Discussiones Mathematicae Graph Theory 39 (2019) 605–608 doi:10.7151/dmgt.2097

Note

MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS

Allan Bickle

Department of Mathematics
Penn State Altoona
3000 Ivyside Park
Altoona, PA 16601 USA

e-mail: allanbickle.wordpress.com

AND

ALLEN SCHWENK

Department of Mathematics Western Michigan University 1903 W. Michigan Kalamazoo, MI 49008 USA

e-mail: schwenk@wmich.edu

Abstract

Plesnik proved that the edge connectivity and minimum degree are equal for diameter 2 graphs. We provide a streamlined proof of this fact and characterize the diameter 2 graphs with a nontrivial minimum edge cut.

Keywords: edge connectivity, diameter.

2010 Mathematics Subject Classification: 05C40.

Let G be a graph. For $S, T \subseteq V(G)$, let [S,T] be the set of edges with one end in S and the other in T. An edge cut of a graph G is a set X = [S,T], of edges so that G - X has more components than G. The edge connectivity $\lambda(G)$ of a connected graph is the smallest size of an edge cut. A disconnected graph has $\lambda(G) = 0$. Often we can express an edge cut as $[S, \overline{S}]$, where $\overline{S} = V(G) \setminus S$.

Denote the minimum degree of G by $\delta(G)$. It is well-known that $\lambda(G) \leq \delta(G)$, since the edges incident with a vertex of minimum degree form an edge cut. Plesnik proved that this is an equality for diameter 2 graphs. We present a shorter proof.

Theorem 1 [3]. If G has diameter 2, then $\lambda(G) = \delta(G)$.

Proof. Let $[S, \overline{S}]$ be a minimum edge cut. Now S and \overline{S} cannot both have vertices u and v that are not incident with $[S, \overline{S}]$, for then $diam(G) \ge d(u, v) \ge 3$. Say S has every vertex incident with $[S, \overline{S}]$. Thus $|S| \le |[S, \overline{S}]| = \lambda(G) \le \delta(G)$. Each vertex in S is incident with at most |S| - 1 edges in G[S], and so at least $\delta(G) - |S| + 1$ edges in $[S, \overline{S}]$. Thus

$$\lambda(G) = |[S, \overline{S}]| \ge |S| (\delta(G) - |S| + 1).$$

This last expression attains its minimum value of $\delta(G)$ when |S| = 1 or $|S| = \delta(G)$. In both cases we have $\lambda(G) \geq \delta(G)$, so $\lambda(G) = \delta(G)$.

The following corollary follows from the proof of this theorem.

Corollary 2 [1]. If G has diameter 2, then one of the subgraphs on one side of a minimum edge cut is either K_1 or $K_{\delta(G)}$.

A trivial edge cut is an edge cut whose deletion isolates a single vertex. To study those diameter 2 graphs with a nontrivial minimum edge cut, we define the following set of graphs.

Definition. Let \mathbb{G} be the set of graphs that contains the Cartesian product $K_{\frac{n}{2}} \square K_2$, $n \geq 4$, and those graphs that can be constructed as follows. Let H_1 be a graph with order d > 1 and $\delta(H_1) \geq d - r - 1$ and H_2 be a graph with order r. Add a perfect matching between K_d and H_1 and join all the vertices of H_1 and H_2 (see Figure 1).

Figure 1. A graph in \mathbb{G} with d=3, $H_1=P_3$, and $H_2=2K_1$.

Theorem 3. A graph has diameter 2 and contains a non-trivial minimum edge cut if and only if it is in set \mathbb{G} .

Proof. (\Leftarrow) It is readily checked that a graph $G \in \mathbb{G}$ has diameter 2, $\delta(G) = d = \lambda(G)$, and contains a nontrivial minimum edge cut.

(⇒) Let G have diameter 2 and contain a non-trivial minimum edge cut $[S, \overline{S}]$, and let $d = \delta(G)$. Then (say) $S = K_d$, and the order of \overline{S} is at least d. If it is exactly d, then $G = K_{\frac{n}{2}} \square K_2$. If not, then \overline{S} contains vertices not adjacent to any vertex of K_d . Let H_2 be the subgraph induced by these vertices and $H_1 = \overline{S} - H_2$. Then each vertex of H_2 is adjacent to each vertex of H_1 since otherwise G would not have diameter 2. Since G has minimum degree d, H_1 must have minimum degree at least d - r - 1.

Corollary 4. If $G \in \mathbb{G}$, then it has between d and $\max\{n-d, 3d-1\}$ trivial minimum edge cuts.

Proof. The number of trivial minimum edge cuts is the number of vertices of minimum degree. All the vertices of K_d have minimum degree, so this is at least d. Now $K_{\frac{n}{2}} \square K_2$ has n = 2d such vertices. If G is regular, then it has at most d + d + (d - 1) vertices since each vertex in H_1 has degree at least $1 + n(H_2)$. If $n(H_2) \ge d$ then each vertex in H_1 has degree more than d, so there are at most n - d minimum degree vertices.

Corollary 5. All graphs in set \mathbb{G} have a single non-trivial minimum edge cut except for C_4 and C_5 .

Proof. Let $G \in \mathbb{G}$, so $\delta(G) \geq 2$. If $\delta(G) = 2$, then C_4 and C_5 have two and five nontrivial edge cuts, respectively. Now $C_5 + e$ has a single non-trivial minimum edge cut. Let u and v be the vertices in H_1 . If there are at least two vertices in H_2 , then G has a spanning subgraph with n-4 u-v paths of length 2 and one u-v path of length 3. Hence the result holds for $\delta(G) = 2$.

Let $d = \delta(G) > 2$. Assume the result holds for graphs with minimum degree d-1. Then no nontrivial minimum edge cut separates vertices in K_d . Now $H = G - K_d$ has $diam(H) \le 2$ and $\delta(H) \ge d-1$. Now H is not C_4 or C_5 , so it has at most one nontrivial minimum edge cut. If it has such a cut, then there are at least d-1 vertices on each side of it, so $n(H_2) \ge d-2$. Then H contains spanning subgraph $K_{d,n(H_2)}$. But this graph has no nontrivial minimum edge cut, so neither does H. Then G has no other nontrivial minimum edge cut.

Finally, we consider the nature of minimum edge cuts in almost all graphs.

Theorem 6. Almost all graphs have a single minimum edge cut, which is trivial.

Proof. In random graph theory, it is known that almost all graphs have diameter 2 [1]. This implies that $\lambda(G) = \delta(G)$ for almost all graphs. Erdős and Wilson

[2] showed that almost all graphs have a unique vertex of maximum degree. By symmetry, almost all graphs have a unique vertex of minimum degree.

Those graphs with a minimum non-trivial edge cut have the structure described in Theorem 3, including at least $\delta(G) > 1$ vertices of minimum degree. Hence almost all graphs have a single minimum edge cut, which is trivial.

References

- [1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, 2005).
- P. Erdős and R.J. Wilson, On the chromatic index of almost all graphs, J. Combin. Theory Ser. B 23 (1977) 255–257. doi:10.1016/0095-8956(77)90039-9
- [3] J. Plesnik, Critical graphs of a given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. **30** (1975) 71–93.

Received 12 June 2017 Accepted 18 November 2017