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Abstract

A total Roman dominating function on a graph G is a function f :
V(G) — {0,1,2} satisfying the following conditions: (i) every vertex u for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and
(ii) the subgraph of G induced by the set of all vertices of positive weight
has no isolated vertex. The weight of a total Roman dominating function
f is the value f(V(G)) = Eycv () f(u). The total Roman domination num-
ber vir(G) is the minimum weight of a total Roman dominating function
of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and
I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math.
10 (2016) 501-517] recently showed that for any graph G without isolated
vertices, 29(G) < %r(G) < 37(G), where v(G) is the domination number
of G, and they raised the problem of characterizing the graphs G achieving
these upper and lower bounds. In this paper, we provide a constructive
characterization of these trees.

Keywords: total Roman dominating function, total Roman domination
number, trees.
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1. INTRODUCTION

In this paper, G is a simple graph without isolated vertices, with vertex set
V = V(@) and edge set E = E(G). The order |V| of G is denoted by n = n(G).
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For every vertex v € V, the open neighborhood of v is the set N(v) = {u €
V(G) |uww € E(G)} and the closed neighborhood of v is the set N[v] = N(v)U{v}.
The degree of a vertex v € V is deg(v) = degg(v) = |[N(v)|. A leaf of T is a vertex
of degree 1, a support vertex of T is a vertex adjacent to a leaf, a strong support
verter is a support vertex adjacent to at least two leaves and an end support
vertez is a support vertex having at most one non-leaf neighbor. A pendant path
P of a graph G is an induced path such that one of the end points has degree
one in G, and its other end point is the only vertex of P adjacent to some vertex
in G — P. The distance dg(u,v) between two vertices u and v in a connected
graph G is the length of a shortest uv-path in G. The diameter of a graph G,
denoted by diam(G), is the greatest distance between two vertices of G. For a
vertex v in a (rooted) tree T', let C(v) and D(v) denote the set of children and
descendants of v, respectively and let D[v] = D(v) U {v}. Also, the depth of v,
depth(v), is the largest distance from v to a vertex in D(v). The mazimal subtree
at v is the subtree of T' induced by D[v], and is denoted by T,. We write P, for
the path of order n. A double star is a tree with exactly two vertices that are not
leaves. If A C V(G) and f is a mapping from V(G) into some set of numbers,
then f(A) =3 ,c4 f(z). The sum f(V(G)) is called the weight w(f) of f.

A vertex set S of a graph G is a dominating set if each vertex of GG either
belongs to S or is adjacent to a vertex in S. The domination number v(G) of G
is the minimum cardinality over all dominating sets of G. A dominating set of
G of cardinality v(G) is called a 7(G)-set. The domination problem consists of
finding the domination number of a graph. The domination problem has many
applications and has attracted considerable attention [11,15]. The literature on
the subject of domination parameters in graphs has been surveyed and detailed
in the two books [12,13].

A function f : V(G) — {0,1,2} is a Roman dominating function (RDF) on
G if every vertex u € V for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of an RDF is the value f(V(G)) = X ey (q) f(u)-
The Roman domination number yr(G) is the minimum weight of an RDF on G.
Roman domination was introduced by Cockayne et al. in [10] and was inspired
by the work of ReVelle and Rosing [17], Stewart [18]. It is worth mentioning
that since 2004, a hundred papers have been published on this topic, where sev-
eral new variations were introduced: weak Roman domination [14], Roman {2}-
domination [9], maximal Roman domination [2], mixed Roman domination [4],
double Roman domination [8] and recently total Roman domination introduced
by Liu and Chang [16].

A total Roman dominating function of a graph G with no isolated vertex,
abbreviated TRDF, is a Roman dominating function f on G with the additional
property that the subgraph of G induced by the set of all vertices of positive
weight under f has no isolated vertex. The total Roman domination number
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Yr(G) is the minimum weight of a TRDF on G. A TRDF of G with weight

vr(G) is called a 4z (G)-function. The concept of the total Roman domination

was introduced by Liu and Chang [16] and has been studied in [1,3,5-7].
Ahangar et al. [3] showed that for any graph G,

(1) 2v(G) < ur(G) < 3(G),

and they posed the following problems.

Problem 1. Characterize the graphs G satisfying 1r(G) = 2v(G).
Problem 2. Characterize the graphs G satisfying vr(G) = 37(G).

In this paper, we provide a constructive characterization of the trees T with
Yr(T) = 2v(T) and yr(T) = 3v(T) which settles the above problems for trees.

2. PRELIMINARIES

In this section, we provide some results and definitions used throughout the paper.
The proof of Observations 1 and 2 can be found in [6].

Observation 1 [6]. Ifv is a strong support vertez in a graph G, then there exists
a r(G)-function f such that f(v) = 2.

Observation 2 [6]. Ifuy,us are two adjacent support vertices in a graph G, then
there exists a vir(G)-function f such that f(u1) = f(u2) = 2.

Observation 3. If T is a double star, then vg(T) = 2v(T).

Observation 4. Let H be a subgraph of a graph G such that G and H have no
isolated vertex. If yyr(H) = 3v(H), v(G) < ~y(H)+ s and vr(G) > vr(H) + 3s
for some non-negative integer s, then yr(G) = 3v(G).

Proof. 1t follows from the assumptions and (1) that
Yr(G) = ver(H) + 35 = 3y(H) + 3s 2 3v(G) = nr(G),
and this yields vz(G) = 3v(G). |

Observation 5. Let H be a subgraph of a graph G such that G and H have no
isolated vertezx. If vir(G) = 3v(G), r(G) < r(H) + 3s and v(G) > v(H) + s
for some non-negative integer s, then v,r(H) = 3~v(H).

Proof. By (1) and the assumptions, we have
3V(G) = nr(G) < wr(H) +3s < 3y(H) + 3s < 3v(G),

and this leads to the result. [ ]



522 J. AMJADI, S.M. SHEIKHOLESLAMI AND M. SOROUDI

Similarly, we have the following results.

Observation 6. Let H be a subgraph of a graph G such that G and H have no
isolated vertex. If yr(H) =2v(H), v(G) > v(H)+ s and vwr(G) < vir(H) + 2s
for some non-negative integer s, then yr(G) = 2v(G).

Observation 7. Let H be a subgraph of a graph G such that G and H have no
isolated vertex. If vir(G) = 2v(G), %r(G) > vwr(H) 4+ 2s and v(G) < y(H) + s
for some non-negative integer s, then vig(H) = 2v(H).

‘We close this section with some definitions.

Definition 8. Let v be a vertex of the graph G. A function f : V(G) — {0, 1,2}
is said to be a nearly total Roman dominating function (nearly TRDF) with
respect to v, if the following three conditions are fulfilled:

(i) every vertex x € V(G) — {v} for which f(z) = 0 is adjacent to at least one
vertex y € V(G) for which f(y) = 2,

(ii) every vertex x € V(G) — {v} for which f(x) > 1 is adjacent to at least one
vertex y € V(G) for which f(y) > 1 and

(iii) f(v) >1or f(v)+ f(u) > 2 for some u € N(v). Let
Yr(G;v) = min{w(f) | f is a nearly TRDF with respect to v}.

Observe that any total Roman dominating function on G is a nearly TRDF
with respect to any vertex of G. Hence 1:r(G;v) is well defined and 1 r(G;v) <
v:r(G) for each v € V(G). Define W} = {v € V(G) | 4r(G;v) = vr(G)}.

Definition 9. For a graph G and v € V(G), we say v has property P in G if
there exists a yz(G)-function f such that f(v) = 2. Assume that W2 = {v|v
has property P in G}, W2 = {v|v does not have property P in G}.

We note that if a vertex v € V(G) satisfies the condition of Observations 1
or 2, then v € Wé

Definition 10. For a graph G and v € V(G), let
v(G,v) = min{|S| : S C V(G) and each vertex w # v is dominated by S}.
Clearly v(G,v) < v(G) for each v € V(G). We define W2 = {v|v(G,v) = y(G)}.

_ 1 _ w2 _ 14 3 _
For a path Py, = vivovgvy, we have Wy = Wp = Wp = {vg,v3}, Wp, =
{v1,v4}.

Definition 11. For a tree T, let W2 = {v | there exists a function f: V(T) —
{0,1,2} such that
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w(f) =nr(T) -1,
flv) =1,
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every vertex © € V(T') — {v} for which f(z) = 0 is adjacent to at least

(iiii) every vertex x € V(T') — {v} for which f(x) > 1 is adjacent to at least

(
one vertex y € V(T') for which f(y) =2, and
(
one vertex y € V(T') for which f(y) > 1}.

Ul w X V1

U9 Y V9
u v

us U3

Uy Vg

Figure 1. The graph H.

Let H be the graph illustrated in Figure 1. For any ~;g(H)-function f, we
have f(u) = f(v) = 2, f(z) =2 or f(z) = f(o1) = 1, f(y) =2 or f(y) = f(va) =
1, f(w) =2or f(w) = f(u1) =1, and f(z) = 0 otherwise. It follows that W3 =
{u,v,2,y,w} and W3, = {u;,v; | i = 1,2,3,4}. Now define g : V(H) — {0,1,2}
by g(u) = g(v) = g(x) = g(y) = 2, g(w) = 1, and g(z) = 0 otherwise. Clearly, g
is a nearly total Roman dominating function of H with respect to u; of weight
ver(H) — 1 yielding uy ¢ W}{ Similarly, vi,ve & W}I It is easy to see that
WI%I = V(G) — {ul,vl,vg}.

To determine W, first we note that v(H) = 5. Obviously, {u,v,z,y} domi-
nates all vertices in V (H)—{u1} and so y(H,u1) < 4 yielding u; ¢ W . Similarly,
vy, V2 & Wl‘fl. It is not hard to see that Wé} =V(G) — {u1,v1,v2}.

Now, we determine W5. The function h : V(H) — {0,1,2} defined by
h(u1) =1, h(u) = h(v) = h(x) = h(y) = 2 and h(x) = 0 otherwise, is a function
of weight y¢g(H)—1 satisfying the conditions of Definition 11 and hence u; € W},.
Similarly, we have vy, vy € Wj. It is easy to verify that Wy, = {uq,v1,v2}.

3. A CHARACTERIZATION OF TREES T WiTH vr(T') = 3v(T)

In this section we provide a constructive characterization of all trees T with
Yr(T) = 3v(T). In order to do this, let 7 be the family of unlabeled trees T
that can be obtained from a sequence 11,75, ...,T,, (m > 1) of trees such that
Ty is a path Ps, and, if m > 2, T;41 can be obtained recursively from 7; by one
of the three operations O, Oy, O3 for 1 < i <m — 1.
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Operation O;. If z € V(T;) and x is a strong support vertex, then Operation
01 adds a new vertex y and an edge xy to obtain T;1.

Operation Os. If z € W%i, then Operation Oy adds a star K 3 and joins x to
a leaf of it to obtain Tj, .

Operation O3. If x € W%l N W%_, then Operation O3 adds a path Ps and joins
x to a leaf of P53 to obtain Tj4.

(< (O

Operation O Operation O, Operation O3

Figure 2. The operations O1, O and Os.

Lemma 12. IfT; is a tree with vir(T;) = 3v(T;) and Ti4+1 is a tree obtained from
T; by Operation Oy, then vir(Tiv1) = 37 (Tit1).

Proof. Clearly v(Ti+1) = 7(T3) and vir(Ti+1) = %r(Ti) and so yr(Tiv1) =
37 (Tiva)- L

Lemma 13. IfT; is a tree with v,r(T;) = 3v(1;) and Ti+1 is a tree obtained from
T; by Operation O, then vir(Tit1) = 37(Tit1)-

Proof. Let Oy add a star K 3 with vertex set {y,y1,y2,y3} centered in y and
join x to y1. Obviously adding y to any ~(T;)-set yields a dominating set of T4
and so y(Tij+1) < v(T;) + 1. Let now f be a yyr(T;+1)-function such that f(y) is
as large as possible. By Observation 1 we have f(y) = 2. Since f is a TRDF of
G, we may assume that f(y;) > 1. If f(x) > 1, then the function f, restricted to
T; is a nearly TRDF of T; of weight at most yz(7Ti+1) — 3 and we deduce from
x € Wy, that vr(Tip1) — 3 > w(flr) = vr(Ty). If f(x) =0 and f(y1) = 1, then
the function f, restricted to T; is a TRDF of T; of weight v,z(T;41) — 3 and so
Mr(Tit1) —3 > w(flr) > mr(Ti). If f(x) =0 and f(y1) = 2, then the function
g : V(T;) — {0,1,2} defined by g(z) = 1 and g(u) = f(u) for each v € V(T;)—{z}
is a nearly TRDF of T; of weight vz(T;4+1) — 3 and since x € W%Z we have
Yr(Tit1) — 3 > w(fl1,) = %r(Ti). Hence, in all cases vir(Ti4+1) > vr(T;) + 3
and we conclude from Observation 4 that yr(Ti+1) = 3v(Tit1)- [

Lemma 14. IfT; is a tree with vir(T;) = 3v(T;) and Ti4+1 is a tree obtained from
T; by Operation O3, then vir(Ti+1) = 37(Ti41).
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Proof. Let O3 add a path yzw and the edge zy. Obviously any ~(7;)-set can be
extended to a dominating set of ;41 by adding z and so y(Tj+1) < v(T;)+1. Now
assume f is a v r(7Ti4+1)-function such that f(y) is as large as possible. Clearly
f&)+ flw) > 2. If f(y)+ f(2) + f(w) > 3, then we may assume that f(z) = 2
and f(y) > 1 and by using an argument similar to that described in the proof of
Lemma 13 we obtain v;g(Ti+1) = 37(T541). Now let f(y)+ f(z)+ f(w) = 2. Then
we must have f(z) = f(w) = 1 and f(y) = 0. Then the function f, restricted
to T; is a TRDF of T; of weight vr(Tiy1) — 2 with f(x) = 2. Since 2 € W,
we obtain vip(Ti+1) — 2 = w(flr;) > nr(Ti) + 1 and so yr(Tiv1) > ver(T;) + 3.
Now the result follows by Observation 4. [

Theorem 15. If T € T, then vr(T) = 3v(T).

Proof. Let T € T. Then there exists a sequence of trees T1,T5, ..., T} (k > 1)
such that 77 is P3, and if kK > 2, then T;41 can be obtained recursively from T;
by one of the Operations 01,002,053 for i =1,2,...,k — 1.

We proceed by induction on the number of operations applied to construct
T. If k =1, then T = P; € T. Suppose that the result is true for each tree
T € T which can be obtained from a sequence of operations of length k£ — 1 and
let 7" = Ty_1. By the induction hypothesis, we have yr(T") = 3v(T"). Since
T = Ty is obtained by one of the Operations Oy, Oy, O3 from T’, we conclude
from Lemmas 12, 13 and 14 that vr(T") = 3v(T). |

Now we are ready to prove the main result of this section.

Theorem 16. Let T be a tree of order n > 3. Then yr(T') = 3v(T) if and only
if T eT.

Proof. By Theorem 15, we only need to prove the necessity. Let T be a tree with
vr(T) = 3v(T"). The proof is by induction on n. If n = 3, then the only tree T
of order 3 with v,g(T) = 3v(T") is P3 € T. Let n > 4 and let the statement hold
for all trees T' of order less than n and (7)) = 3v(T'). Assume that T is a tree
of order n with vg(T") = 3v(T") and let f be a yr(T')-function. By Observation
3 we have diam(T") # 3. If diam(T") = 2, then T is a star and T' can be obtained
from Pj iterative application of Operation O and so T' € 7. Hence we assume
diam(T") > 4.

Let vivg---vr (k > 5) be a diametrical path in 7" and root T at vg. If
deg(va) > 4, then clearly vr(T') = yr(T —v1) and y(T') = (T — v1) and hence
Yr(T —v1) = 3y(T — v1). By the induction hypothesis we have T'— v; € T.
Now, T can be obtained from T — v; by Operation O and so T € 7. Suppose
that deg(vz) < 3. We consider two cases.

Case 1. deg(ve) = 3. We claim that deg(vs) = 2. Suppose, to the contrary,
that deg(vs) > 3. Then each child of v3 is a leaf or a support vertex. If v
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has a children other than ve which is a leaf or a strong support vertex, then let
T' =T—T,,. It is not hard to see that v(T') = v(T")+1 and vr(T) < vr(T")+2.
Then yr(T) < wr(T") +2 < 3y(T') + 2 = 3y(T) — 1 which is a contradiction.
Assume that each child of v3 except v, is a support vertex of degree 2. Let v3z021
be a pendant path in 7. Suppose T' = T — {21, 22}. As above we can see that
mr(T) < 3v(T) — 1, a contradiction again. Thus deg(vs) = 2.

Assume T' =T — T,,. Let S be a v(T)-set containing support vertices, and
define S" = S —{vy} ifvg & S and " = (S —{va,v3})U{vs} when v € S. Clearly,
S’ is a dominating set of 77 and so v(T") < |S’| = 4(T') — 1. On the other hand,
any vir(T")-function can be extended to a TRDF of T by assigning 1 to vs, 2 to
v9 and 0 to the leaves adjacent to ve. This yields v r(T) < yr(T") + 3. It follows
from Observation 5 that vz(T") = 3v(T") and by the induction hypothesis we
have T € T. If vy & W%/, then let g be a nearly TRDF of T with respect to vy
of weight at most yz(7") — 1 and define h : V(T) — {0, 1,2} by h(u) = g(u) for
u e V(T'), h(vs) =1, h(ve) = 2 and h(u) = 0 otherwise. Clearly h is a TRDF of
T of weight v;r(T”) + 2 which leads to a contradiction. Hence vy € W7, and T
can be obtained from T” by Operation Q5. Thus T' € T in this case.

Case 2. deg(v2) = 2. Considering Case 1, we may assume that each child
of vz is a support vertex of degree 2. If deg(vs) > 3, then let T/ = T — T,,.
Any ~(T")-set can be extended to a dominating set of T' by adding C(v3) and
so Y(T) < 4(T") + |C(v3)|. On the other hand, let S be a v(7')-set containing
no leaves. To dominate the leaves of T, we must have C(v3) C S. Then the
set 8" =S\ C(v3) if vg ¢ S and §" = (S — (C(vg) U{vs})) U{va} if v3 € S, is
a dominating set set of 7" and this implies that v(T") < ~(T) — |C(v3)|. Hence
VT) =~(T") + |C(vs3)].-

Also, any vr(T")-function can be extended to a TRDF of T by assigning 1
to v3, 2 to the children of v3 and 0 to all leaves of T, and so

Yr(T) < wr(T') +2|C(vs3)| + 1

3v(T") +2|C(vs)| + 1
= 3(y(T") +C(v3)]) — |C(vs)| + 1
= 37(T) = |C(v3)[ + 1
< 3v(T) (since |C(v3)| > 2),

<
<

a contradiction. Henceforth, we assume deg(vs) = 2. Suppose 7" = T — Ty,.
Clearly, v(T') = v(T") + 1. Analogously as in Case 1, we can see that v,r(T") =
3y(T") and vy € W4,. Thus T € T by the induction hypothesis. If vy & W3,
then let g be a yg(T")-function with g(vs) = 2 and define h : V(T) — {0, 1,2}
by h(u) = g(u) for u € V(T") and h(vs) = 0,h(ve) = h(vy) = 1. Clearly h is an
TRDF of T of weight v;r(T”) +2 which leads to a contradiction. Hence vy € W3,
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and T can be obtained from 7" by Operation Os. It follows that T' € T and the
proof is complete. [

4. A CHARACTERIZATION OF TREES T' WITH vz (T) = 2v(T)

In this section we present a constructive characterization of all trees T with
Yer(T) = 29(T).

Let F be the family of unlabeled trees T' that can be obtained from a sequence
Ty, Ta, ..., Ty (m > 1) of trees such that T3 is a path P; or Py, and, if m > 2,
T;+1 can be obtained recursively from T; by one of the following four operations
for1<i<m-—1.

Operation 77. If x € W% is a support vertex, then the Operation 77 adds a
new vertex y and an edge xy to obtain T4 .

Operation Ta. If z € V(T;) is at distance 2 from a leaf w, then the Operation
T2 adds a path yz and joins z to y to obtain 7.

Operation 73. If z € Wrﬁ_, then the Operation 73 adds a path z423202z7 and
joins x to z3 to obtain T;41.

Operation Ty. If x € W% U W%_, then the Operation 74 adds a path P; = zyw
and joins x to z to obtain Tj;.

Operation Tp Operation 7T

z\ 23 z 2 @ Loy
2

Operation 7y

Operation T3
Figure 3. The operations 71,72, T3 and Ty.

Lemma 17. If T; is a tree with vr(T;)

from T; by Operation Ty, then yir(Tit1)

= 2v(T;) and T;11 is a tree obtained
2y(Tiy

1)
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Proof. 1t is easy to see that y(Tjy1) = v(T;) and vr(Tiv1) = vr(T;) and so
Yer(Tit1) = 2v(Tit1)- n

Lemma 18. If T; is a tree with vr(T;) = 2v(T;) and Tiy1 is a tree obtained
from T; by Operation Tz, then vir(Ti+1) = 27(Ti41).

Proof. Let w' be the support vertex of w. If S is a ~y(T;+1)-set, then clearly
y,w' € S and S — {y} is a dominating set of T; yielding v(T;4+1) > v(T;) + 1.
Also, if f is a yr(T;)-function such that f(z) > 1, then f can be extended to a
TRDF of T;11 by assigning the weight 1 to y, z. Hence vig(Tiv1) < vr(T3) + 2.
Now the result follows by Observation 6. |

Lemma 19. If T; is a tree with vwr(T;) = 2v(T;) and Tiy1 is a tree obtained
from T; by Operation T3, then vir(Ti+1) = 27(Ti41).

Proof. 1f S is a v(T;+1)-set containing no leaves, then z3, zo € S and we deduce
from x € Wi, that |S — {23, 22}| > y(T;) yielding v(Tj11) > 7(T;) + 2. On the
other hand, any v;z(T;)-function can be extended to a TRDF of T' by assigning
the weight 2 to z3, 2o and the weight 0 to 21, z4 and so yr(Ti+1) < vr(T;) + 4.
It follows from Observation 6 that yr(Ti+1) = 2v(Ti+1). [

Lemma 20. If T; is a tree with vr(T;) = 2v(T;) and T;y1 is a tree obtained
from T; by Operation Ty, then yir(Tit1) = 27(Tit1)-

Proof. Let T, add a path zyw and joins x to z. If S is a y(T;+1)-set, then y € S
and the set ' = S —{y}if 2 ¢ Sand S = (S —{y,z}) U{z} if z € S, is a
dominating set of T; yielding v(T;+1) > v(T;) + 1. Now we show that vr(Tiy1) <
wr(T;) + 2. If 2 € W2, then let f be a v(T;)-function with f(z) = 2. Clearly
f can be extended to an TRDF of T;,1 by assigning the weight 1 to w, y and the
weight 0 to z and so vir(Ti+1) < r(T3)+2. If z € W%, then let f be a function
satisfying the conditions of Definition 11. Clearly f can be extended to a TRDF
of Tj4+1 by assigning the weight 1 to z,y,w and so yr(Ti+1) < %r(T;) + 2. Now
the result follows by Observation 6. [

Theorem 21. If T € F, then yr(T') = 2v(T).

Proof. Let T € F. Then there exists a sequence of trees Ty, T5, ..., T (k > 1)
such that Ty is Py or Py, and if k > 2, then T;11 can be obtained recursively from
T; by one of the Operations Ty, T2, T3, T4 for i =1,2,...,k — 1.

We proceed by induction on the number of operations used to construct 7.
If k=1, then T'= P, or P, and the result is trivial. Suppose the statement holds
for each tree T € F which can be obtained from a sequence of operations of length
k—1 and let 7" = T_;. By the induction hypothesis, we have vz (T") = 2v(T").
Since T' = T}, is obtained by one of the Operations 77, T2, T3, 74 we conclude
from previous lemmas that y,z(T) = 2v(T). |
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Now we prove the main result of this section.

Theorem 22. Let T be a tree of order n > 2. Then vg(T) = 2v(T) if and only
if T e F.

Proof. According to Theorem 21, we only need to prove the necessity. Let T be
a tree with vr(T) = 2v(T'). Since vr(K1s) =3 = 3v(Ky,) for s > 2, T is not
a star of order n(7T") > 3. We proceed by induction on n. If n € {2,4}, then the
only trees T of order 2 or 4 with yr(T) = 2v(T) are Py, Py € F. Assume n > 5
and let the statement hold for all trees T" of order less than n and v (T") = 2v(T).
Assume that T is a tree of order n with vz(T) = 2v(T) and let f be a vr(T)-
function. Since T is not a star, we have diam(7") > 3. If diam(7") = 3, then 7' is a
double star and T" can be obtained from Py by iterative application of Operation
71 because the support vertices of Py belong to V[/f34 and so T' € F. Hence we
assume diam(7") > 4.

Let v1vg - - - vg, (K > 5) be a diametrical path in 7" such that deg(vs) is as large
as possible and root T" at vy. First let deg(va) > 3. Clearly vir(T') > yr(T —v1)
and Y(T) = y(T — v1). U %r(T) > yr(T — v1) + 1, then we have

29(T) =wr(T) Z mr(T —v1) +1 229(T —v) +1=29¢(T) + 1

which is a contradiction. Thus 1r(T") = vr(T — v1). By Observation 1, there
exists a yg(T)-function f such that f(ve) = 2. Then clearly f is a vg(T — v1)-
function yielding vy € W%fvl. Now, T" can be obtained from T'— v; by Operation
71 and so T' € F. Suppose that deg(vy) = 2.

Consider the following cases.

Case 1. deg(vs) = 2. Let T =T — T,,,. Clearly

(2) WT') =~(T) - 1.

Now let f be a vr(T)-function. Clearly f(v1) + f(v2) > 2. If f(v1) + f(v2) > 3,
then clearly f(v3) = 0 and the function f, restricted to 7" is a TRDF of 7"
yielding v;r(T) > vr(T") + 3. But then

2/(T) = %R(T) = wr(T") +3 = 29(T") +3 = 2(4(T) — 1) + 3 = 24(T) + 1,

a contradiction. Thus f(vi) + f(ve) = 2. If f(v3) = 1 and f(v4) = 0, then we
get a contradiction as above. If f(vs) = 1 and f(vq) > 1, then the function
g : V(T') — {0,1,2} defined by g(vs) = min{2, f(vs) + 1} and g(u) = f(u)
otherwise, is a TRDF of T" of weight v;r(T) — 2. Assume that f(vs) # 1. If
f(vs) = 2, then f(vg) = 0 and the function g : V(7") — {0,1,2} defined by
g(va) = 1,9(vs) = min{2, f(vs) + 1} and g(u) = f(u) otherwise, is a TRDF of T"
of weight vz(T") — 2. We conclude from

29(T) = 1r(T) = yr(T') +2 > 29(T") +2 > 2(v(T) = 1) + 2 = 24(T)
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that

(3) Yr(T) = yr(T") + 2.

By (2) and (3), we obtain yr(T") = 2v(T") and by the induction hypothesis
we have 7" € F. Now we show that vy € W2 UWJ2,. Let f be a r(T)-
function. As above we can see that f(vi) + f(v2) = 2. If f(vs) = 0, then the
function f restricted to T" is a yg(T’)-function with f(v4) = 2 implying that
vg € W2. If f(vs) = 2 and vy has a neighbor with positive weight under f,
then the function g : V(T") — {0, 1,2} defined by g(vs) = 1 and g(x) = f(x)
otherwise, is a TRDF of T" of weight v;r(T) — 3 contradicting (3). If f(v3) = 2
and vg4 has no neighbor other than vs with positive weight under f, then the
function ¢ : V(T") — {0,1,2} defined by g(v4) = 1 and g(x) = f(z) otherwise,
is a function of weight vg(T) — 3 = wr(T’) — 1 satisfying the conditions of
Definition 11 and so vy € W2,. Suppose that f(vs) = 1. We can see as above
that f(vs) > 1. If f(v4) = 2, then the function g : V(T7) — {0,1,2} defined by
g(vs) = min{2, f(vs) + 1} and g(z) = f(x) otherwise, is a yr(T")-function with
g(vs) = 2 implying that vy € W2,. If f(vs) = 1 and v4 has a neighbor different
from v3 with positive weight under f, then the function f restricted to 1" is a
TRDF of T" of weight vr(T) — 3 which contradicts (3). Finally if f(vs) = 1
and vy4 has no neighbor other than vs with positive weight, then the function f
restricted to T" fulfilled the conditions of Definition 11 and so v4 € W%,. Thus
vy € W%, U W% and T can be obtained from T’ by operation 7 and so T' € F.

Case 2. deg(vs) > 3. By the choice of diametrical path, we may assume that
all the children of v3 with depth one have degree 2. We consider three subcases.

Subcase 2.1. w3 is a support vertex and is at distance 2 from some leaves
different from vy. Let 7" = T — {v1,v2}. Then clearly v(T)) = v(T77) + 1 and
Yr(T) > vr(T")+2. Hence vir(T") = 2y(T") by Observation 7. By the induction
hypothesis we have T € F and hence T can be obtained from T’ by Operation
ToandsoT € F.

Subcase 2.2. All children of vs have degree 2. Let v32021 be a pendant path
and let 7" = T — {vy,v2}. Clearly v(T) = v(T") + 1. Now let f be a vr(T)-
function. Then f(ve) > 1, f(v1) + f(v2) > 2 and f(z1) + f(z2) > 2. If f(v3) > 1
or f(vs) = 0 and f(v2) = 1, then the function f restricted to 77 is a TRDF
of T' of weight w(f) — 2 and so vr(T) > %r(T’) + 2. Assume that f(vs3) =0
and f(vz2) = 2. Since f is a TRDF of T, we have f(v1) = 1. Then the function
g: V(T) = {0,1,2} defined by g(vs) = g(vs) = g(en) = 1 and g(z) = f(2)
otherwise, is a yr(T)-function and as above we obtain vg(T) > yr(T') + 2.
Hence yr(T") = 27(T") by Observation 7. By the induction hypothesis we have
T" € F and so T can be obtained from 7" by Operation 75. Thus T € F.

Subcase 2.3. All children of v3 except v are leaves. Let w be a leaf adjacent to
v3. First let vs be a strong support vertex. It is easy to see that v(7T") = (T — w)
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and vg(T) = wr(T — w) yielding vz(T — w) = 27(T — w). By the induction
hypothesis we have T'—w € F and by Observation 2 we obtain v € W%_w. Thus
T can be obtained from T —w by Operation 771 and so T' € F. Suppose next that
v3 is not a strong support vertex. Then by the assumption we have deg(vs) = 3.
Consider the following.

(a) vy is a support vertex. Let T/ =T — T,,,. It is easy to see that yr(T) =
wr(T') + 2 and v(T) = v(T") + 1. It follows that yg(T") = 2v(T") and by
the induction hypothesis we have 77 € F. Then T can be obtained from 7" by
Operation 73 and so T € F.

(b) vg has a child z; with depth 1. As above we may assume that deg(z2) = 2.
Let 21 be the leaf adjacent to 29 and let 7" = T — {z1,22}. Clearly y(T) =
v(T") 4+ 1. By Observation 2, there exists a vir(7T')-function f such that f(ve) =
f(vs) = 2. Also we have f(z1) + f(22) > 2. Obviously the function f restricted
to T" is a TRDF of T" and so vigr(T) > vr(T") + 2. We conclude from 2v(T") =
%r(T) = wr(T’) +2 = 2y(T") + 2 = 2¢(T) that vr(T") = 2y(1") and by
the induction hypothesis we have 77 € 7. Now T can be obtained from T” by
Operation 73 and so T € F.

(¢) vg has a child z3 with depth 2. Let vgz32921 be a path in T. Using
the above argument we may assume that deg(z2) = 2 and either deg(z3) = 2 or
deg(z3) = 3 and z3 is a support vertex. If deg(z3) = 2, then as in Case 1 we can
see that T' € F.

Let deg(z3) = 3 and z3 is a support vertex. Let 77 = T — T,,. It is not
hard to see that v(T') = v(T") + 2 and vr(T) = %r(T") + 4. This implies that
yr(T") = 2y(T") and by the induction hypothesis we have T € F. Since vy is
adjacent to a support vertex, we deduce that v4 € W#,. Now T can be obtained
from T by Operation 73 and so T' € F.

This completes the proof. [
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