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MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS
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Abstract

Plesnik proved that the edge connectivity and minimum degree are equal
for diameter 2 graphs. We provide a streamlined proof of this fact and
characterize the diameter 2 graphs with a nontrivial minimum edge cut.
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Let G be a graph. For S, T ⊆ V (G), let [S, T ] be the set of edges with one
end in S and the other in T . An edge cut of a graph G is a set X = [S, T ], of
edges so that G−X has more components than G. The edge connectivity λ (G)
of a connected graph is the smallest size of an edge cut. A disconnected graph
has λ (G) = 0. Often we can express an edge cut as

[

S, S
]

, where S = V (G) \ S.

Denote the minimum degree of G by δ (G). It is well-known that λ (G) ≤
δ (G), since the edges incident with a vertex of minimum degree form an edge
cut. Plesnik proved that this is an equality for diameter 2 graphs. We present a
shorter proof.
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Theorem 1 [3]. If G has diameter 2, then λ (G) = δ (G).

Proof. Let
[

S, S
]

be a minimum edge cut. Now S and S cannot both have
vertices u and v that are not incident with

[

S, S
]

, for then diam (G) ≥ d (u, v) ≥
3. Say S has every vertex incident with

[

S, S
]

. Thus |S| ≤
∣

∣

[

S, S
]
∣

∣ = λ (G) ≤
δ (G). Each vertex in S is incident with at most |S| − 1 edges in G [S], and so at
least δ (G)− |S|+ 1 edges in

[

S, S
]

. Thus

λ (G) =
∣

∣

[

S, S
]
∣

∣ ≥ |S|
(

δ (G)− |S|+ 1
)

.

This last expression attains its minimum value of δ (G) when |S| = 1 or |S| =
δ (G). In both cases we have λ (G) ≥ δ (G), so λ (G) = δ (G).

The following corollary follows from the proof of this theorem.

Corollary 2 [1]. If G has diameter 2, then one of the subgraphs on one side of

a minimum edge cut is either K1 or Kδ(G).

A trivial edge cut is an edge cut whose deletion isolates a single vertex. To
study those diameter 2 graphs with a nontrivial minimum edge cut, we define the
following set of graphs.

Definition. Let G be the set of graphs that contains the Cartesian product
Kn

2

�K2, n ≥ 4, and those graphs that can be constructed as follows. Let H1 be
a graph with order d > 1 and δ (H1) ≥ d− r− 1 and H2 be a graph with order r.
Add a perfect matching between Kd and H1 and join all the vertices of H1 and
H2 (see Figure 1).
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Figure 1. A graph in G with d = 3, H1 = P3, and H2 = 2K1.

Theorem 3. A graph has diameter 2 and contains a non-trivial minimum edge

cut if and only if it is in set G.
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Proof. (⇐) It is readily checked that a graph G ∈ G has diameter 2, δ (G) =
d = λ (G), and contains a nontrivial minimum edge cut.

(⇒) Let G have diameter 2 and contain a non-trivial minimum edge cut
[

S, S
]

, and let d = δ (G). Then (say) S = Kd, and the order of S is at least
d. If it is exactly d, then G = Kn

2

� K2. If not, then S contains vertices not
adjacent to any vertex of Kd. Let H2 be the subgraph induced by these vertices
and H1 = S −H2. Then each vertex of H2 is adjacent to each vertex of H1 since
otherwise G would not have diameter 2. Since G has minimum degree d, H1 must
have minimum degree at least d− r − 1.

Corollary 4. If G ∈ G, then it has between d and max {n− d, 3d− 1} trivial

minimum edge cuts.

Proof. The number of trivial minimum edge cuts is the number of vertices of
minimum degree. All the vertices of Kd have minimum degree, so this is at least
d. Now Kn

2

� K2 has n = 2d such vertices. If G is regular, then it has at most
d+ d+ (d− 1) vertices since each vertex in H1 has degree at least 1 + n (H2). If
n (H2) ≥ d then each vertex in H1 has degree more than d, so there are at most
n− d minimum degree vertices.

Corollary 5. All graphs in set G have a single non-trivial minimum edge cut

except for C4 and C5.

Proof. Let G ∈ G, so δ (G) ≥ 2. If δ (G) = 2, then C4 and C5 have two and five
nontrivial edge cuts, respectively. Now C5 + e has a single non-trivial minimum
edge cut. Let u and v be the vertices in H1. If there are at least two vertices in
H2, then G has a spanning subgraph with n− 4 u− v paths of length 2 and one
u− v path of length 3. Hence the result holds for δ (G) = 2.

Let d = δ (G) > 2. Assume the result holds for graphs with minimum degree
d − 1. Then no nontrivial minimum edge cut separates vertices in Kd. Now
H = G − Kd has diam (H) ≤ 2 and δ (H) ≥ d − 1. Now H is not C4 or C5,
so it has at most one nontrivial minimum edge cut. If it has such a cut, then
there are at least d − 1 vertices on each side of it, so n (H2) ≥ d − 2. Then H

contains spanning subgraph Kd,n(H2). But this graph has no nontrivial minimum
edge cut, so neither does H. Then G has no other nontrivial minimum edge cut.

Finally, we consider the nature of minimum edge cuts in almost all graphs.

Theorem 6. Almost all graphs have a single minimum edge cut, which is trivial.

Proof. In random graph theory, it is known that almost all graphs have diameter
2 [1]. This implies that λ (G) = δ (G) for almost all graphs. Erdős and Wilson
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[2] showed that almost all graphs have a unique vertex of maximum degree. By
symmetry, almost all graphs have a unique vertex of minimum degree.

Those graphs with a minimum non-trivial edge cut have the structure de-
scribed in Theorem 3, including at least δ (G) > 1 vertices of minimum degree.
Hence almost all graphs have a single minimum edge cut, which is trivial.
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