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Abstract

LetG be a connected graph with minimum degree δ and edge-connectivity
λ. A graph is maximally edge-connected if λ = δ, and it is super-edge-
connected if every minimum edge-cut is trivial; that is, if every minimum
edge-cut consists of edges incident with a vertex of minimum degree. The
clique number ω(G) of a graph G is the maximum cardinality of a complete
subgraph of G. In this paper, we show that a connected graph G with clique
number ω(G) ≤ r is maximally edge-connected or super-edge-connected if
the number of edges is large enough. These are generalizations of corre-
sponding results for triangle-free graphs by Volkmann and Hong in 2017.
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1. Terminology and Introduction

Let G be a finite and simple graph with vertex set V = V (G) and edge set
E = E(G). The order and size of G are defined by n = n(G) = |V (G)| and
m = m(G) = |E(G)|, respectively. If N(v) = NG(v) is the neighborhood of the
vertex v ∈ V (G), then we denote by d(v) = dG(v) = |N(v)| the degree of v and
by δ = δ(G) the minimum degree of the graph G. For a subset X ⊆ V (G), let
G[X] to denote the subgraph of G induced by X. For two subsets X and Y of
V (G) let [X,Y ] be the set of edges with one endpoint in X and the other one
in Y . The clique number ω(G) of a graph G is the maximum cardinality of a
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complete subgraph of G. An edge-cut of a connected graph G is a set of edges
whose removal disconnects G. The edge connectivity λ = λ(G) of a connected
graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts
of G. An edge-cut S is a minimum edge-cut or a λ-cut if |S| = λ(G). The
inequality λ(G) ≤ δ(G) is immediate. We call a connected graph maximally

edge-connected, if λ(G) = δ(G). In 1981, Bauer et al. [1] proposed the concept
of super-edge connectedness. A graph is called super-edge-connected or super-λ
if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists
of edges incident with a vertex of minimum degree. Thus every super-edge-
connected graph is also maximally edge-connected.

Sufficient conditions for graphs to be maximally edge-connected or super-
edge-connected were given by several authors, see for example the survey paper
by Hellwig and Volkmann [3]. The starting point was an article by Chartrand
[2] in 1966. He observed that if δ is large enough, then the graph is maximally
edge-connected. A similar condition for super-edge-connectivity was given by
Kelmans [4] six years later. Over the years, these results have been strengthened
many times and in many ways.

Recently, Volkmann and Hong [6] showed that a connected graph or a con-
nected triangle-free graph is maximally edge-connected or super-λ if the number
of edges is large enough. In particular, they received the following results.

Theorem 1. Let G be a connected triangle-free graph of order n ≥ 2, size m,

minimum degree δ and edge-connectivity λ. If

m >

⌊

n2

4

⌋

− δ(n− 1− 2δ)− 1,

then λ = δ.

Theorem 2. Let G be a connected triangle-free graph of order n, size m, mini-

mum degree δ ≥ 3 and edge-connectivity λ. If

m >

⌊

(n+ 1)2

4

⌋

− δ(n+ 1− 2δ),

then G is super-λ.

In this paper, we will generalize Theorems 1 and 2 to connected graphs with
clique number ω(G) ≤ r for r ≥ 2. Examples will demonstrate that our results
are sharp.
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2. Maximally Edge-Connected Graphs

The main tool of our article is the famous theorem of Turán [5].

Theorem 3. Let r ≥ 1 be an integer, and let G be a graph of order n. If the

clique number ω(G) ≤ r, then

|E(G)| ≤

⌊

r − 1

2r
· n2

⌋

.

Theorem 4. Let r ≥ 2 be an integer, and let G be a connected graph of order n,
size m, minimum degree δ ≥ 1, edge-connectivity λ and clique number ω(G) ≤ r.
If

m >

⌊

r − 1

2r

(

n2 + 2

⌊

rδ

r − 1

⌋2

− 2n

⌊

rδ

r − 1

⌋

)⌋

+ δ − 1,

then λ = δ.

Proof. If δ = 1, then λ = δ in every case. Thus assume in the following that
δ ≥ 2. Suppose to the contrary that λ ≤ δ − 1. Then there exist two disjoint
sets X,Y ⊂ V (G) with X ∪ Y = V (G) and |[X,Y ]| = λ. Assume, without loss
of generality, that |X| ≤ |Y |.

We first show that X contains at least δ + 1 vertices. Otherwise, suppose
that X contains at most δ vertices. Then we obtain

δ|X| ≤
∑

x∈X

dG(x) ≤ |X|(|X| − 1) + λ ≤ δ(|X| − 1) + δ − 1.

Obviously, this is a contradiction and thus |X| ≥ δ + 1. Using Theorem 3, we
conclude that

(1) |E(G[X])| ≤

⌊

(r − 1)|X|2

2r

⌋

and

(2) |E(G[Y ])| ≤

⌊

(r − 1)|Y |2

2r

⌋

.

Next we show that |X| ≥
⌊

(rδ)/(r − 1)
⌋

. Suppose to the contrary that |X| ≤
⌊

(rδ)/(r − 1)
⌋

− 1. Since 2
∣

∣E (G[X])
∣

∣ =
∑

x∈X dG(x)− λ, (1) implies that

|X|δ ≤
∑

x∈X

dG(x) ≤ 2

⌊

(r − 1)|X|2

2r

⌋

+ λ ≤
(r − 1)|X|2

r
+ δ − 1

≤ |X|
r − 1

r

(⌊

rδ

r − 1

⌋

− 1

)

+ δ − 1 ≤ |X|
r − 1

r

(

rδ

r − 1
− 1

)

+ δ − 1

= |X|δ −
r − 1

r
|X|+ δ − 1
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and thus |X| ≤ r(δ−1)
r−1 . Using this argument once more, we arrive at

|X|δ ≤
(r − 1)|X|2

r
+ δ − 1 ≤ |X|

r − 1

r
·
r(δ − 1)

r − 1
+ δ − 1

= |X|(δ − 1) + δ − 1

and thus |X| ≤ δ − 1, which contradicts the fact that |X| ≥ δ + 1. Hence
|X| ≥ ⌊(rδ)/(r−1)⌋. Since |X|+ |Y | = n and |X| ≤ n/2, the inequalities (1) and
(2) lead to

m = |E(G[X])|+ |E(G[Y ])|+ λ

≤

⌊

(r − 1)|X|2

2r

⌋

+

⌊

(r − 1)|Y |2

2r

⌋

+ δ − 1

=

⌊

(r − 1)|X|2

2r

⌋

+

⌊

(r − 1)(n− |X|)2

2r

⌋

+ δ − 1

≤

⌊

(r − 1)

2r

(

|X|2 + (n− |X|)2
)

⌋

+ δ − 1

=

⌊

(r − 1)

2r

(

n2 + 2(|X|2 − n|X|)
)

⌋

+ δ − 1

≤

⌊

(r − 1)

2r

(

n2 + 2

⌊

rδ

r − 1

⌋2

− 2n

⌊

rδ

r − 1

⌋

)⌋

+ δ − 1,

a contradiction to the hypothesis. Thus λ = δ.

Theorem 1 is the special case r = 2 of Theorem 4. The next family of graphs
shows that Theorem 4 is best possible in the sense that

m =

⌊

r − 1

2r

(

n2 + 2

⌊

rδ

r − 1

⌋2

− 2n

⌊

rδ

r − 1

⌋

)⌋

+ δ − 1

does not guarantee λ = δ.

Example 5. Let r ≥ 2 and q ≥ 1 be integers. Let H1 and H2 be two disjoint
copies of the complete r-partite graph with q vertices in each partite set. Define
H as the union of H1 and H2 by adding δ − 1 = q(r − 1) − 1 edges between
H1 and H2 such that ω(H) ≤ r. Then H has order n = 2qr, minimum degree
δ = q(r − 1) such that

m(H) = q2r(r − 1) + q(r − 1)− 1

=

⌊

r − 1

2r

(

n2 + 2

⌊

rδ

r − 1

⌋2

− 2n

⌊

rδ

r − 1

⌋

)⌋

+ δ − 1,

but obviously, λ(H) = δ(H)− 1.
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3. Super Edge-Connected Graphs

Theorem 6. Let r ≥ 2 be an integer, and let G be a connected graph of order n,
size m, minimum degree δ ≥ 2, edge-connectivity λ and ω(G) ≤ r. If δ ≥ 3 or

r ≥ 3 and

m >

⌊

r − 1

2r

(

n2 + 2

(⌊

rδ

r − 1

⌋

− 1

)2

− 2n

(⌊

rδ

r − 1

⌋

− 1

)

)⌋

+ δ,

then G is super-λ.

Proof. Suppose to the contrary that G is not super-λ. Then there exist two
disjoint sets X,Y ⊂ V (G) such that X∪Y = V (G), |X|, |Y | ≥ 2 and |[X,Y ]| = λ.
Assume, without loss of generality, that 2 ≤ |X| ≤ |Y |.

We first show that X contains at least δ vertices. Otherwise, suppose that
X contains at most δ − 1 vertices. Then we obtain

δ|X| ≤
∑

x∈X

dG(x) ≤ |X|
(

|X| − 1
)

+ λ ≤ (δ − 1)
(

|X| − 1
)

+ δ,

which implies that |X| ≤ 1, contradicting that |X| ≥ 2. Thus |X| ≥ δ.

Next we show that |X| ≥
⌊

(rδ)/(r − 1)
⌋

− 1. If δ = 2 and r ≥ 3, then

|X| ≥ δ = 2 ≥
⌊

(2r)/(r − 1)
⌋

− 1 =
⌊

(rδ)/(r − 1)
⌋

− 1.

Let now δ ≥ 3. Suppose to the contrary that X contains at most ⌊(rδ)/(r−1)⌋−2
vertices. Since 2|E(G[X])| =

∑

x∈X dG(x)− λ, we conclude from (1) that

|X|δ ≤
∑

x∈X

dG(x) ≤ 2

⌊

(r − 1)|X|2

2r

⌋

+ λ ≤
(r − 1)|X|2

r
+ δ

≤ |X|
r − 1

r

(⌊

rδ

r − 1

⌋

− 2

)

+ δ ≤ |X|
r − 1

r

(

rδ

r − 1
− 2

)

+ δ

= |X|δ −
2(r − 1)

r
|X|+ δ

and thus |X| ≤ rδ
2(r−1) . Using this argument once more, we arrive at

|X|δ ≤
(r − 1)|X|2

r
+ δ ≤ |X|

r − 1

r
·

rδ

2(r − 1)
+ δ =

|X|δ

2
+ δ

and thus |X| ≤ 2, which contradicts the fact that 3 ≤ δ ≤ |X|. Hence we have
shown that |X| ≥

⌊

(rδ)/(r − 1)
⌋

− 1 when δ ≥ 3 or r ≥ 3. Since |X| + |Y | = n
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and |X| ≤ n/2, the inequalities (1) and (2) lead to

m =
∣

∣E (G[X])
∣

∣+
∣

∣E (G[Y ])
∣

∣+ λ ≤

⌊

(r − 1)|X|2

2r

⌋

+

⌊

(r − 1)|Y |2

2r

⌋

+ δ

=

⌊

(r − 1)|X|2

2r

⌋

+

⌊

(r − 1)(n− |X|)2

2r

⌋

+ δ

≤

⌊

(r − 1)

2r

(

|X|2 + (n− |X|)2
)

⌋

+ δ

=

⌊

(r − 1)

2r

(

n2 + 2(|X|2 − n|X|)
)

⌋

+ δ

≤

⌊

(r − 1)

2r

(

n2 + 2

(⌊

rδ

r − 1

⌋

− 1

)2

− 2n

(⌊

rδ

r − 1

⌋

− 1

)

)⌋

+ δ,

a contradiction to the hypothesis. Thus G is super-λ.

Theorem 2 is the special case r = 2 of Theorem 6. The next family of graphs
shows that Theorem 6 is best possible in the sense that

m =

⌊

r − 1

2r

(

n2 + 2

(⌊

rδ

r − 1

⌋

− 1

)2

− 2n

(⌊

rδ

r − 1

⌋

− 1

)

)⌋

+ δ

does not guarantee that the graph is super-λ.

Example 7. Let r ≥ 2 and q ≥ 3 be integers. Let H1 be the complete r-partite
graph with q−1 vertices in one partite set and q vertices in r−1 partite sets, and
let H2 be the complete r-partite graph with q vertices in each partite set. Define
H as the union of H1 and H2 by adding δ = q(r − 1) edges between H1 and H2

such that ω(H) ≤ r and δ(H) = δ = q(r − 1). Then H has order n = 2qr − 1,
minimum degree δ = q(r − 1) such that

m(H) = q2r2 − q2r

=

⌊

r − 1

2r

(

n2 + 2

(⌊

rδ

r − 1

⌋

− 1

)2

− 2n

(⌊

rδ

r − 1

⌋

− 1

)

)⌋

+ δ

but obviously, H is not super-λ.

Our last example demonstrates that Theorem 6 is not valid for δ = 2 and
r = 2 in general.

Example 8. Let q ≥ 2 be an integer, and let Kq,q be the complete bipartite
graph with the partite sets X = {x1, x2, . . . , xq} and Y = {y1, y2, . . . , yq}, and let
u and v be two further vertices. Define the graph H as the union of Kq,q, u and
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v together with the edges uv, ux1 and vx2. Then H has order n(H) = 2q + 2,
minimum degree δ(H) = 2 and ω(H) ≤ 2. Furthermore,

m(H) = q2 + 3 > q2 − q + 4

=

⌊

r − 1

2r

(

n2 + 2

(⌊

rδ

r − 1

⌋

− 1

)2

− 2n

(⌊

rδ

r − 1

⌋

− 1

)

)⌋

+ δ

but H is not super-λ.

References

[1] D. Bauer, C. Suffel, F. Boesch and R. Tindell, Connectivity extremal problems and

the design of reliable probabilistic networks, in: The Theory and Applications of
Graphs, Kalamazoo MI (Wiley, New York, 1981) 45–54.

[2] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J.
Appl. Math. 14 (1966) 778–781.
doi:10.1137/0114065

[3] A. Hellwig and L. Volkmann, Maximally edge-connected and vertex-connected

graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265–3296.
doi:10.1016/j.disc.2007.06.035

[4] A.K. Kelmans Asymptotic formulas for the probability of k-connectedness of ran-

dom graphs, Theory Probab. Appl. 17 (1972) 243–254.
doi:10.1137/1117029

[5] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941)
436–452, in Hungarian.

[6] L. Volkmann and Z.-M. Hong, Sufficient conditions for maximally edge-connected

and super-edge-connected graphs, Commun. Comb. Optim. 2 (2017) 35–41.

Received 8 June 2017
Revised 19 October 2017

Accepted 23 October 2017

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1137/0114065
http://dx.doi.org/10.1016/j.disc.2007.06.035
http://dx.doi.org/10.1137/1117029
http://www.tcpdf.org

