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Abstract

A total Roman dominating function on a graph G is a function f :
V (G) → {0, 1, 2} satisfying the following conditions: (i) every vertex u for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and
(ii) the subgraph of G induced by the set of all vertices of positive weight
has no isolated vertex. The weight of a total Roman dominating function
f is the value f(V (G)) = Σu∈V (G)f(u). The total Roman domination num-

ber γtR(G) is the minimum weight of a total Roman dominating function
of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and
I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math.
10 (2016) 501–517] recently showed that for any graph G without isolated
vertices, 2γ(G) ≤ γtR(G) ≤ 3γ(G), where γ(G) is the domination number
of G, and they raised the problem of characterizing the graphs G achieving
these upper and lower bounds. In this paper, we provide a constructive
characterization of these trees.

Keywords: total Roman dominating function, total Roman domination
number, trees.
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1. Introduction

In this paper, G is a simple graph without isolated vertices, with vertex set
V = V (G) and edge set E = E(G). The order |V | of G is denoted by n = n(G).
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For every vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈
V (G) |uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v)∪{v}.
The degree of a vertex v ∈ V is deg(v) = degG(v) = |N(v)|. A leaf of T is a vertex
of degree 1, a support vertex of T is a vertex adjacent to a leaf, a strong support

vertex is a support vertex adjacent to at least two leaves and an end support

vertex is a support vertex having at most one non-leaf neighbor. A pendant path

P of a graph G is an induced path such that one of the end points has degree
one in G, and its other end point is the only vertex of P adjacent to some vertex
in G − P . The distance dG(u, v) between two vertices u and v in a connected
graph G is the length of a shortest uv-path in G. The diameter of a graph G,
denoted by diam(G), is the greatest distance between two vertices of G. For a
vertex v in a (rooted) tree T , let C(v) and D(v) denote the set of children and
descendants of v, respectively and let D[v] = D(v) ∪ {v}. Also, the depth of v,
depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree

at v is the subtree of T induced by D[v], and is denoted by Tv. We write Pn for
the path of order n. A double star is a tree with exactly two vertices that are not
leaves. If A ⊆ V (G) and f is a mapping from V (G) into some set of numbers,
then f(A) =

∑
x∈A f(x). The sum f(V (G)) is called the weight ω(f) of f .

A vertex set S of a graph G is a dominating set if each vertex of G either
belongs to S or is adjacent to a vertex in S. The domination number γ(G) of G
is the minimum cardinality over all dominating sets of G. A dominating set of
G of cardinality γ(G) is called a γ(G)-set. The domination problem consists of
finding the domination number of a graph. The domination problem has many
applications and has attracted considerable attention [11, 15]. The literature on
the subject of domination parameters in graphs has been surveyed and detailed
in the two books [12, 13].

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on
G if every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of an RDF is the value f(V (G)) =

∑
u∈V (G) f(u).

The Roman domination number γR(G) is the minimum weight of an RDF on G.
Roman domination was introduced by Cockayne et al. in [10] and was inspired
by the work of ReVelle and Rosing [17], Stewart [18]. It is worth mentioning
that since 2004, a hundred papers have been published on this topic, where sev-
eral new variations were introduced: weak Roman domination [14], Roman {2}-
domination [9], maximal Roman domination [2], mixed Roman domination [4],
double Roman domination [8] and recently total Roman domination introduced
by Liu and Chang [16].

A total Roman dominating function of a graph G with no isolated vertex,
abbreviated TRDF, is a Roman dominating function f on G with the additional
property that the subgraph of G induced by the set of all vertices of positive
weight under f has no isolated vertex. The total Roman domination number
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γtR(G) is the minimum weight of a TRDF on G. A TRDF of G with weight
γtR(G) is called a γtR(G)-function. The concept of the total Roman domination
was introduced by Liu and Chang [16] and has been studied in [1, 3, 5–7].

Ahangar et al. [3] showed that for any graph G,

2γ(G) ≤ γtR(G) ≤ 3γ(G),(1)

and they posed the following problems.

Problem 1. Characterize the graphs G satisfying γtR(G) = 2γ(G).

Problem 2. Characterize the graphs G satisfying γtR(G) = 3γ(G).

In this paper, we provide a constructive characterization of the trees T with
γtR(T ) = 2γ(T ) and γtR(T ) = 3γ(T ) which settles the above problems for trees.

2. Preliminaries

In this section, we provide some results and definitions used throughout the paper.
The proof of Observations 1 and 2 can be found in [6].

Observation 1 [6]. If v is a strong support vertex in a graph G, then there exists

a γtR(G)-function f such that f(v) = 2.

Observation 2 [6]. If u1, u2 are two adjacent support vertices in a graph G, then

there exists a γtR(G)-function f such that f(u1) = f(u2) = 2.

Observation 3. If T is a double star, then γtR(T ) = 2γ(T ).

Observation 4. Let H be a subgraph of a graph G such that G and H have no

isolated vertex. If γtR(H) = 3γ(H), γ(G) ≤ γ(H) + s and γtR(G) ≥ γtR(H) + 3s
for some non-negative integer s, then γtR(G) = 3γ(G).

Proof. It follows from the assumptions and (1) that

γtR(G) ≥ γtR(H) + 3s = 3γ(H) + 3s ≥ 3γ(G) ≥ γtR(G),

and this yields γtR(G) = 3γ(G).

Observation 5. Let H be a subgraph of a graph G such that G and H have no

isolated vertex. If γtR(G) = 3γ(G), γtR(G) ≤ γtR(H) + 3s and γ(G) ≥ γ(H) + s

for some non-negative integer s, then γtR(H) = 3γ(H).

Proof. By (1) and the assumptions, we have

3γ(G) = γtR(G) ≤ γtR(H) + 3s ≤ 3γ(H) + 3s ≤ 3γ(G),

and this leads to the result.
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Similarly, we have the following results.

Observation 6. Let H be a subgraph of a graph G such that G and H have no

isolated vertex. If γtR(H) = 2γ(H), γ(G) ≥ γ(H) + s and γtR(G) ≤ γtR(H) + 2s
for some non-negative integer s, then γtR(G) = 2γ(G).

Observation 7. Let H be a subgraph of a graph G such that G and H have no

isolated vertex. If γtR(G) = 2γ(G), γtR(G) ≥ γtR(H) + 2s and γ(G) ≤ γ(H) + s

for some non-negative integer s, then γtR(H) = 2γ(H).

We close this section with some definitions.

Definition 8. Let v be a vertex of the graph G. A function f : V (G) → {0, 1, 2}
is said to be a nearly total Roman dominating function (nearly TRDF) with
respect to v, if the following three conditions are fulfilled:

(i) every vertex x ∈ V (G)− {v} for which f(x) = 0 is adjacent to at least one
vertex y ∈ V (G) for which f(y) = 2,

(ii) every vertex x ∈ V (G)− {v} for which f(x) ≥ 1 is adjacent to at least one
vertex y ∈ V (G) for which f(y) ≥ 1 and

(iii) f(v) ≥ 1 or f(v) + f(u) ≥ 2 for some u ∈ N(v). Let

γtR(G; v) = min{ω(f) | f is a nearly TRDF with respect to v}.

Observe that any total Roman dominating function on G is a nearly TRDF
with respect to any vertex of G. Hence γtR(G; v) is well defined and γtR(G; v) ≤
γtR(G) for each v ∈ V (G). Define W 1

G = {v ∈ V (G) | γtR(G; v) = γtR(G)}.

Definition 9. For a graph G and v ∈ V (G), we say v has property P in G if
there exists a γtR(G)-function f such that f(v) = 2. Assume that W 2

G = {v | v
has property P in G}, W 3

G = {v | v does not have property P in G}.

We note that if a vertex v ∈ V (G) satisfies the condition of Observations 1
or 2, then v ∈ W 2

G.

Definition 10. For a graph G and v ∈ V (G), let

γ(G, v) = min{|S| : S ⊆ V (G) and each vertex w 6= v is dominated by S}.

Clearly γ(G, v) ≤ γ(G) for each v ∈ V (G). We define W 4
G = {v | γ(G, v) = γ(G)}.

For a path P4 = v1v2v3v4, we have W 1
P4

= W 2
P4

= W 4
P4

= {v2, v3}, W
3
P4

=
{v1, v4}.

Definition 11. For a tree T , let W 5
T = {v | there exists a function f : V (T ) →

{0, 1, 2} such that
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(i) ω(f) = γtR(T )− 1,

(ii) f(v) = 1,

(iii) every vertex x ∈ V (T ) − {v} for which f(x) = 0 is adjacent to at least
one vertex y ∈ V (T ) for which f(y) = 2, and

(iiii) every vertex x ∈ V (T ) − {v} for which f(x) ≥ 1 is adjacent to at least
one vertex y ∈ V (T ) for which f(y) ≥ 1}.

u3
u v

v3

u1

u2

u4

w x

y

v1

v2

v4

Figure 1. The graph H.

Let H be the graph illustrated in Figure 1. For any γtR(H)-function f , we
have f(u) = f(v) = 2, f(x) = 2 or f(x) = f(v1) = 1, f(y) = 2 or f(y) = f(v2) =
1, f(w) = 2 or f(w) = f(u1) = 1, and f(z) = 0 otherwise. It follows that W 2

H =
{u, v, x, y, w} and W 3

H = {ui, vi | i = 1, 2, 3, 4}. Now define g : V (H) → {0, 1, 2}
by g(u) = g(v) = g(x) = g(y) = 2, g(w) = 1, and g(z) = 0 otherwise. Clearly, g
is a nearly total Roman dominating function of H with respect to u1 of weight
γtR(H) − 1 yielding u1 6∈ W 1

H . Similarly, v1, v2 6∈ W 1
H . It is easy to see that

W 1
H = V (G)− {u1, v1, v2}.

To determine W 4
H , first we note that γ(H) = 5. Obviously, {u, v, x, y} domi-

nates all vertices in V (H)−{u1} and so γ(H,u1) ≤ 4 yielding u1 6∈ W 4
H . Similarly,

v1, v2 6∈ W 4
H . It is not hard to see that W 4

H = V (G)− {u1, v1, v2}.

Now, we determine W 5
H . The function h : V (H) → {0, 1, 2} defined by

h(u1) = 1, h(u) = h(v) = h(x) = h(y) = 2 and h(x) = 0 otherwise, is a function
of weight γtR(H)−1 satisfying the conditions of Definition 11 and hence u1 ∈ W 5

H .
Similarly, we have v1, v2 ∈ W 5

H . It is easy to verify that W 5
H = {u1, v1, v2}.

3. A Characterization of Trees T with γtR(T ) = 3γ(T )

In this section we provide a constructive characterization of all trees T with
γtR(T ) = 3γ(T ). In order to do this, let T be the family of unlabeled trees T

that can be obtained from a sequence T1, T2, . . . , Tm (m ≥ 1) of trees such that
T1 is a path P3, and, if m ≥ 2, Ti+1 can be obtained recursively from Ti by one
of the three operations O1, O2, O3 for 1 ≤ i ≤ m− 1.



524 J. Amjadi, S.M. Sheikholeslami and M. Soroudi

Operation O1. If x ∈ V (Ti) and x is a strong support vertex, then Operation
O1 adds a new vertex y and an edge xy to obtain Ti+1.

Operation O2. If x ∈ W 1
Ti
, then Operation O2 adds a star K1,3 and joins x to

a leaf of it to obtain Ti+1.

Operation O3. If x ∈ W 1
Ti

∩W 3
Ti
, then Operation O3 adds a path P3 and joins

x to a leaf of P3 to obtain Ti+1.

x y x

Operation O1 Operation O2

x

Operation O3

Figure 2. The operations O1,O2 and O3.

Lemma 12. If Ti is a tree with γtR(Ti) = 3γ(Ti) and Ti+1 is a tree obtained from

Ti by Operation O1, then γtR(Ti+1) = 3γ(Ti+1).

Proof. Clearly γ(Ti+1) = γ(Ti) and γtR(Ti+1) = γtR(Ti) and so γtR(Ti+1) =
3γ(Ti+1).

Lemma 13. If Ti is a tree with γtR(Ti) = 3γ(Ti) and Ti+1 is a tree obtained from

Ti by Operation O2, then γtR(Ti+1) = 3γ(Ti+1).

Proof. Let O2 add a star K1,3 with vertex set {y, y1, y2, y3} centered in y and
join x to y1. Obviously adding y to any γ(Ti)-set yields a dominating set of Ti+1

and so γ(Ti+1) ≤ γ(Ti) + 1. Let now f be a γtR(Ti+1)-function such that f(y) is
as large as possible. By Observation 1 we have f(y) = 2. Since f is a TRDF of
G, we may assume that f(y1) ≥ 1. If f(x) ≥ 1, then the function f , restricted to
Ti is a nearly TRDF of Ti of weight at most γtR(Ti+1) − 3 and we deduce from
x ∈ W 1

Ti
that γtR(Ti+1)− 3 ≥ ω(f |Ti

) ≥ γtR(Ti). If f(x) = 0 and f(y1) = 1, then
the function f , restricted to Ti is a TRDF of Ti of weight γtR(Ti+1) − 3 and so
γtR(Ti+1)− 3 ≥ ω(f |Ti

) ≥ γtR(Ti). If f(x) = 0 and f(y1) = 2, then the function
g : V (Ti) → {0, 1, 2} defined by g(x) = 1 and g(u) = f(u) for each u ∈ V (Ti)−{x}
is a nearly TRDF of Ti of weight γtR(Ti+1) − 3 and since x ∈ W 1

Ti
we have

γtR(Ti+1) − 3 ≥ ω(f |Ti
) ≥ γtR(Ti). Hence, in all cases γtR(Ti+1) ≥ γtR(Ti) + 3

and we conclude from Observation 4 that γtR(Ti+1) = 3γ(Ti+1).

Lemma 14. If Ti is a tree with γtR(Ti) = 3γ(Ti) and Ti+1 is a tree obtained from

Ti by Operation O3, then γtR(Ti+1) = 3γ(Ti+1).
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Proof. Let O3 add a path yzw and the edge xy. Obviously any γ(Ti)-set can be
extended to a dominating set of Ti+1 by adding z and so γ(Ti+1) ≤ γ(Ti)+1. Now
assume f is a γtR(Ti+1)-function such that f(y) is as large as possible. Clearly
f(z) + f(w) ≥ 2. If f(y) + f(z) + f(w) ≥ 3, then we may assume that f(z) = 2
and f(y) ≥ 1 and by using an argument similar to that described in the proof of
Lemma 13 we obtain γtR(Ti+1) = 3γ(Ti+1). Now let f(y)+f(z)+f(w) = 2. Then
we must have f(z) = f(w) = 1 and f(y) = 0. Then the function f , restricted
to Ti is a TRDF of Ti of weight γtR(Ti+1) − 2 with f(x) = 2. Since x ∈ W 3

Ti
,

we obtain γtR(Ti+1)− 2 = ω(f |Ti
) ≥ γtR(Ti) + 1 and so γtR(Ti+1) ≥ γtR(Ti) + 3.

Now the result follows by Observation 4.

Theorem 15. If T ∈ T , then γtR(T ) = 3γ(T ).

Proof. Let T ∈ T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 is P3, and if k ≥ 2, then Ti+1 can be obtained recursively from Ti

by one of the Operations O1,O2,O3 for i = 1, 2, . . . , k − 1.
We proceed by induction on the number of operations applied to construct

T . If k = 1, then T = P3 ∈ T . Suppose that the result is true for each tree
T ∈ T which can be obtained from a sequence of operations of length k − 1 and
let T ′ = Tk−1. By the induction hypothesis, we have γtR(T

′) = 3γ(T ′). Since
T = Tk is obtained by one of the Operations O1,O2,O3 from T ′, we conclude
from Lemmas 12, 13 and 14 that γtR(T ) = 3γ(T ).

Now we are ready to prove the main result of this section.

Theorem 16. Let T be a tree of order n ≥ 3. Then γtR(T ) = 3γ(T ) if and only

if T ∈ T .

Proof. By Theorem 15, we only need to prove the necessity. Let T be a tree with
γtR(T ) = 3γ(T ). The proof is by induction on n. If n = 3, then the only tree T

of order 3 with γtR(T ) = 3γ(T ) is P3 ∈ T . Let n ≥ 4 and let the statement hold
for all trees T of order less than n and γtR(T ) = 3γ(T ). Assume that T is a tree
of order n with γtR(T ) = 3γ(T ) and let f be a γtR(T )-function. By Observation
3 we have diam(T ) 6= 3. If diam(T ) = 2, then T is a star and T can be obtained
from P3 iterative application of Operation O1 and so T ∈ T . Hence we assume
diam(T ) ≥ 4.

Let v1v2 · · · vk (k ≥ 5) be a diametrical path in T and root T at vk. If
deg(v2) ≥ 4, then clearly γtR(T ) = γtR(T − v1) and γ(T ) = γ(T − v1) and hence
γtR(T − v1) = 3γ(T − v1). By the induction hypothesis we have T − v1 ∈ T .
Now, T can be obtained from T − v1 by Operation O1 and so T ∈ T . Suppose
that deg(v2) ≤ 3. We consider two cases.

Case 1. deg(v2) = 3. We claim that deg(v3) = 2. Suppose, to the contrary,
that deg(v3) ≥ 3. Then each child of v3 is a leaf or a support vertex. If v3
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has a children other than v2 which is a leaf or a strong support vertex, then let
T ′ = T−Tv2 . It is not hard to see that γ(T ) = γ(T ′)+1 and γtR(T ) ≤ γtR(T

′)+2.
Then γtR(T ) ≤ γtR(T

′) + 2 ≤ 3γ(T ′) + 2 = 3γ(T ) − 1 which is a contradiction.
Assume that each child of v3 except v2, is a support vertex of degree 2. Let v3z2z1
be a pendant path in T . Suppose T ′ = T − {z1, z2}. As above we can see that
γtR(T ) ≤ 3γ(T )− 1, a contradiction again. Thus deg(v3) = 2.

Assume T ′ = T − Tv3 . Let S be a γ(T )-set containing support vertices, and
define S′ = S−{v2} if v3 6∈ S and S′ = (S−{v2, v3})∪{v4} when v3 ∈ S. Clearly,
S′ is a dominating set of T ′ and so γ(T ′) ≤ |S′| = γ(T )− 1. On the other hand,
any γtR(T

′)-function can be extended to a TRDF of T by assigning 1 to v3, 2 to
v2 and 0 to the leaves adjacent to v2. This yields γtR(T ) ≤ γtR(T

′)+3. It follows
from Observation 5 that γtR(T

′) = 3γ(T ′) and by the induction hypothesis we
have T ′ ∈ T . If v4 6∈ W 1

T ′ , then let g be a nearly TRDF of T ′ with respect to v4
of weight at most γtR(T

′)− 1 and define h : V (T ) → {0, 1, 2} by h(u) = g(u) for
u ∈ V (T ′), h(v3) = 1, h(v2) = 2 and h(u) = 0 otherwise. Clearly h is a TRDF of
T of weight γtR(T

′) + 2 which leads to a contradiction. Hence v4 ∈ W 1
T ′ and T

can be obtained from T ′ by Operation O2. Thus T ∈ T in this case.

Case 2. deg(v2) = 2. Considering Case 1, we may assume that each child
of v3 is a support vertex of degree 2. If deg(v3) ≥ 3, then let T ′ = T − Tv3 .
Any γ(T ′)-set can be extended to a dominating set of T by adding C(v3) and
so γ(T ) ≤ γ(T ′) + |C(v3)|. On the other hand, let S be a γ(T )-set containing
no leaves. To dominate the leaves of Tv3 , we must have C(v3) ⊆ S. Then the
set S′ = S \ C(v3) if v3 6∈ S and S′ = (S − (C(v3) ∪ {v3})) ∪ {v4} if v3 ∈ S, is
a dominating set set of T ′ and this implies that γ(T ′) ≤ γ(T ) − |C(v3)|. Hence
γ(T ) = γ(T ′) + |C(v3)|.

Also, any γtR(T
′)-function can be extended to a TRDF of T by assigning 1

to v3, 2 to the children of v3 and 0 to all leaves of Tv3 , and so

γtR(T ) ≤ γtR(T
′) + 2|C(v3)|+ 1

≤ 3γ(T ′) + 2|C(v3)|+ 1

= 3(γ(T ′) + |C(v3)|)− |C(v3)|+ 1

= 3γ(T )− |C(v3)|+ 1

< 3γ(T ) (since |C(v3)| ≥ 2),

a contradiction. Henceforth, we assume deg(v3) = 2. Suppose T ′ = T − Tv3 .
Clearly, γ(T ) = γ(T ′) + 1. Analogously as in Case 1, we can see that γtR(T

′) =
3γ(T ′) and v4 ∈ W 1

T ′ . Thus T ′ ∈ T by the induction hypothesis. If v4 6∈ W 3
T ′ ,

then let g be a γtR(T
′)-function with g(v4) = 2 and define h : V (T ) → {0, 1, 2}

by h(u) = g(u) for u ∈ V (T ′) and h(v3) = 0, h(v2) = h(v1) = 1. Clearly h is an
TRDF of T of weight γtR(T

′)+2 which leads to a contradiction. Hence v4 ∈ W 3
T ′
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and T can be obtained from T ′ by Operation O3. It follows that T ∈ T and the
proof is complete.

4. A Characterization of Trees T with γtR(T ) = 2γ(T )

In this section we present a constructive characterization of all trees T with
γtR(T ) = 2γ(T ).

Let F be the family of unlabeled trees T that can be obtained from a sequence
T1, T2, . . . , Tm (m ≥ 1) of trees such that T1 is a path P2 or P4, and, if m ≥ 2,
Ti+1 can be obtained recursively from Ti by one of the following four operations
for 1 ≤ i ≤ m− 1.

Operation T1. If x ∈ W 2
Ti

is a support vertex, then the Operation T1 adds a
new vertex y and an edge xy to obtain Ti+1.

Operation T2. If x ∈ V (Ti) is at distance 2 from a leaf w, then the Operation
T2 adds a path yz and joins x to y to obtain Ti+1.

Operation T3. If x ∈ W 4
Ti
, then the Operation T3 adds a path z4z3z2z1 and

joins x to z3 to obtain Ti+1.

Operation T4. If x ∈ W 2
Ti

∪W 5
Ti
, then the Operation T4 adds a path P3 = zyw

and joins x to z to obtain Ti+1.

x y

Operation T1

w x y z

Operation T2

x z3 z2 z1

z4

Operation T3

x z y w

Operation T4

Figure 3. The operations T1, T2, T3 and T4.

Lemma 17. If Ti is a tree with γtR(Ti) = 2γ(Ti) and Ti+1 is a tree obtained

from Ti by Operation T1, then γtR(Ti+1) = 2γ(Ti+1).
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Proof. It is easy to see that γ(Ti+1) = γ(Ti) and γtR(Ti+1) = γtR(Ti) and so
γtR(Ti+1) = 2γ(Ti+1).

Lemma 18. If Ti is a tree with γtR(Ti) = 2γ(Ti) and Ti+1 is a tree obtained

from Ti by Operation T2, then γtR(Ti+1) = 2γ(Ti+1).

Proof. Let w′ be the support vertex of w. If S is a γ(Ti+1)-set, then clearly
y, w′ ∈ S and S − {y} is a dominating set of Ti yielding γ(Ti+1) ≥ γ(Ti) + 1.
Also, if f is a γtR(Ti)-function such that f(x) ≥ 1, then f can be extended to a
TRDF of Ti+1 by assigning the weight 1 to y, z. Hence γtR(Ti+1) ≤ γtR(Ti) + 2.
Now the result follows by Observation 6.

Lemma 19. If Ti is a tree with γtR(Ti) = 2γ(Ti) and Ti+1 is a tree obtained

from Ti by Operation T3, then γtR(Ti+1) = 2γ(Ti+1).

Proof. If S is a γ(Ti+1)-set containing no leaves, then z3, z2 ∈ S and we deduce
from x ∈ W 4

Ti
that |S − {z3, z2}| ≥ γ(Ti) yielding γ(Ti+1) ≥ γ(Ti) + 2. On the

other hand, any γtR(Ti)-function can be extended to a TRDF of T by assigning
the weight 2 to z3, z2 and the weight 0 to z1, z4 and so γtR(Ti+1) ≤ γtR(Ti) + 4.
It follows from Observation 6 that γtR(Ti+1) = 2γ(Ti+1).

Lemma 20. If Ti is a tree with γtR(Ti) = 2γ(Ti) and Ti+1 is a tree obtained

from Ti by Operation T4, then γtR(Ti+1) = 2γ(Ti+1).

Proof. Let T4 add a path zyw and joins x to z. If S is a γ(Ti+1)-set, then y ∈ S

and the set S′ = S − {y} if z 6∈ S and S′ = (S − {y, z}) ∪ {x} if z ∈ S, is a
dominating set of Ti yielding γ(Ti+1) ≥ γ(Ti)+1. Now we show that γtR(Ti+1) ≤
γtR(Ti) + 2. If x ∈ W 2

Ti
, then let f be a γtR(Ti)-function with f(x) = 2. Clearly

f can be extended to an TRDF of Ti+1 by assigning the weight 1 to w, y and the
weight 0 to z and so γtR(Ti+1) ≤ γtR(Ti)+2. If x ∈ W 5

Ti
, then let f be a function

satisfying the conditions of Definition 11. Clearly f can be extended to a TRDF
of Ti+1 by assigning the weight 1 to z, y, w and so γtR(Ti+1) ≤ γtR(Ti) + 2. Now
the result follows by Observation 6.

Theorem 21. If T ∈ F , then γtR(T ) = 2γ(T ).

Proof. Let T ∈ F . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 is P2 or P4, and if k ≥ 2, then Ti+1 can be obtained recursively from
Ti by one of the Operations T1, T2, T3, T4 for i = 1, 2, . . . , k − 1.

We proceed by induction on the number of operations used to construct T .
If k = 1, then T = P2 or P4 and the result is trivial. Suppose the statement holds
for each tree T ∈ F which can be obtained from a sequence of operations of length
k− 1 and let T ′ = Tk−1. By the induction hypothesis, we have γtR(T

′) = 2γ(T ′).
Since T = Tk is obtained by one of the Operations T1, T2, T3, T4 we conclude
from previous lemmas that γtR(T ) = 2γ(T ).
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Now we prove the main result of this section.

Theorem 22. Let T be a tree of order n ≥ 2. Then γtR(T ) = 2γ(T ) if and only

if T ∈ F .

Proof. According to Theorem 21, we only need to prove the necessity. Let T be
a tree with γtR(T ) = 2γ(T ). Since γtR(K1,s) = 3 = 3γ(K1,s) for s ≥ 2, T is not
a star of order n(T ) ≥ 3. We proceed by induction on n. If n ∈ {2, 4}, then the
only trees T of order 2 or 4 with γtR(T ) = 2γ(T ) are P2, P4 ∈ F . Assume n ≥ 5
and let the statement hold for all trees T of order less than n and γtR(T ) = 2γ(T ).
Assume that T is a tree of order n with γtR(T ) = 2γ(T ) and let f be a γtR(T )-
function. Since T is not a star, we have diam(T ) ≥ 3. If diam(T ) = 3, then T is a
double star and T can be obtained from P4 by iterative application of Operation
T1 because the support vertices of P4 belong to W 2

P4
and so T ∈ F . Hence we

assume diam(T ) ≥ 4.
Let v1v2 · · · vk (k ≥ 5) be a diametrical path in T such that deg(v2) is as large

as possible and root T at vk. First let deg(v2) ≥ 3. Clearly γtR(T ) ≥ γtR(T − v1)
and γ(T ) = γ(T − v1). If γtR(T ) ≥ γtR(T − v1) + 1, then we have

2γ(T ) = γtR(T ) ≥ γtR(T − v1) + 1 ≥ 2γ(T − v1) + 1 = 2γ(T ) + 1

which is a contradiction. Thus γtR(T ) = γtR(T − v1). By Observation 1, there
exists a γtR(T )-function f such that f(v2) = 2. Then clearly f is a γtR(T − v1)-
function yielding v2 ∈ W 2

T−v1
. Now, T can be obtained from T −v1 by Operation

T1 and so T ∈ F . Suppose that deg(v2) = 2.

Consider the following cases.

Case 1. deg(v3) = 2. Let T ′ = T − Tv3 . Clearly

γ(T ′) = γ(T )− 1.(2)

Now let f be a γtR(T )-function. Clearly f(v1) + f(v2) ≥ 2. If f(v1) + f(v2) ≥ 3,
then clearly f(v3) = 0 and the function f , restricted to T ′ is a TRDF of T ′

yielding γtR(T ) ≥ γtR(T
′) + 3. But then

2γ(T ) = γtR(T ) ≥ γtR(T
′) + 3 ≥ 2γ(T ′) + 3 = 2(γ(T )− 1) + 3 = 2γ(T ) + 1,

a contradiction. Thus f(v1) + f(v2) = 2. If f(v3) = 1 and f(v4) = 0, then we
get a contradiction as above. If f(v3) = 1 and f(v4) ≥ 1, then the function
g : V (T ′) → {0, 1, 2} defined by g(v5) = min{2, f(v5) + 1} and g(u) = f(u)
otherwise, is a TRDF of T ′ of weight γtR(T ) − 2. Assume that f(v3) 6= 1. If
f(v3) = 2, then f(v4) = 0 and the function g : V (T ′) → {0, 1, 2} defined by
g(v4) = 1, g(v5) = min{2, f(v5) + 1} and g(u) = f(u) otherwise, is a TRDF of T ′

of weight γtR(T )− 2. We conclude from

2γ(T ) = γtR(T ) ≥ γtR(T
′) + 2 ≥ 2γ(T ′) + 2 ≥ 2(γ(T )− 1) + 2 = 2γ(T )
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that
γtR(T ) = γtR(T

′) + 2.(3)

By (2) and (3), we obtain γtR(T
′) = 2γ(T ′) and by the induction hypothesis

we have T ′ ∈ F . Now we show that v4 ∈ W 2
T ′ ∪ W 5

T ′ . Let f be a γtR(T )-
function. As above we can see that f(v1) + f(v2) = 2. If f(v3) = 0, then the
function f restricted to T ′ is a γtR(T

′)-function with f(v4) = 2 implying that
v4 ∈ W 2

T ′ . If f(v3) = 2 and v4 has a neighbor with positive weight under f ,
then the function g : V (T ′) → {0, 1, 2} defined by g(v4) = 1 and g(x) = f(x)
otherwise, is a TRDF of T ′ of weight γtR(T ) − 3 contradicting (3). If f(v3) = 2
and v4 has no neighbor other than v3 with positive weight under f , then the
function g : V (T ′) → {0, 1, 2} defined by g(v4) = 1 and g(x) = f(x) otherwise,
is a function of weight γtR(T ) − 3 = γtR(T

′) − 1 satisfying the conditions of
Definition 11 and so v4 ∈ W 5

T ′ . Suppose that f(v3) = 1. We can see as above
that f(v4) ≥ 1. If f(v4) = 2, then the function g : V (T ′) → {0, 1, 2} defined by
g(v5) = min{2, f(v5) + 1} and g(x) = f(x) otherwise, is a γtR(T

′)-function with
g(v4) = 2 implying that v4 ∈ W 2

T ′ . If f(v4) = 1 and v4 has a neighbor different
from v3 with positive weight under f , then the function f restricted to T ′ is a
TRDF of T ′ of weight γtR(T ) − 3 which contradicts (3). Finally if f(v4) = 1
and v4 has no neighbor other than v3 with positive weight, then the function f

restricted to T ′ fulfilled the conditions of Definition 11 and so v4 ∈ W 5
T ′ . Thus

v4 ∈ W 2
T ′ ∪W 5

T ′ and T can be obtained from T ′ by operation T4 and so T ∈ F .

Case 2. deg(v3) ≥ 3. By the choice of diametrical path, we may assume that
all the children of v3 with depth one have degree 2. We consider three subcases.

Subcase 2.1. v3 is a support vertex and is at distance 2 from some leaves
different from v1. Let T ′ = T − {v1, v2}. Then clearly γ(T ) = γ(T ′) + 1 and
γtR(T ) ≥ γtR(T

′)+2. Hence γtR(T
′) = 2γ(T ′) by Observation 7. By the induction

hypothesis we have T ′ ∈ F and hence T can be obtained from T ′ by Operation
T2 and so T ∈ F .

Subcase 2.2. All children of v3 have degree 2. Let v3z2z1 be a pendant path
and let T ′ = T − {v1, v2}. Clearly γ(T ) = γ(T ′) + 1. Now let f be a γtR(T )-
function. Then f(v2) ≥ 1, f(v1) + f(v2) ≥ 2 and f(z1) + f(z2) ≥ 2. If f(v3) ≥ 1
or f(v3) = 0 and f(v2) = 1, then the function f restricted to T ′ is a TRDF
of T ′ of weight ω(f) − 2 and so γtR(T ) ≥ γtR(T

′) + 2. Assume that f(v3) = 0
and f(v2) = 2. Since f is a TRDF of T , we have f(v1) = 1. Then the function
g : V (T ) → {0, 1, 2} defined by g(v3) = g(v2) = g(v1) = 1 and g(x) = f(x)
otherwise, is a γtR(T )-function and as above we obtain γtR(T ) ≥ γtR(T

′) + 2.
Hence γtR(T

′) = 2γ(T ′) by Observation 7. By the induction hypothesis we have
T ′ ∈ F and so T can be obtained from T ′ by Operation T2. Thus T ∈ F .

Subcase 2.3. All children of v3 except v2 are leaves. Let w be a leaf adjacent to
v3. First let v3 be a strong support vertex. It is easy to see that γ(T ) = γ(T −w)



On the Total Roman Domination in Trees 531

and γtR(T ) = γtR(T − w) yielding γtR(T − w) = 2γ(T − w). By the induction
hypothesis we have T −w ∈ F and by Observation 2 we obtain v3 ∈ W 2

T−w. Thus
T can be obtained from T −w by Operation T1 and so T ∈ F . Suppose next that
v3 is not a strong support vertex. Then by the assumption we have deg(v3) = 3.
Consider the following.

(a) v4 is a support vertex. Let T ′ = T − Tv2 . It is easy to see that γtR(T ) =
γtR(T

′) + 2 and γ(T ) = γ(T ′) + 1. It follows that γtR(T
′) = 2γ(T ′) and by

the induction hypothesis we have T ′ ∈ F . Then T can be obtained from T ′ by
Operation T2 and so T ∈ F .

(b) v4 has a child z2 with depth 1. As above we may assume that deg(z2) = 2.
Let z1 be the leaf adjacent to z2 and let T ′ = T − {z1, z2}. Clearly γ(T ) =
γ(T ′) + 1. By Observation 2, there exists a γtR(T )-function f such that f(v2) =
f(v3) = 2. Also we have f(z1) + f(z2) ≥ 2. Obviously the function f restricted
to T ′ is a TRDF of T ′ and so γtR(T ) ≥ γtR(T

′) + 2. We conclude from 2γ(T ) =
γtR(T ) ≥ γtR(T

′) + 2 ≥ 2γ(T ′) + 2 = 2γ(T ) that γtR(T
′) = 2γ(T ′) and by

the induction hypothesis we have T ′ ∈ T . Now T can be obtained from T ′ by
Operation T2 and so T ∈ F .

(c) v4 has a child z3 with depth 2. Let v4z3z2z1 be a path in T . Using
the above argument we may assume that deg(z2) = 2 and either deg(z3) = 2 or
deg(z3) = 3 and z3 is a support vertex. If deg(z3) = 2, then as in Case 1 we can
see that T ∈ F .

Let deg(z3) = 3 and z3 is a support vertex. Let T ′ = T − Tz3 . It is not
hard to see that γ(T ) = γ(T ′) + 2 and γtR(T ) = γtR(T

′) + 4. This implies that
γtR(T

′) = 2γ(T ′) and by the induction hypothesis we have T ′ ∈ F . Since v4 is
adjacent to a support vertex, we deduce that v4 ∈ W 4

T ′ . Now T can be obtained
from T ′ by Operation T3 and so T ∈ F .

This completes the proof.
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