G satisfying $\gamma_{t R}(G)=2 \gamma(G)$.
Problem 2. Characterize the graphs G satisfying $\gamma_{t R}(G)=3 \gamma(G)$.
In this paper, we provide a constructive characterization of the trees T with $\gamma_{t R}(T)=2 \gamma(T)$ and $\gamma_{t R}(T)=3 \gamma(T)$ which settles the above problems for trees.

2. Preliminaries

In this section, we provide some results and definitions used throughout the paper. The proof of Observations 1 and 2 can be found in [6].

Observation 1 [6]. If v is a strong support vertex in a graph G, then there exists $a \gamma_{t R}(G)$-function f such that $f(v)=2$.

Observation 2 [6]. If u_{1}, u_{2} are two adjacent support vertices in a graph G, then there exists a $\gamma_{t R}(G)$-function f such that $f\left(u_{1}\right)=f\left(u_{2}\right)=2$.

Observation 3. If T is a double star, then $\gamma_{t R}(T)=2 \gamma(T)$.
Observation 4. Let H be a subgraph of a graph G such that G and H have no isolated vertex. If $\gamma_{t R}(H)=3 \gamma(H), \gamma(G) \leq \gamma(H)+s$ and $\gamma_{t R}(G) \geq \gamma_{t R}(H)+3 s$ for some non-negative integer s, then $\gamma_{t R}(G)=3 \gamma(G)$.
Proof. It follows from the assumptions and (1) that

$$
\gamma_{t R}(G) \geq \gamma_{t R}(H)+3 s=3 \gamma(H)+3 s \geq 3 \gamma(G) \geq \gamma_{t R}(G)
$$

and this yields $\gamma_{t R}(G)=3 \gamma(G)$.
Observation 5. Let H be a subgraph of a graph G such that G and H have no isolated vertex. If $\gamma_{t R}(G)=3 \gamma(G), \gamma_{t R}(G) \leq \gamma_{t R}(H)+3 s$ and $\gamma(G) \geq \gamma(H)+s$ for some non-negative integer s, then $\gamma_{t R}(H)=3 \gamma(H)$.

Proof. By (1) and the assumptions, we have

$$
3 \gamma(G)=\gamma_{t R}(G) \leq \gamma_{t R}(H)+3 s \leq 3 \gamma(H)+3 s \leq 3 \gamma(G)
$$

and this leads to the result.

Similarly, we have the following results.
Observation 6. Let H be a subgraph of a graph G such that G and H have no isolated vertex. If $\gamma_{t R}(H)=2 \gamma(H), \gamma(G) \geq \gamma(H)+s$ and $\gamma_{t R}(G) \leq \gamma_{t R}(H)+2 s$ for some non-negative integer s, then $\gamma_{t R}(G)=2 \gamma(G)$.

Observation 7. Let H be a subgraph of a graph G such that G and H have no isolated vertex. If $\gamma_{t R}(G)=2 \gamma(G), \gamma_{t R}(G) \geq \gamma_{t R}(H)+2 s$ and $\gamma(G) \leq \gamma(H)+s$ for some non-negative integer s, then $\gamma_{t R}(H)=2 \gamma(H)$.

We close this section with some definitions.
Definition 8. Let v be a vertex of the graph G. A function $f: V(G) \rightarrow\{0,1,2\}$ is said to be a nearly total Roman dominating function (nearly TRDF) with respect to v, if the following three conditions are fulfilled:
(i) every vertex $x \in V(G)-\{v\}$ for which $f(x)=0$ is adjacent to at least one vertex $y \in V(G)$ for which $f(y)=2$,
(ii) every vertex $x \in V(G)-\{v\}$ for which $f(x) \geq 1$ is adjacent to at least one vertex $y \in V(G)$ for which $f(y) \geq 1$ and
(iii) $f(v) \geq 1$ or $f(v)+f(u) \geq 2$ for some $u \in N(v)$. Let

$$
\gamma_{t R}(G ; v)=\min \{\omega(f) \mid f \text { is a nearly TRDF with respect to } v\} .
$$

Observe that any total Roman dominating function on G is a nearly TRDF with respect to any vertex of G. Hence $\gamma_{t R}(G ; v)$ is well defined and $\gamma_{t R}(G ; v) \leq$ $\gamma_{t R}(G)$ for each $v \in V(G)$. Define $W_{G}^{1}=\left\{v \in V(G) \mid \gamma_{t R}(G ; v)=\gamma_{t R}(G)\right\}$.
Definition 9. For a graph G and $v \in V(G)$, we say v has property P in G if there exists a $\gamma_{t R}(G)$-function f such that $f(v)=2$. Assume that $W_{G}^{2}=\{v \mid v$ has property P in $G\}, W_{G}^{3}=\{v \mid v$ does not have property P in $G\}$.

We note that if a vertex $v \in V(G)$ satisfies the condition of Observations 1 or 2 , then $v \in W_{G}^{2}$.
Definition 10. For a graph G and $v \in V(G)$, let $\gamma(G, v)=\min \{|S|: S \subseteq V(G)$ and each vertex $w \neq v$ is dominated by $S\}$.
Clearly $\gamma(G, v) \leq \gamma(G)$ for each $v \in V(G)$. We define $W_{G}^{4}=\{v \mid \gamma(G, v)=\gamma(G)\}$.
For a path $P_{4}=v_{1} v_{2} v_{3} v_{4}$, we have $W_{P_{4}}^{1}=W_{P_{4}}^{2}=W_{P_{4}}^{4}=\left\{v_{2}, v_{3}\right\}, W_{P_{4}}^{3}=$ $\left\{v_{1}, v_{4}\right\}$.
Definition 11. For a tree T, let $W_{T}^{5}=\{v \mid$ there exists a function $f: V(T) \rightarrow$ $\{0,1,2\}$ such that
(i) $\omega(f)=\gamma_{t R}(T)-1$,
(ii) $f(v)=1$,
(iii) every vertex $x \in V(T)-\{v\}$ for which $f(x)=0$ is adjacent to at least one vertex $y \in V(T)$ for which $f(y)=2$, and
(iiii) every vertex $x \in V(T)-\{v\}$ for which $f(x) \geq 1$ is adjacent to at least one vertex $y \in V(T)$ for which $f(y) \geq 1\}$.

Figure 1. The graph H.
Let H be the graph illustrated in Figure 1. For any $\gamma_{t R}(H)$-function f, we have $f(u)=f(v)=2, f(x)=2$ or $f(x)=f\left(v_{1}\right)=1, f(y)=2$ or $f(y)=f\left(v_{2}\right)=$ $1, f(w)=2$ or $f(w)=f\left(u_{1}\right)=1$, and $f(z)=0$ otherwise. It follows that $W_{H}^{2}=$ $\{u, v, x, y, w\}$ and $W_{H}^{3}=\left\{u_{i}, v_{i} \mid i=1,2,3,4\right\}$. Now define $g: V(H) \rightarrow\{0,1,2\}$ by $g(u)=g(v)=g(x)=g(y)=2, g(w)=1$, and $g(z)=0$ otherwise. Clearly, g is a nearly total Roman dominating function of H with respect to u_{1} of weight $\gamma_{t R}(H)-1$ yielding $u_{1} \notin W_{H}^{1}$. Similarly, $v_{1}, v_{2} \notin W_{H}^{1}$. It is easy to see that $W_{H}^{1}=V(G)-\left\{u_{1}, v_{1}, v_{2}\right\}$.

To determine W_{H}^{4}, first we note that $\gamma(H)=5$. Obviously, $\{u, v, x, y\}$ dominates all vertices in $V(H)-\left\{u_{1}\right\}$ and so $\gamma\left(H, u_{1}\right) \leq 4$ yielding $u_{1} \notin W_{H}^{4}$. Similarly, $v_{1}, v_{2} \notin W_{H}^{4}$. It is not hard to see that $W_{H}^{4}=V(G)-\left\{u_{1}, v_{1}, v_{2}\right\}$.

Now, we determine W_{H}^{5}. The function $h: V(H) \rightarrow\{0,1,2\}$ defined by $h\left(u_{1}\right)=1, h(u)=h(v)=h(x)=h(y)=2$ and $h(x)=0$ otherwise, is a function of weight $\gamma_{t R}(H)-1$ satisfying the conditions of Definition 11 and hence $u_{1} \in W_{H}^{5}$. Similarly, we have $v_{1}, v_{2} \in W_{H}^{5}$. It is easy to verify that $W_{H}^{5}=\left\{u_{1}, v_{1}, v_{2}\right\}$.

3. A Characterization of Trees T with $\gamma_{t R}(T)=3 \gamma(T)$

In this section we provide a constructive characterization of all trees T with $\gamma_{t R}(T)=3 \gamma(T)$. In order to do this, let \mathcal{T} be the family of unlabeled trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{m}(m \geq 1)$ of trees such that T_{1} is a path P_{3}, and, if $m \geq 2, T_{i+1}$ can be obtained recursively from T_{i} by one of the three operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ for $1 \leq i \leq m-1$.

Operation \mathcal{O}_{1}. If $x \in V\left(T_{i}\right)$ and x is a strong support vertex, then Operation \mathcal{O}_{1} adds a new vertex y and an edge $x y$ to obtain T_{i+1}.

Operation \mathcal{O}_{2}. If $x \in W_{T_{i}}^{1}$, then Operation \mathcal{O}_{2} adds a star $K_{1,3}$ and joins x to a leaf of it to obtain T_{i+1}.
Operation \mathcal{O}_{3}. If $x \in W_{T_{i}}^{1} \cap W_{T_{i}}^{3}$, then Operation \mathcal{O}_{3} adds a path P_{3} and joins x to a leaf of P_{3} to obtain T_{i+1}.

Figure 2. The operations $\mathcal{O}_{1}, \mathcal{O}_{2}$ and \mathcal{O}_{3}.

Lemma 12. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=3 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{1}, then $\gamma_{t R}\left(T_{i+1}\right)=3 \gamma\left(T_{i+1}\right)$.

Proof. Clearly $\gamma\left(T_{i+1}\right)=\gamma\left(T_{i}\right)$ and $\gamma_{t R}\left(T_{i+1}\right)=\gamma_{t R}\left(T_{i}\right)$ and so $\gamma_{t R}\left(T_{i+1}\right)=$ $3 \gamma\left(T_{i+1}\right)$.

Lemma 13. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=3 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{2}, then $\gamma_{t R}\left(T_{i+1}\right)=3 \gamma\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{2} add a star $K_{1,3}$ with vertex set $\left\{y, y_{1}, y_{2}, y_{3}\right\}$ centered in y and join x to y_{1}. Obviously adding y to any $\gamma\left(T_{i}\right)$-set yields a dominating set of T_{i+1} and so $\gamma\left(T_{i+1}\right) \leq \gamma\left(T_{i}\right)+1$. Let now f be a $\gamma_{t R}\left(T_{i+1}\right)$-function such that $f(y)$ is as large as possible. By Observation 1 we have $f(y)=2$. Since f is a TRDF of G, we may assume that $f\left(y_{1}\right) \geq 1$. If $f(x) \geq 1$, then the function f, restricted to T_{i} is a nearly TRDF of T_{i} of weight at most $\gamma_{t R}\left(T_{i+1}\right)-3$ and we deduce from $x \in W_{T_{i}}^{1}$ that $\gamma_{t R}\left(T_{i+1}\right)-3 \geq \omega\left(\left.f\right|_{T_{i}}\right) \geq \gamma_{t R}\left(T_{i}\right)$. If $f(x)=0$ and $f\left(y_{1}\right)=1$, then the function f, restricted to T_{i} is a TRDF of T_{i} of weight $\gamma_{t R}\left(T_{i+1}\right)-3$ and so $\gamma_{t R}\left(T_{i+1}\right)-3 \geq \omega\left(\left.f\right|_{T_{i}}\right) \geq \gamma_{t R}\left(T_{i}\right)$. If $f(x)=0$ and $f\left(y_{1}\right)=2$, then the function $g: V\left(T_{i}\right) \rightarrow\{0,1,2\}$ defined by $g(x)=1$ and $g(u)=f(u)$ for each $u \in V\left(T_{i}\right)-\{x\}$ is a nearly TRDF of T_{i} of weight $\gamma_{t R}\left(T_{i+1}\right)-3$ and since $x \in W_{T_{i}}^{1}$ we have $\gamma_{t R}\left(T_{i+1}\right)-3 \geq \omega\left(\left.f\right|_{T_{i}}\right) \geq \gamma_{t R}\left(T_{i}\right)$. Hence, in all cases $\gamma_{t R}\left(T_{i+1}\right) \geq \gamma_{t R}\left(T_{i}\right)+3$ and we conclude from Observation 4 that $\gamma_{t R}\left(T_{i+1}\right)=3 \gamma\left(T_{i+1}\right)$.

Lemma 14. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=3 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{3}, then $\gamma_{t R}\left(T_{i+1}\right)=3 \gamma\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{3} add a path $y z w$ and the edge $x y$. Obviously any $\gamma\left(T_{i}\right)$-set can be extended to a dominating set of T_{i+1} by adding z and so $\gamma\left(T_{i+1}\right) \leq \gamma\left(T_{i}\right)+1$. Now assume f is a $\gamma_{t R}\left(T_{i+1}\right)$-function such that $f(y)$ is as large as possible. Clearly $f(z)+f(w) \geq 2$. If $f(y)+f(z)+f(w) \geq 3$, then we may assume that $f(z)=2$ and $f(y) \geq 1$ and by using an argument similar to that described in the proof of Lemma 13 we obtain $\gamma_{t R}\left(T_{i+1}\right)=3 \gamma\left(T_{i+1}\right)$. Now let $f(y)+f(z)+f(w)=2$. Then we must have $f(z)=f(w)=1$ and $f(y)=0$. Then the function f, restricted to T_{i} is a TRDF of T_{i} of weight $\gamma_{t R}\left(T_{i+1}\right)-2$ with $f(x)=2$. Since $x \in W_{T_{i}}^{3}$, we obtain $\gamma_{t R}\left(T_{i+1}\right)-2=\omega\left(\left.f\right|_{T_{i}}\right) \geq \gamma_{t R}\left(T_{i}\right)+1$ and so $\gamma_{t R}\left(T_{i+1}\right) \geq \gamma_{t R}\left(T_{i}\right)+3$. Now the result follows by Observation 4.

Theorem 15. If $T \in \mathcal{T}$, then $\gamma_{t R}(T)=3 \gamma(T)$.
Proof. Let $T \in \mathcal{T}$. Then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that T_{1} is P_{3}, and if $k \geq 2$, then T_{i+1} can be obtained recursively from T_{i} by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ for $i=1,2, \ldots, k-1$.

We proceed by induction on the number of operations applied to construct T. If $k=1$, then $T=P_{3} \in \mathcal{T}$. Suppose that the result is true for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By the induction hypothesis, we have $\gamma_{t R}\left(T^{\prime}\right)=3 \gamma\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ from T^{\prime}, we conclude from Lemmas 12, 13 and 14 that $\gamma_{t R}(T)=3 \gamma(T)$.

Now we are ready to prove the main result of this section.
Theorem 16. Let T be a tree of order $n \geq 3$. Then $\gamma_{t R}(T)=3 \gamma(T)$ if and only if $T \in \mathcal{T}$.

Proof. By Theorem 15, we only need to prove the necessity. Let T be a tree with $\gamma_{t R}(T)=3 \gamma(T)$. The proof is by induction on n. If $n=3$, then the only tree T of order 3 with $\gamma_{t R}(T)=3 \gamma(T)$ is $P_{3} \in \mathcal{T}$. Let $n \geq 4$ and let the statement hold for all trees T of order less than n and $\gamma_{t R}(T)=3 \gamma(T)$. Assume that T is a tree of order n with $\gamma_{t R}(T)=3 \gamma(T)$ and let f be a $\gamma_{t R}(T)$-function. By Observation 3 we have $\operatorname{diam}(T) \neq 3$. If $\operatorname{diam}(T)=2$, then T is a star and T can be obtained from P_{3} iterative application of Operation \mathcal{O}_{1} and so $T \in \mathcal{T}$. Hence we assume $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \cdots v_{k}(k \geq 5)$ be a diametrical path in T and root T at v_{k}. If $\operatorname{deg}\left(v_{2}\right) \geq 4$, then clearly $\gamma_{t R}(T)=\gamma_{t R}\left(T-v_{1}\right)$ and $\gamma(T)=\gamma\left(T-v_{1}\right)$ and hence $\gamma_{t R}\left(T-v_{1}\right)=3 \gamma\left(T-v_{1}\right)$. By the induction hypothesis we have $T-v_{1} \in \mathcal{T}$. Now, T can be obtained from $T-v_{1}$ by Operation \mathcal{O}_{1} and so $T \in \mathcal{T}$. Suppose that $\operatorname{deg}\left(v_{2}\right) \leq 3$. We consider two cases.

Case 1. $\operatorname{deg}\left(v_{2}\right)=3$. We claim that $\operatorname{deg}\left(v_{3}\right)=2$. Suppose, to the contrary, that $\operatorname{deg}\left(v_{3}\right) \geq 3$. Then each child of v_{3} is a leaf or a support vertex. If v_{3}
has a children other than v_{2} which is a leaf or a strong support vertex, then let $T^{\prime}=T-T_{v_{2}}$. It is not hard to see that $\gamma(T)=\gamma\left(T^{\prime}\right)+1$ and $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+2$. Then $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+2 \leq 3 \gamma\left(T^{\prime}\right)+2=3 \gamma(T)-1$ which is a contradiction. Assume that each child of v_{3} except v_{2}, is a support vertex of degree 2 . Let $v_{3} z_{2} z_{1}$ be a pendant path in T. Suppose $T^{\prime}=T-\left\{z_{1}, z_{2}\right\}$. As above we can see that $\gamma_{t R}(T) \leq 3 \gamma(T)-1$, a contradiction again. Thus $\operatorname{deg}\left(v_{3}\right)=2$.

Assume $T^{\prime}=T-T_{v_{3}}$. Let S be a $\gamma(T)$-set containing support vertices, and define $S^{\prime}=S-\left\{v_{2}\right\}$ if $v_{3} \notin S$ and $S^{\prime}=\left(S-\left\{v_{2}, v_{3}\right\}\right) \cup\left\{v_{4}\right\}$ when $v_{3} \in S$. Clearly, S^{\prime} is a dominating set of T^{\prime} and so $\gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=\gamma(T)-1$. On the other hand, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning 1 to $v_{3}, 2$ to v_{2} and 0 to the leaves adjacent to v_{2}. This yields $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+3$. It follows from Observation 5 that $\gamma_{t R}\left(T^{\prime}\right)=3 \gamma\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. If $v_{4} \notin W_{T^{\prime}}^{1}$, then let g be a nearly TRDF of T^{\prime} with respect to v_{4} of weight at most $\gamma_{t R}\left(T^{\prime}\right)-1$ and define $h: V(T) \rightarrow\{0,1,2\}$ by $h(u)=g(u)$ for $u \in V\left(T^{\prime}\right), h\left(v_{3}\right)=1, h\left(v_{2}\right)=2$ and $h(u)=0$ otherwise. Clearly h is a TRDF of T of weight $\gamma_{t R}\left(T^{\prime}\right)+2$ which leads to a contradiction. Hence $v_{4} \in W_{T^{\prime}}^{1}$ and T can be obtained from T^{\prime} by Operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$ in this case.

Case 2. $\operatorname{deg}\left(v_{2}\right)=2$. Considering Case 1 , we may assume that each child of v_{3} is a support vertex of degree 2. If $\operatorname{deg}\left(v_{3}\right) \geq 3$, then let $T^{\prime}=T-T_{v_{3}}$. Any $\gamma\left(T^{\prime}\right)$-set can be extended to a dominating set of T by adding $C\left(v_{3}\right)$ and so $\gamma(T) \leq \gamma\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|$. On the other hand, let S be a $\gamma(T)$-set containing no leaves. To dominate the leaves of $T_{v_{3}}$, we must have $C\left(v_{3}\right) \subseteq S$. Then the set $S^{\prime}=S \backslash C\left(v_{3}\right)$ if $v_{3} \notin S$ and $S^{\prime}=\left(S-\left(C\left(v_{3}\right) \cup\left\{v_{3}\right\}\right)\right) \cup\left\{v_{4}\right\}$ if $v_{3} \in S$, is a dominating set set of T^{\prime} and this implies that $\gamma\left(T^{\prime}\right) \leq \gamma(T)-\left|C\left(v_{3}\right)\right|$. Hence $\gamma(T)=\gamma\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|$.

Also, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning 1 to $v_{3}, 2$ to the children of v_{3} and 0 to all leaves of $T_{v_{3}}$, and so

$$
\begin{aligned}
\gamma_{t R}(T) & \leq \gamma_{t R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+1 \\
& \leq 3 \gamma\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+1 \\
& =3\left(\gamma\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|\right)-\left|C\left(v_{3}\right)\right|+1 \\
& =3 \gamma(T)-\left|C\left(v_{3}\right)\right|+1 \\
& \left.<3 \gamma(T) \quad \quad \text { since }\left|C\left(v_{3}\right)\right| \geq 2\right),
\end{aligned}
$$

a contradiction. Henceforth, we assume $\operatorname{deg}\left(v_{3}\right)=2$. Suppose $T^{\prime}=T-T_{v_{3}}$. Clearly, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Analogously as in Case 1, we can see that $\gamma_{t R}\left(T^{\prime}\right)=$ $3 \gamma\left(T^{\prime}\right)$ and $v_{4} \in W_{T^{\prime}}^{1}$. Thus $T^{\prime} \in \mathcal{T}$ by the induction hypothesis. If $v_{4} \notin W_{T^{\prime}}^{3}$, then let g be a $\gamma_{t R}\left(T^{\prime}\right)$-function with $g\left(v_{4}\right)=2$ and define $h: V(T) \rightarrow\{0,1,2\}$ by $h(u)=g(u)$ for $u \in V\left(T^{\prime}\right)$ and $h\left(v_{3}\right)=0, h\left(v_{2}\right)=h\left(v_{1}\right)=1$. Clearly h is an TRDF of T of weight $\gamma_{t R}\left(T^{\prime}\right)+2$ which leads to a contradiction. Hence $v_{4} \in W_{T^{\prime}}^{3}$
and T can be obtained from T^{\prime} by Operation \mathcal{O}_{3}. It follows that $T \in \mathcal{T}$ and the proof is complete.

4. A Characterization of Trees T with $\gamma_{t R}(T)=2 \gamma(T)$

In this section we present a constructive characterization of all trees T with $\gamma_{t R}(T)=2 \gamma(T)$.

Let \mathcal{F} be the family of unlabeled trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{m}(m \geq 1)$ of trees such that T_{1} is a path P_{2} or P_{4}, and, if $m \geq 2$, T_{i+1} can be obtained recursively from T_{i} by one of the following four operations for $1 \leq i \leq m-1$.

Operation \mathcal{T}_{1}. If $x \in W_{T_{i}}^{2}$ is a support vertex, then the Operation \mathcal{T}_{1} adds a new vertex y and an edge $x y$ to obtain T_{i+1}.

Operation $\mathcal{T}_{\mathbf{2}}$. If $x \in V\left(T_{i}\right)$ is at distance 2 from a leaf w, then the Operation \mathcal{T}_{2} adds a path $y z$ and joins x to y to obtain T_{i+1}.

Operation \mathcal{T}_{3}. If $x \in W_{T_{i}}^{4}$, then the Operation \mathcal{T}_{3} adds a path $z_{4} z_{3} z_{2} z_{1}$ and joins x to z_{3} to obtain T_{i+1}.
Operation \mathcal{T}_{4}. If $x \in W_{T_{i}}^{2} \cup W_{T_{i}}^{5}$, then the Operation \mathcal{T}_{4} adds a path $P_{3}=z y w$ and joins x to z to obtain T_{i+1}.

Figure 3. The operations $\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}$ and \mathcal{T}_{4}.

Lemma 17. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{1}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma\left(T_{i+1}\right)$.

Proof. It is easy to see that $\gamma\left(T_{i+1}\right)=\gamma\left(T_{i}\right)$ and $\gamma_{t R}\left(T_{i+1}\right)=\gamma_{t R}\left(T_{i}\right)$ and so $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma\left(T_{i+1}\right)$.

Lemma 18. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{2}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma\left(T_{i+1}\right)$.
Proof. Let w^{\prime} be the support vertex of w. If S is a $\gamma\left(T_{i+1}\right)$-set, then clearly $y, w^{\prime} \in S$ and $S-\{y\}$ is a dominating set of T_{i} yielding $\gamma\left(T_{i+1}\right) \geq \gamma\left(T_{i}\right)+1$. Also, if f is a $\gamma_{t R}\left(T_{i}\right)$-function such that $f(x) \geq 1$, then f can be extended to a TRDF of T_{i+1} by assigning the weight 1 to y, z. Hence $\gamma_{t R}\left(T_{i+1}\right) \leq \gamma_{t R}\left(T_{i}\right)+2$. Now the result follows by Observation 6.

Lemma 19. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{3}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma\left(T_{i+1}\right)$.
Proof. If S is a $\gamma\left(T_{i+1}\right)$-set containing no leaves, then $z_{3}, z_{2} \in S$ and we deduce from $x \in W_{T_{i}}^{4}$ that $\left|S-\left\{z_{3}, z_{2}\right\}\right| \geq \gamma\left(T_{i}\right)$ yielding $\gamma\left(T_{i+1}\right) \geq \gamma\left(T_{i}\right)+2$. On the other hand, any $\gamma_{t R}\left(T_{i}\right)$-function can be extended to a TRDF of T by assigning the weight 2 to z_{3}, z_{2} and the weight 0 to z_{1}, z_{4} and so $\gamma_{t R}\left(T_{i+1}\right) \leq \gamma_{t R}\left(T_{i}\right)+4$. It follows from Observation 6 that $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma\left(T_{i+1}\right)$.

Lemma 20. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{T}_{4}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma\left(T_{i+1}\right)$.

Proof. Let \mathcal{T}_{4} add a path $z y w$ and joins x to z. If S is a $\gamma\left(T_{i+1}\right)$-set, then $y \in S$ and the set $S^{\prime}=S-\{y\}$ if $z \notin S$ and $S^{\prime}=(S-\{y, z\}) \cup\{x\}$ if $z \in S$, is a dominating set of T_{i} yielding $\gamma\left(T_{i+1}\right) \geq \gamma\left(T_{i}\right)+1$. Now we show that $\gamma_{t R}\left(T_{i+1}\right) \leq$ $\gamma_{t R}\left(T_{i}\right)+2$. If $x \in W_{T_{i}}^{2}$, then let f be a $\gamma_{t R}\left(T_{i}\right)$-function with $f(x)=2$. Clearly f can be extended to an TRDF of T_{i+1} by assigning the weight 1 to w, y and the weight 0 to z and so $\gamma_{t R}\left(T_{i+1}\right) \leq \gamma_{t R}\left(T_{i}\right)+2$. If $x \in W_{T_{i}}^{5}$, then let f be a function satisfying the conditions of Definition 11. Clearly f can be extended to a TRDF of T_{i+1} by assigning the weight 1 to z, y, w and so $\gamma_{t R}\left(T_{i+1}\right) \leq \gamma_{t R}\left(T_{i}\right)+2$. Now the result follows by Observation 6 .

Theorem 21. If $T \in \mathcal{F}$, then $\gamma_{t R}(T)=2 \gamma(T)$.
Proof. Let $T \in \mathcal{F}$. Then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that T_{1} is P_{2} or P_{4}, and if $k \geq 2$, then T_{i+1} can be obtained recursively from T_{i} by one of the Operations $\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}$ for $i=1,2, \ldots, k-1$.

We proceed by induction on the number of operations used to construct T. If $k=1$, then $T=P_{2}$ or P_{4} and the result is trivial. Suppose the statement holds for each tree $T \in \mathcal{F}$ which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By the induction hypothesis, we have $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained by one of the Operations $\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}$ we conclude from previous lemmas that $\gamma_{t R}(T)=2 \gamma(T)$.

Now we prove the main result of this section.
Theorem 22. Let T be a tree of order $n \geq 2$. Then $\gamma_{t R}(T)=2 \gamma(T)$ if and only if $T \in \mathcal{F}$.

Proof. According to Theorem 21, we only need to prove the necessity. Let T be a tree with $\gamma_{t R}(T)=2 \gamma(T)$. Since $\gamma_{t R}\left(K_{1, s}\right)=3=3 \gamma\left(K_{1, s}\right)$ for $s \geq 2, T$ is not a star of order $n(T) \geq 3$. We proceed by induction on n. If $n \in\{2,4\}$, then the only trees T of order 2 or 4 with $\gamma_{t R}(T)=2 \gamma(T)$ are $P_{2}, P_{4} \in \mathcal{F}$. Assume $n \geq 5$ and let the statement hold for all trees T of order less than n and $\gamma_{t R}(T)=2 \gamma(T)$. Assume that T is a tree of order n with $\gamma_{t R}(T)=2 \gamma(T)$ and let f be a $\gamma_{t R}(T)$ function. Since T is not a star, we have $\operatorname{diam}(T) \geq 3$. If $\operatorname{diam}(T)=3$, then T is a double star and T can be obtained from P_{4} by iterative application of Operation \mathcal{T}_{1} because the support vertices of P_{4} belong to $W_{P_{4}}^{2}$ and so $T \in \mathcal{F}$. Hence we assume $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \cdots v_{k}(k \geq 5)$ be a diametrical path in T such that $\operatorname{deg}\left(v_{2}\right)$ is as large as possible and root T at v_{k}. First let $\operatorname{deg}\left(v_{2}\right) \geq 3$. Clearly $\gamma_{t R}(T) \geq \gamma_{t R}\left(T-v_{1}\right)$ and $\gamma(T)=\gamma\left(T-v_{1}\right)$. If $\gamma_{t R}(T) \geq \gamma_{t R}\left(T-v_{1}\right)+1$, then we have

$$
2 \gamma(T)=\gamma_{t R}(T) \geq \gamma_{t R}\left(T-v_{1}\right)+1 \geq 2 \gamma\left(T-v_{1}\right)+1=2 \gamma(T)+1
$$

which is a contradiction. Thus $\gamma_{t R}(T)=\gamma_{t R}\left(T-v_{1}\right)$. By Observation 1, there exists a $\gamma_{t R}(T)$-function f such that $f\left(v_{2}\right)=2$. Then clearly f is a $\gamma_{t R}\left(T-v_{1}\right)$ function yielding $v_{2} \in W_{T-v_{1}}^{2}$. Now, T can be obtained from $T-v_{1}$ by Operation \mathcal{T}_{1} and so $T \in \mathcal{F}$. Suppose that $\operatorname{deg}\left(v_{2}\right)=2$.

Consider the following cases.
Case 1. $\operatorname{deg}\left(v_{3}\right)=2$. Let $T^{\prime}=T-T_{v_{3}}$. Clearly

$$
\begin{equation*}
\gamma\left(T^{\prime}\right)=\gamma(T)-1 \tag{2}
\end{equation*}
$$

Now let f be a $\gamma_{t R}(T)$-function. Clearly $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 2$. If $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 3$, then clearly $f\left(v_{3}\right)=0$ and the function f, restricted to T^{\prime} is a TRDF of T^{\prime} yielding $\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+3$. But then

$$
2 \gamma(T)=\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+3 \geq 2 \gamma\left(T^{\prime}\right)+3=2(\gamma(T)-1)+3=2 \gamma(T)+1
$$

a contradiction. Thus $f\left(v_{1}\right)+f\left(v_{2}\right)=2$. If $f\left(v_{3}\right)=1$ and $f\left(v_{4}\right)=0$, then we get a contradiction as above. If $f\left(v_{3}\right)=1$ and $f\left(v_{4}\right) \geq 1$, then the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+1\right\}$ and $g(u)=f(u)$ otherwise, is a TRDF of T^{\prime} of weight $\gamma_{t R}(T)-2$. Assume that $f\left(v_{3}\right) \neq 1$. If $f\left(v_{3}\right)=2$, then $f\left(v_{4}\right)=0$ and the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{4}\right)=1, g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+1\right\}$ and $g(u)=f(u)$ otherwise, is a TRDF of T^{\prime} of weight $\gamma_{t R}(T)-2$. We conclude from

$$
2 \gamma(T)=\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+2 \geq 2 \gamma\left(T^{\prime}\right)+2 \geq 2(\gamma(T)-1)+2=2 \gamma(T)
$$

that

$$
\begin{equation*}
\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)+2 \tag{3}
\end{equation*}
$$

By (2) and (3), we obtain $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{F}$. Now we show that $v_{4} \in W_{T^{\prime}}^{2} \cup W_{T^{\prime}}^{5}$. Let f be a $\gamma_{t R}(T)$ function. As above we can see that $f\left(v_{1}\right)+f\left(v_{2}\right)=2$. If $f\left(v_{3}\right)=0$, then the function f restricted to T^{\prime} is a $\gamma_{t R}\left(T^{\prime}\right)$-function with $f\left(v_{4}\right)=2$ implying that $v_{4} \in W_{T^{\prime}}^{2}$. If $f\left(v_{3}\right)=2$ and v_{4} has a neighbor with positive weight under f, then the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{4}\right)=1$ and $g(x)=f(x)$ otherwise, is a TRDF of T^{\prime} of weight $\gamma_{t R}(T)-3$ contradicting (3). If $f\left(v_{3}\right)=2$ and v_{4} has no neighbor other than v_{3} with positive weight under f, then the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{4}\right)=1$ and $g(x)=f(x)$ otherwise, is a function of weight $\gamma_{t R}(T)-3=\gamma_{t R}\left(T^{\prime}\right)-1$ satisfying the conditions of Definition 11 and so $v_{4} \in W_{T^{\prime}}^{5}$. Suppose that $f\left(v_{3}\right)=1$. We can see as above that $f\left(v_{4}\right) \geq 1$. If $f\left(v_{4}\right)=2$, then the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+1\right\}$ and $g(x)=f(x)$ otherwise, is a $\gamma_{t R}\left(T^{\prime}\right)$-function with $g\left(v_{4}\right)=2$ implying that $v_{4} \in W_{T^{\prime}}^{2}$. If $f\left(v_{4}\right)=1$ and v_{4} has a neighbor different from v_{3} with positive weight under f, then the function f restricted to T^{\prime} is a TRDF of T^{\prime} of weight $\gamma_{t R}(T)-3$ which contradicts (3). Finally if $f\left(v_{4}\right)=1$ and v_{4} has no neighbor other than v_{3} with positive weight, then the function f restricted to T^{\prime} fulfilled the conditions of Definition 11 and so $v_{4} \in W_{T^{\prime}}^{5}$. Thus $v_{4} \in W_{T^{\prime}}^{2} \cup W_{T^{\prime}}^{5}$ and T can be obtained from T^{\prime} by operation \mathcal{T}_{4} and so $T \in \mathcal{F}$.

Case 2. $\operatorname{deg}\left(v_{3}\right) \geq 3$. By the choice of diametrical path, we may assume that all the children of v_{3} with depth one have degree 2 . We consider three subcases.

Subcase 2.1. v_{3} is a support vertex and is at distance 2 from some leaves different from v_{1}. Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. Then clearly $\gamma(T)=\gamma\left(T^{\prime}\right)+1$ and $\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+2$. Hence $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ by Observation 7 . By the induction hypothesis we have $T^{\prime} \in \mathcal{F}$ and hence T can be obtained from T^{\prime} by Operation \mathcal{T}_{2} and so $T \in \mathcal{F}$.

Subcase 2.2. All children of v_{3} have degree 2. Let $v_{3} z_{2} z_{1}$ be a pendant path and let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. Clearly $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. Now let f be a $\gamma_{t R}(T)-$ function. Then $f\left(v_{2}\right) \geq 1, f\left(v_{1}\right)+f\left(v_{2}\right) \geq 2$ and $f\left(z_{1}\right)+f\left(z_{2}\right) \geq 2$. If $f\left(v_{3}\right) \geq 1$ or $f\left(v_{3}\right)=0$ and $f\left(v_{2}\right)=1$, then the function f restricted to T^{\prime} is a TRDF of T^{\prime} of weight $\omega(f)-2$ and so $\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+2$. Assume that $f\left(v_{3}\right)=0$ and $f\left(v_{2}\right)=2$. Since f is a TRDF of T, we have $f\left(v_{1}\right)=1$. Then the function $g: V(T) \rightarrow\{0,1,2\}$ defined by $g\left(v_{3}\right)=g\left(v_{2}\right)=g\left(v_{1}\right)=1$ and $g(x)=f(x)$ otherwise, is a $\gamma_{t R}(T)$-function and as above we obtain $\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+2$. Hence $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ by Observation 7. By the induction hypothesis we have $T^{\prime} \in \mathcal{F}$ and so T can be obtained from T^{\prime} by Operation \mathcal{T}_{2}. Thus $T \in \mathcal{F}$.

Subcase 2.3. All children of v_{3} except v_{2} are leaves. Let w be a leaf adjacent to v_{3}. First let v_{3} be a strong support vertex. It is easy to see that $\gamma(T)=\gamma(T-w)$
and $\gamma_{t R}(T)=\gamma_{t R}(T-w)$ yielding $\gamma_{t R}(T-w)=2 \gamma(T-w)$. By the induction hypothesis we have $T-w \in \mathcal{F}$ and by Observation 2 we obtain $v_{3} \in W_{T-w}^{2}$. Thus T can be obtained from $T-w$ by Operation \mathcal{T}_{1} and so $T \in \mathcal{F}$. Suppose next that v_{3} is not a strong support vertex. Then by the assumption we have $\operatorname{deg}\left(v_{3}\right)=3$. Consider the following.
(a) v_{4} is a support vertex. Let $T^{\prime}=T-T_{v_{2}}$. It is easy to see that $\gamma_{t R}(T)=$ $\gamma_{t R}\left(T^{\prime}\right)+2$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. It follows that $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{F}$. Then T can be obtained from T^{\prime} by Operation \mathcal{T}_{2} and so $T \in \mathcal{F}$.
(b) v_{4} has a child z_{2} with depth 1 . As above we may assume that $\operatorname{deg}\left(z_{2}\right)=2$. Let z_{1} be the leaf adjacent to z_{2} and let $T^{\prime}=T-\left\{z_{1}, z_{2}\right\}$. Clearly $\gamma(T)=$ $\gamma\left(T^{\prime}\right)+1$. By Observation 2, there exists a $\gamma_{t R}(T)$-function f such that $f\left(v_{2}\right)=$ $f\left(v_{3}\right)=2$. Also we have $f\left(z_{1}\right)+f\left(z_{2}\right) \geq 2$. Obviously the function f restricted to T^{\prime} is a TRDF of T^{\prime} and so $\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+2$. We conclude from $2 \gamma(T)=$ $\gamma_{t R}(T) \geq \gamma_{t R}\left(T^{\prime}\right)+2 \geq 2 \gamma\left(T^{\prime}\right)+2=2 \gamma(T)$ that $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now T can be obtained from T^{\prime} by Operation \mathcal{T}_{2} and so $T \in \mathcal{F}$.
(c) v_{4} has a child z_{3} with depth 2 . Let $v_{4} z_{3} z_{2} z_{1}$ be a path in T. Using the above argument we may assume that $\operatorname{deg}\left(z_{2}\right)=2$ and either $\operatorname{deg}\left(z_{3}\right)=2$ or $\operatorname{deg}\left(z_{3}\right)=3$ and z_{3} is a support vertex. If $\operatorname{deg}\left(z_{3}\right)=2$, then as in Case 1 we can see that $T \in \mathcal{F}$.

Let $\operatorname{deg}\left(z_{3}\right)=3$ and z_{3} is a support vertex. Let $T^{\prime}=T-T_{z_{3}}$. It is not hard to see that $\gamma(T)=\gamma\left(T^{\prime}\right)+2$ and $\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)+4$. This implies that $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{F}$. Since v_{4} is adjacent to a support vertex, we deduce that $v_{4} \in W_{T^{\prime}}^{4}$. Now T can be obtained from T^{\prime} by Operation \mathcal{T}_{3} and so $T \in \mathcal{F}$.

This completes the proof.

References

[1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Bounds on the total Roman domination numbers, Ars Combin., to appear.
[2] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. 103 (2017) 245-258.
[3] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501-517. doi:10.2298/AADM160802017A
[4] H. Abdollahzadeh Ahangar, T.W. Haynes and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017) 1443-1454. doi:10.1007/s40840-015-0141-1
[5] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Global total Roman domination in graphs, Discrete Math. Algorithms Appl. 09 (2017) ID: 1750050. doi:10.1142/S1793830917500501
[6] J. Amjadi, S. Nazari-Moghaddam, S.M. Sheikholeslami and L. Volkmann, Total Roman domination number of trees, Australas. J. Combin. 69 (2017) 271-285.
[7] J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim. 35 (2018) 126-133. doi:10.1007/s10878-017-0158-5
[8] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23-29.
doi:10.1016/j.dam.2016.03.017
[9] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman \{2\}-domination, Discrete Appl. Math. 204 (2016) 22-28. doi:10.1016/j.dam.2015.11.013
[10] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004
[11] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness (W.H. Freeman and Co., San Francisco, Calif., 1979).
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker Inc., New York, 1998).
[14] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire - A new strategy, Discrete Math. 266 (2003) 239-251. doi:10.1016/S0012-365X(02)00811-7
[15] L.L. Kelleher and M.B. Cozzens, Dominating sets in social network graphs, Math. Social Sci. 16 (1988) 267-279. doi:10.1016/0165-4896(88)90041-8
[16] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608-619. doi:10.1007/s10878-012-9482-y
[17] C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594.
doi:10.1080/00029890.2000.12005243
[18] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136-138.
doi:10.1038/scientificamerican1299-136

[^0]: ${ }^{1}$ Corresponding author.

