Discussiones Mathematicae
Graph Theory 39 (2019) 567-573
doi:10.7151/dmgt.2096

SUFFICIENT CONDITIONS FOR MAXIMALLY
EDGE-CONNECTED AND SUPER-EDGE-CONNECTED
GRAPHS DEPENDING ON THE CLIQUE NUMBER

LuTz VOLKMANN

Lehrstuhl II fiir Mathematik
RWTH Aachen University
52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let G be a connected graph with minimum degree § and edge-connectivity
A. A graph is maximally edge-connected if A\ = ¢, and it is super-edge-
connected if every minimum edge-cut is trivial; that is, if every minimum
edge-cut consists of edges incident with a vertex of minimum degree. The
clique number w(G) of a graph G is the maximum cardinality of a complete
subgraph of G. In this paper, we show that a connected graph G with clique
number w(G) < r is maximally edge-connected or super-edge-connected if
the number of edges is large enough. These are generalizations of corre-
sponding results for triangle-free graphs by Volkmann and Hong in 2017.
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1. TERMINOLOGY AND INTRODUCTION

Let G be a finite and simple graph with vertex set V = V(G) and edge set
E = E(G). The order and size of G are defined by n = n(G) = |V(G)| and
m = m(G) = |E(G)|, respectively. If N(v) = Ng(v) is the neighborhood of the
vertex v € V(G), then we denote by d(v) = dg(v) = |N(v)| the degree of v and
by 6 = §(G) the minimum degree of the graph G. For a subset X C V(G), let
G[X] to denote the subgraph of G induced by X. For two subsets X and Y of
V(G) let [X,Y] be the set of edges with one endpoint in X and the other one
in Y. The cligue number w(G) of a graph G is the maximum cardinality of a
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complete subgraph of G. An edge-cut of a connected graph G is a set of edges
whose removal disconnects G. The edge connectivity A = M\(G) of a connected
graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts
of G. An edge-cut S is a minimum edge-cut or a A-cut if |S| = A(G). The
inequality A(G) < §(G) is immediate. We call a connected graph mazimally
edge-connected, if \(G) = §(G). In 1981, Bauer et al. [1] proposed the concept
of super-edge connectedness. A graph is called super-edge-connected or super-A
if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists
of edges incident with a vertex of minimum degree. Thus every super-edge-
connected graph is also maximally edge-connected.

Sufficient conditions for graphs to be maximally edge-connected or super-
edge-connected were given by several authors, see for example the survey paper
by Hellwig and Volkmann [3]. The starting point was an article by Chartrand
[2] in 1966. He observed that if ¢ is large enough, then the graph is maximally
edge-connected. A similar condition for super-edge-connectivity was given by
Kelmans [4] six years later. Over the years, these results have been strengthened
many times and in many ways.

Recently, Volkmann and Hong [6] showed that a connected graph or a con-
nected triangle-free graph is maximally edge-connected or super-A if the number
of edges is large enough. In particular, they received the following results.

Theorem 1. Let G be a connected triangle-free graph of order n > 2, size m,

minimum degree & and edge-connectivity A. If

n2
m > \‘4J —0(n—1-20)—1,

then A = 9.

Theorem 2. Let G be a connected triangle-free graph of order n, size m, mini-
mum degree § > 3 and edge-connectivity A. If

m > {(nzl)?J —6(n+1-—20),

then G is super-A.
In this paper, we will generalize Theorems 1 and 2 to connected graphs with

clique number w(G) < r for r > 2. Examples will demonstrate that our results
are sharp.
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2. MAXIMALLY EDGE-CONNECTED GRAPHS

The main tool of our article is the famous theorem of Turdn [5].

Theorem 3. Let r > 1 be an integer, and let G be a graph of order n. If the
cliqgue number w(G) < r, then

B(G)| < V;Tl .nQJ.

Theorem 4. Let r > 2 be an integer, and let G be a connected graph of order n,
size m, minimum degree § > 1, edge-connectivity A\ and clique number w(G) < r.

If
r—1 ré |? Q)
m>{ o <n2+2b_1J 2nb_1J>J+61,

then A = 4.
Proof. If § = 1, then A = § in every case. Thus assume in the following that
0 > 2. Suppose to the contrary that A < 6 — 1. Then there exist two disjoint
sets X, Y C V(G) with X UY = V(G) and |[X,Y]| = A. Assume, without loss
of generality, that | X| < |Y].

We first show that X contains at least & + 1 vertices. Otherwise, suppose
that X contains at most § vertices. Then we obtain

01X <Y da() < IX|(IX] = 1)+ A< S(IX[ 1) +5 - 1.
rzeX

Obviously, this is a contradiction and thus |X| > 6 + 1. Using Theorem 3, we
conclude that

) B < | S
and
@) E@GY)) < V‘ZW'J .

Next we show that |X| > |(r0)/(r — 1)]. Suppose to the contrary that |X| <
[(ré)/(r —1)] — 1. Since 2|E (G[X]) | = X ,cx da(z) — A, (1) implies that

|X|5§ZdG($)S2VT—212‘X‘2J+)\§(T_?‘X|2+5_1

rzeX
<x)=1 Q ro J—1>+5—1§\X|T_1< ro —1>+5—1
T r—1 r r—1
X — T x5 —1

r
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r(é 1)

and thus | X| < Using this argument once more, we arrive at

_ 2 _ _
|XM§Q¥JM{L+5—1§LXV 1 r(@0-1)
, -

= |X|(6-1)+6—1

+0-1

and thus |X| < 0 — 1, which contradicts the fact that |X| > ¢ + 1. Hence
|X| > [(rd)/(r—1)]. Since | X|+|Y| =n and | X| < n/2, the inequalities (1) and
(2) lead to

= [E(GIX])] + [E(GY])]+ A
(r—1) \XPJ (r—1) rYPJ

IN

+0—-1

+ +5—1

|
V_l n—|X|>J

_(r - 1) \XFJ

(T )QXP 01|XD)J+6—1

- (7"2_741) (n® +2(]X|* - n|X|))J +5-1

020 (2[5 ) 0

a contradiction to the hypothesis. Thus A = . [

IN

Theorem 1 is the special case r = 2 of Theorem 4. The next family of graphs
shows that Theorem 4 is best possible in the sense that

m= Vz_rl <”2+2 le% VflJ)J o

does not guarantee \ = §.

Example 5. Let r > 2 and ¢ > 1 be integers. Let H; and Hs be two disjoint
copies of the complete r-partite graph with ¢ vertices in each partite set. Define
H as the union of H; and Hs by adding § — 1 = g(r — 1) — 1 edges between
H, and Hj such that w(H) < r. Then H has order n = 2¢r, minimum degree
d = q(r — 1) such that

m(H) =q*r(r —1) +q(r—1) - 1

- VQ_TI (”2” Wlf‘% Vflm ot

but obviously, A(H) = §(H) — 1.
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3. SUPER EDGE-CONNECTED GRAPHS
Theorem 6. Let r > 2 be an integer, and let G be a connected graph of order n,

size m, minimum degree § > 2, edge-connectivity A\ and w(G) < r. If 6 > 3 or
r >3 and

o e (B R R (B R | B

then G is super-\.

Proof. Suppose to the contrary that GG is not super-A. Then there exist two
disjoint sets X,Y C V(G) such that XUY =V (G), | X|,|Y| > 2and |[X,Y]| = A
Assume, without loss of generality, that 2 < | X| < |Y|.

We first show that X contains at least § vertices. Otherwise, suppose that
X contains at most § — 1 vertices. Then we obtain

BIX| < 3 do(x) < [X|(1X] — 1) + A< (5 - 1)(|X| ~ 1) +35,
zeX

which implies that |X| < 1, contradicting that | X| > 2. Thus |X| > 6.
Next we show that |X| > |(rd)/(r —1)] — 1. If 6 = 2 and 7 > 3, then

X|>6=2>[2r)/(r—1)] 1= [(ré)/(r—1)] —

Let now § > 3. Suppose to the contrary that X contains at most |(rd)/(r—1)] —2
vertices. Since 2|E(G[X])| = >_.cx da(x) — A, we conclude from (1) that

X[6 <) da(x) <2 W_;’X’Q
zeX

r—1<{T5J_2> < r—l(r5 _2)+5
r r—1 r r—1

= X5~ 2(’"; x|+

. 2
(- DIXP

J—l—)\g
r

and thus [X| < 5 ) Using this argument once more, we arrive at
(r—1)|X? r—1 rd | X6
X6 < 0 <|X . 0= o
| X0 < +6 < | yr 2(74_1)+ 5 T

and thus |X| < 2, which contradicts the fact that 3 < ¢ < |X|. Hence we have
shown that |X| > |(r6)/(r —1)| —1 when § > 3 or 7 > 3. Since |X|+ Y| =n
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and | X| < n/2, the inequalities (1) and (2) lead to

m = ‘E(G[X])‘+|E(G[y])‘+)\§ {(7’—212\)(\ J . L(r —21:Y] J s

DI | oD R

< | P+ - x| 4

_|=D (n® +2(]X|* - n|X|))J +0

| 2r
~1 5 2 5
=D (2o (170 1) —an (|7 2 a) ) | 4,
2r r—1 r—1
a contradiction to the hypothesis. Thus G is super-\. [

Theorem 2 is the special case r = 2 of Theorem 6. The next family of graphs
shows that Theorem 6 is best possible in the sense that

e (e ea (2] ) - (25 )+

does not guarantee that the graph is super-A.

Example 7. Let r > 2 and ¢ > 3 be integers. Let H; be the complete r-partite
graph with ¢ — 1 vertices in one partite set and g vertices in r — 1 partite sets, and
let Hs be the complete r-partite graph with ¢ vertices in each partite set. Define
H as the union of Hy and Hj by adding 6 = ¢(r — 1) edges between H; and Hj
such that w(H) < r and §(H) = 6 = q(r — 1). Then H has order n = 2¢qr — 1,
minimum degree 6 = g(r — 1) such that

m(H) = ¢*r*—¢*r

but obviously, H is not super-\.

Our last example demonstrates that Theorem 6 is not valid for § = 2 and
r = 2 in general.

Example 8. Let ¢ > 2 be an integer, and let K,, be the complete bipartite
graph with the partite sets X = {z1,x2,..., 2} and Y = {y1,y2,...,y,}, and let
u and v be two further vertices. Define the graph H as the union of K, 4, u and
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v together with the edges uv, uzry and vaxs. Then H has order n(H) = 2q + 2,
minimum degree 6(H) = 2 and w(H) < 2. Furthermore,
mH)=¢+3>¢ —q+4

[t (e () (] )|

but H is not super-A.
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