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Abstract

Let G = (V,E) be a connected graph with vertex set V (G) and edge set
E(G). The product connectivity Banhatti index of a graph G is defined as
PB(G) =

∑

ue

1√
dG(u)dG(e)

, where uemeans that the vertex u and edge e are

incident in G. In this paper, we determine PB(G) of some standard classes
of graphs. We also provide some relationship between PB(G) in terms of
order, size, minimum / maximum degrees and minimal non-pendant vertex
degree. In addition, we obtain some bounds on PB(G) in terms of Randić,
Zagreb and other degree based topological indices of G.
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1. Introduction

All graphs considered in this paper are finite, connected, undirected without loops
and multiple edges. Let G = (V,E) be a connected graph with n vertices and m

edges. The degree dG(v) of a vertex v is the number of vertices adjacent to v.
The degree of an edge e = uv in G is defined by dG(e) = dG(u) + dG(v)− 2. We
refer to [5] for undefined term and notation.

A molecular graph is a graph such that its vertices correspond to the atoms
and edges to the bonds. Chemical graph theory is a branch of Mathematical
chemistry which has an important effect on the development of the chemical
sciences. A single number that can be used to characterize some property of
the graph of a molecule is called a topological index for that graph. There are
numerous molecular descriptors, which are also referred to as topological indices,
see [3] that have found some applications in theoretical chemistry, especially in
QSPR/QSAR research.

One of the best known and widely used topological index is the product-
connectivity index (or Randić index, connectivity index) by Randić [11], who
has shown this index to reflect molecular branching. The product connectivity
index of a graph G is defined as P (G) =

∑

uv∈E(G)
1√

dG(u)dG(v)
. Motivated by

Randić definition of the product connectivity index, the sum connectivity index
was initiated by Zhou and Trinajstic [14] and [15], which is defined by S(G) =
∑

uv∈E(G)
1√

dG(u)+dG(v)
. For more details on these type of connectivity indices,

we refer to [1, 2] and [10].

The first and second K Banhatti indices of a graph G are defined as B1(G) =
∑

ue[dG(u) + dG(e)] and B2(G) =
∑

ue[dG(u)dG(e)], where ue means that the
vertex u and edge e are incident in G. The K Banhatti indices were introduced
by Kulli in [6]. The K Banhatti indices are closely related to Zagreb - types
indices. For more details on these two types of indices refer to Gutman et al., [4].
Also, recently many other indices were studied, for example, in [7] and [8].

Here, we initiate the study on this new topological index of a graph as follows.
The product connectivity Banhatti index of a graph G is defined as PB(G) =
∑

ue
1√

dG(u)dG(e)
, where ue means that the vertex u and edge e are incident in G.

2. Some Standard Classes of Graphs

Proposition 1. Let Cn be a cycle with n ≥ 3 vertices. Then

PB(Cn) = n.

Proof. Let G = Cn be a cycle with n ≥ 3 vertices. Every vertex of a cycle Cn is
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incident with exactly two edges and the number of edges in Cn is n. Consider

PB(G) =
∑

ue

1
√

dG(u)dG(e)
=

∑

e=uv∈E(Cn)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

= n

[

1√
2× 2

+
1√
2× 2

]

= n.

Proposition 2. Let Kn be a complete graph with n ≥ 3 vertices. Then

PB(Kn) =
n
√
n− 1√

2
√
n− 2

.

Proof. Let G = Kn be a complete graph with n ≥ 3 vertices. Every vertex of
Kn is incident with exactly (n− 1) edges. Consider

PB(G) =
∑

ue

1
√

dG(u)dG(e)
=

∑

e=uv∈E(Kn)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

=
n(n− 1)

2

[

1
√

(n− 1)× (2n− 4)
+

1
√

(n− 1)× (2n− 4)

]

=
n
√
n− 1√

2
√
n− 2

.

Proposition 3. Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s and s ≥ 2
vertices. Then

PB(Kr,s) =
r
√
s+ s

√
r√

r + s− 2
.

Proof. Let G = Kr,s be a complete bipartite graph with r + s vertices and
rs edges such that |V1| = r, |V2| = s, V (Kr,s) = V1 ∪ V2. Every vertex of V1

is incident with s edges and every vertex of V2 is incident with r edges. Let
V1 = {u1, u2, . . . , ur} and V2 = {v1, v2, . . . , vs}. Consider

PB(Kr,s) =
∑

ue

1
√

dG(u)dG(e)
=

∑

e=uv∈E(Kr,s)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

= rs

[

1
√

s× (r + s− 2)
+

1
√

r × (r + s− 2)

]

=
r
√
s+ s

√
r√

r + s− 2
.
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Corollary 4. Let Kr,r be a complete bipartite graph with r ≥ 2 vertices. Then

PB(Kr,r) =

√
2× r

√
r√

r − 1
.

Corollary 5. Let K1,s be a star with s ≥ 2 vertices. Then

PB(K1,s) =

√
s+ s√
s− 1

.

Proposition 6. If G is an r-regular graph with n ≥ 3 vertices, then

PB(G) =
n
√
r√

2
√
r − 1

.

Proof. Let G be an r-regular graph with n ≥ 3 vertices and nr
2 edges. Every

vertex of G is incident with r edges. Consider

PB(G) =
∑

ue

1
√

dG(u)dG(e)
=

∑

e=uv∈E(G)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

=
nr

2

[

1
√

r × (2r − 2)
+

1
√

r × (2r − 2)

]

=
n
√
r√

2
√
r − 1

.

3. Bounds on Product Connectivity Banhatti Index

First, we start with couple of bounds in PB(G) in terms of the Randić (or,
product connectivity) index P (G) of a graph G.

Theorem 7. For any connected graph G with n ≥ 3 vertices,

(i) PB(G) 6= P (G),

(ii) PB(G) > P (G).

Proof. (i) For if PB(G) = P (G), we have

∑

e=uv∈E(G)

√

dG(u) +
√

dG(v)
√

dG(e)
√

dG(u)dG(v)
=

∑

e=uv∈E(G)

1
√

dG(u)dG(v)

⇔
√

dG(u) +
√

dG(v) =
√

dG(u) + dG(v)− 2

⇔ dG(u) + dG(v) + 2
√

dG(u)dG(v) = dG(u) + dG(v)− 2

⇔
√

dG(u)dG(v) = −1,
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which is a contradiction as
√

dG(u)dG(v) > 0. Hence the result follows.

(ii) We have

PB(G) =
∑

ue

1
√

dG(u)dG(e)
=

∑

e=uv∈E(G)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

=
∑

e=uv∈E(G)

1
√

dG(u) + dG(v)− 2

[

√

dG(u) +
√

dG(v)
√

dG(u)dG(v)

]

.

Clearly,
√

dG(u) +
√

dG(v) >
√

dG(u) + dG(v)− 2 for any connected graph G

with n ≥ 3 vertices. This implies that

√
dG(u)+

√
dG(v)√

dG(u)+dG(v)−2
> 1. Therefore PB(G) >

∑

e=uv∈E(G)
1√

dG(u)dG(v)
. Hence PB(G) > P (G) follows.

In order to prove our next result, we make use of the following definition of
the modified second Zagreb index, M∗

2 (G), to obtain the lower and upper bound
of PB(G) in terms of degrees, Randić index P (G) and M∗

2 (G).

The modified second Zagreb index [13] of a graph G is defined as

M∗
2 (G) =

∑

uv∈E(G)

1

dG(u) dG(v)
.

Theorem 8. For any connected graph G with n ≥ 3 vertices and no pendant

vertices,

(i)
√

2δ(G)
∆(G)−1P (G) ≤ PB(G) ≤

√

2∆(G)
δ(G)−1P (G),

(ii)
√

2δ(G)
∆(G)−1 δ(G)M∗

2 (G) ≤ PB(G) ≤
√

2∆(G)
δ(G)−1 ∆(G)M∗

2 (G).

Proof. Let G be a connected graph with n ≥ 3 vertices and no pendant vertices.
Clearly,

2(δ(G)− 1) ≤ dG(u) + dG(v)− 2 ≤ 2(∆(G)− 1)
√
2(
√

δ(G)− 1) ≤
√

dG(u) + dG(v)− 2 ≤
√
2(
√

∆(G)− 1)

1√
2(
√

∆(G)− 1)
≤ 1

√

dG(u) + dG(v)− 2
≤ 1√

2(
√

δ(G)− 1)
.

Also, 2
√

δ(G) ≤
√

dG(u) +
√

dG(v) ≤ 2
√

∆(G), and

1

∆(G)
≤ 1

√

dG(u)dG(v)
≤ 1

δ(G)
.
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We have,

PB(G) =
∑

uv∈E(G)

√

dG(u) +
√

dG(v)
√

dG(u) + dG(v)− 2

[

1
√

dG(u)dG(v)

]

.

(i) By virtue of the above facts, we see that

2
√

δ(G)√
2
√

∆(G)− 1
P (G) ≤ PB(G) ≤ 2

√

∆(G)√
2
√

δ(G)− 1
P (G)

√

2δ(G)

∆(G)− 1
P (G) ≤ PB(G) ≤

√

2∆(G)

δ(G)− 1
P (G).

(ii) Also δ(G) ≤
√

dG(u) dG(v) ≤ ∆(G). We have

PB(G) =
∑

uv∈E(G)

√

dG(u) +
√

dG(v)
√

dG(u) + dG(v)− 2

[

√

dG(u)dG(v)

dG(u)dG(v)

]

.

By virtue of the above facts, we see that

2
√

δ(G)√
2
√

∆(G)− 1
δ(G)M∗

2 (G) ≤ PB(G) ≤ 2
√

∆(G)√
2
√

δ(G)− 1
∆(G)M∗

2 (G)

√

2δ(G)

∆(G)− 1
δ(G)M∗

2 (G) ≤ PB(G) ≤
√

2∆(G)

δ(G)− 1
∆(G)M∗

2 (G).

Thus the results follow.

To prove our next result, we make use of the following definition of the sum
connectivity Banhatti index SB(G) to obtain the upper bound and characteriza-
tion of PB(G).

The sum connectivity Banhatti index of a graph G is defined as

SB(G) =
∑

ue

1
√

dG(u) + dG(e)
,

where ue means that the vertex u and edge e are incident in G. This connectivity
based index is put forward by Kulli et al. [9].

Theorem 9. For any (n,m)-connected graph G with δ(G) ≥ 2 and n ≥ 3 vertices,

PB(G) ≤ SB(G).

Further, equality is attained if and only if G ∼= Cn.
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Proof. Let G be a connected graph with δ(G) ≥ 2 and n ≥ 3 vertices. Then

dG(u)dG(e) ≥ dG(u) + dG(e)
∑

ue

1
√

dG(u)dG(e)
≤

∑

ue

1
√

dG(u) + dG(e)

PB(G) ≤ SB(G).

Clearly, equality is attained

⇔ dG(u) dG(e) = dG(u) + dG(e)

⇔ dG(u) = dG(v) = 2

⇔ G ∼= Cn.

Now, we obtain the lower bound of PB(G) in terms of the order n, δ(G) and
∆(G) of a graph G.

Theorem 10. For any (n,m)-connected graph G with n ≥ 3 vertices,

PB(G) ≥ n δ(G)
√

2∆(G)(∆(G)− 1)
.

Further, equality is attained if and only if G is regular.

Proof. We have

PB(G) =
∑

e=uv∈E(G)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

=
1

2

∑

u∈V (G)

∑

v∈N(u)

[

1
√

dG(u)dG(uv)
+

1
√

dG(v)dG(uv)

]

,

where N(u) = {v ∈ V (G) : uv ∈ E(G)},

=
1

2

∑

u∈V (G)

∑

v∈N(u)

1
√

dG(e)

[

1
√

dG(u)
+

1
√

dG(v)

]

≥ 1

2

∑

u∈V (G)

dG(u)
√

dG(u) + ∆(G)− 2

[

1
√

dG(u)
+

1
√

∆(G)

]

≥ n

2
× δ(G)√

2
√

∆(G)− 1
× 2

√

∆(G)
≥ n δ(G)

√

2∆(G)(∆(G)− 1)
.

Further, equality is attained if and only if dG(u) + dG(v) = 2δ(G) = 2∆(G),
for each uv ∈ E(G), which implies that G is a regular graph.
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Now, we obtain lower and upper bounds of PB(G) in terms of order n.
Let aij be the number of edges of a connected graph G, which joins the

vertices of degree i and j, where 1 ≤ i ≤ j ≤ ∆(G) and ni denotes the number of
vertices with degree i in G for i = 1, 2, . . . ,∆(G). Further, let xy = 1√

x(x+y−2)
.

Lemma 11. If x ≤ y with x, y > 0, then xi ≥ yi, where xi = 1√
x(x+i−2)

.

Proof. Since x ≤ y, we have
√

x(x+ i− 2) ≤
√

y(y + i− 2), 1√
x(x+i−2)

≥
1√

y(y+i−2)
. Hence the result follows.

For instance, we have

1i = 1√
1(1+i−2)

=
1√
i− 1

,

2i = 1√
2(2+i−2)

=
1√
2i

and so on.

Theorem 12. For any connected graph G with n ≥ 3 vertices and no pendant

vertices,

n
√
2

√

(n− 1)(n− 2)
≤ PB(G) ≤ n.

Further, equality holds in lower bound if and only if G ∼= C3 and an equality holds

in upper bound if and only if G ∼= Cn, n ≥ 3.

Proof. Let G be a connected graph with n ≥ 3 vertices and ∆(G) ≤ n − 1. If
G has no pendant vertices, we have δ(G) ≥ 2. Since 1√

∆(G)−1
≥ 1√

n−1
and by

Theorem 10, the desired lower bound of PB(G) follows. For obtaining the upper
bound of PB(G), we consider

PB(G) =
∑

uv∈E(G)

1
√

dG(u)dG(e)

= 2
∑

2≤i≤∆(G)

x2i2i+ 2
∑

3≤i≤j≤∆(G)

xijij.

From the above lemma, for x ≤ y, xi ≥ yi, we have 2i ≥ 3i ≥ · · ·. Therefore

PB(G) ≤ 2





∑

2≤i≤∆(G)

x2i



 2i + 2





∑

3≤i≤j≤∆(G)

xij



 2i

≤ 2
(

n2 + n3 + · · ·+ n∆(G)

)

2i, since n1 = 0.



The Product Connectivity Banhatti Index of a Graph 513

But as i ≥ 2, 2i ≤ 1
2 . Therefore PB(G) ≤ 2n

(

1
2

)

= n. The equality case
attains directly from Proposition 1.

Next, we obtain lower and upper bounds of PB(G) in terms of the size m,
minimum degree δ(G) and the maximum degree ∆(G) of G.

Theorem 13. For any connected graph G with n ≥ 3 vertices and no pendant

vertices,

m

∆(G)

√

2δ(G)

∆(G)− 1
≤ PB(G) ≤ m

δ(G)

√

2∆(G)

δ(G)− 1
.

Further, equality in both lower and upper bounds is attained if and only if G is

regular.

Proof. Let G be a connected graph with n ≥ 3 vertices and no pendant vertices.
Clearly,

2(δ(G)− 1) ≤ dG(u) + dG(v)− 2 ≤ 2(∆(G)− 1)
√
2(
√

δ(G)− 1) ≤
√

dG(u) + dG(v)− 2 ≤
√
2(
√

∆(G)− 1)

1√
2(
√

∆(G)− 1)
≤ 1

√

dG(u) + dG(v)− 2
≤ 1√

2(
√

δ(G)− 1)

Also, 2
√

δ(G) ≤
√

dG(u) +
√

dG(v) ≤ 2
√

∆(G), and

1

∆(G)
≤ 1

√

dG(u)dG(v)
≤ 1

δ(G)
.

By virtue of the above facts, we have

PB(G) =
∑

uv∈E(G)

1
√

dG(u) + dG(v)− 2

[

√

dG(u) +
√

dG(v)
√

dG(u)dG(v)

]

≤ 1√
2
√

δ(G)− 1

2m
√

∆(G)

δ(G)
≤ m

δ(G)

√

2∆(G)

δ(G)− 1
.

Thus the upper bound follows. Similarly, PB(G) ≥ m
∆(G)

√

2δ(G)
∆(G)−1 follows. Sec-

ond part is obvious as for a regular graph G with δ(G) = ∆(G).

Now, we obtain lower and upper bounds of PB(G) in terms of the minimum
and maximum degrees, the number of pendant vertices and minimal non-pendant
vertices of G.
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Theorem 14. For any (n,m)-connected graph G with η pendant vertices and

minimal non-pendant vertex degree δ1(G),

η(1 +
√

∆(G)) + (m− η)
√
2

√

∆(G)(∆(G)− 1)
≤ PB(G) ≤ η(1 +

√

δ1(G)) + (m− η)
√
2

√

δ1(G)(δ1(G)− 1)
.

Proof. We have

PB(G) =
∑

e=uv∈E(G)

[

1
√

dG(u)dG(e)
+

1
√

dG(v)dG(e)

]

=
∑

e=uv∈E(G);dG(u)=1

[

1
√

dG(v)− 1
+

1
√

dG(v)(dG(v)− 1)

]

+
∑

e=uv∈E(G);dG(u),dG(v) 6=1

1
√

dG(e)

[

1
√

dG(u)
+

1
√

dG(v)

]

=
∑

e=uv∈E(G);dG(u)=1

√

dG(v) + 1
√

dG(v)
√

dG(v)− 1

+
∑

e=uv∈E(G);dG(u),dG(v) 6=1

1
√

dG(e)

[

1
√

dG(u)
+

1
√

dG(v)

]

≤ η(
√

δ1(G) + 1)
√

δ1(G)
√

δ1(G)− 1
+

(m− η)√
2
√

δ1(G)− 1
× 2

√

δ1(G)
.

Since 2(∆(G)− 1) ≥ dG(u) + dG(v)− 2 ≥ 2(δ1(G)− 1)

⇒ 1√
2
√

∆(G)− 1
≤ 1

√

dG(u) + dG(v)− 2
≤ 1√

2
√

δ1(G)− 1

and 1√
∆(G)

≤ 1√
dG(u)

≤ 1√
δ1(G)

. Thus the upper bound follows. Similarly,

PB(G) ≥ η(1 +
√

∆(G))
√

∆(G)(∆(G)− 1)
+

(m− η)
√
2√

2
√

∆(G)(∆(G)− 1)

≥ η(1 +
√

∆(G)) + (m− η)
√
2

√

∆(G)(∆(G)− 1)
.

Thus the lower bound follows.
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Remark 15. Equality is attained on both sides if and only if dG(u) = dG(v) =
∆(G) = δ1(G) for each uv ∈ E(G) with dG(u), dG(v) 6= 1 and dG(v) = ∆(G) =
δ1(G) for each uv ∈ E(G) with dG(u) = 1.

In order to prove our next result (lower bound) of PB(G) in terms of an
inverse edge degree of G, we make use of the following definition.

An inverse edge degree [12] of a graph G with no isolated edges is defined as

IED(G) =
∑

e=uv∈E(G)

1

dG(e)
.

Theorem 16. For any (n,m)-connected graph G with n ≥ 3 and no pendant

vertices,

PB(G) ≥ 2 IED(G).

Further, equality is attained if and only if G ∼= Cn.

Proof. Since δ(G) ≥ 2, we have dG(u) ≤ dG(e), for any e = uv ∈ E(G). This
implies that dG(u) dG(e) ≤ (dG(e))

2. Therefore

PB(G) =
∑

e=uv∈E(G)

[dG(u) dG(e)]
− 1

2 +
∑

e=uv∈E(G)

[dG(v) dG(e)]
− 1

2

≥
∑

e=uv∈E(G)

2

dG(uv)
≥ 2

∑

e=uv∈E(G)

1

dG(e)
.

Thus the lower bound follows. Equality holds if and only if dG(u)dG(e) = (dG(e))
2

⇔ dG(u) = dG(e)

⇔ G ∼= Cn.

In order to prove our next result (lower bound) of PB(G) in terms of the
size m and second K Banhatti index B2(G) of a graph G, we recall the following
facts.

If real valued function f(x) defined on an interval has a second derivative
f

′′

(x), then a necessary and sufficient condition for it to be strictly convex on
that interval is that f

′′

(x) > 0. For positive integer k, if f(x) is strictly convex,

then (by Jensen’s inequality) we have f
(

∑k
i=1

xi

k

)

≤ f(xi) with equality if and

only if x1 = x2 = · · · = xk, and if −f(x) is strictly convex, then the inequality is
reversed.

Theorem 17. For any (n,m)-connected graph G with n ≥ 3 vertices,

PB(G) ≥ (2m)
3

2

√

B2(G)
.

Further, equality is attained if and only if G is a regular graph.
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Proof. Let G be a connected graph with n ≥ 3 vertices. Then

PB(G) =
∑

ue

1
√

dG(u)dG(e)
=

∑

ue

[dG(u) dG(e)]
− 1

2 .

By Jensen’s inequality, 1√
x
is a convex function for x > 0, we have

∑

ue

[dG(u) dG(e)]
− 1

2

2m
≥

[

∑

ue

dG(u) dG(e)

2m

]− 1

2

.

Therefore

PB(G) ≥ 2m

[

∑

ue

dG(u) dG(e)

2m

]− 1

2

≥ 2
√
2m

√
m

√
∑

ue [dG(u)dG(e)]
.

Thus the result follows. The equality case attains directly from Proposition 6.

4. Conclusions

Being new topological index of a graph G in terms of incident vertex-edge de-
grees, the product connectivity Banhatti index is an invariant, whose properties
are relatively unknown. For the comparative advantages, applications and math-
ematical point of view, many questions are suggested by this research, among
them are the following.

1. Find the extremal values and extremal graphs of the product connectivity
Banhatti index.

2. Find the relationship between PB(G) and other degree based topological
indices.

3. Find the values of the product connectivity Banhatti index of all classes of
chemical graphs and compare with other degree based topological indices,
when ∆(G) ≤ 4. Also, explore some results towards QSPR/QSAR Model.

4. Characterize the product connectivity Banhatti index in terms of other degree
based topological indices.
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