SUFFICIENT CONDITIONS FOR MAXIMALLY EDGE-CONNECTED AND SUPER-EDGE-CONNECTED GRAPHS DEPENDING ON THE CLIQUE NUMBER

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if $\lambda=\delta$, and it is super-edgeconnected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number $\omega(G)$ of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number $\omega(G) \leq r$ is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.

Keywords: edge-connectivity, clique number, maximally edge-connected graphs, super-edge-connected graphs.
2010 Mathematics Subject Classification: 05C40.

1. Terminology and Introduction

Let G be a finite and simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order and size of G are defined by $n=n(G)=|V(G)|$ and $m=m(G)=|E(G)|$, respectively. If $N(v)=N_{G}(v)$ is the neighborhood of the vertex $v \in V(G)$, then we denote by $d(v)=d_{G}(v)=|N(v)|$ the degree of v and by $\delta=\delta(G)$ the minimum degree of the graph G. For a subset $X \subseteq V(G)$, let $G[X]$ to denote the subgraph of G induced by X. For two subsets X and Y of $V(G)$ let $[X, Y]$ be the set of edges with one endpoint in X and the other one in Y. The clique number $\omega(G)$ of a graph G is the maximum cardinality of a
complete subgraph of G. An edge-cut of a connected graph G is a set of edges whose removal disconnects G. The edge connectivity $\lambda=\lambda(G)$ of a connected graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts of G. An edge-cut S is a minimum edge-cut or a λ-cut if $|S|=\lambda(G)$. The inequality $\lambda(G) \leq \delta(G)$ is immediate. We call a connected graph maximally edge-connected, if $\lambda(G)=\delta(G)$. In 1981, Bauer et al. [1] proposed the concept of super-edge connectedness. A graph is called super-edge-connected or super- λ if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. Thus every super-edgeconnected graph is also maximally edge-connected.

Sufficient conditions for graphs to be maximally edge-connected or super-edge-connected were given by several authors, see for example the survey paper by Hellwig and Volkmann [3]. The starting point was an article by Chartrand [2] in 1966. He observed that if δ is large enough, then the graph is maximally edge-connected. A similar condition for super-edge-connectivity was given by Kelmans [4] six years later. Over the years, these results have been strengthened many times and in many ways.

Recently, Volkmann and Hong [6] showed that a connected graph or a connected triangle-free graph is maximally edge-connected or super- λ if the number of edges is large enough. In particular, they received the following results.

Theorem 1. Let G be a connected triangle-free graph of order $n \geq 2$, size m, minimum degree δ and edge-connectivity λ. If

$$
m>\left\lfloor\frac{n^{2}}{4}\right\rfloor-\delta(n-1-2 \delta)-1
$$

then $\lambda=\delta$.

Theorem 2. Let G be a connected triangle-free graph of order n, size m, minimum degree $\delta \geq 3$ and edge-connectivity λ. If

$$
m>\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor-\delta(n+1-2 \delta)
$$

then G is super- λ.

In this paper, we will generalize Theorems 1 and 2 to connected graphs with clique number $\omega(G) \leq r$ for $r \geq 2$. Examples will demonstrate that our results are sharp.

2. Maximally Edge-Connected Graphs

The main tool of our article is the famous theorem of Turán [5].
Theorem 3. Let $r \geq 1$ be an integer, and let G be a graph of order n. If the clique number $\omega(G) \leq r$, then

$$
|E(G)| \leq\left\lfloor\frac{r-1}{2 r} \cdot n^{2}\right\rfloor .
$$

Theorem 4. Let $r \geq 2$ be an integer, and let G be a connected graph of order n, size m, minimum degree $\delta \geq 1$, edge-connectivity λ and clique number $\omega(G) \leq r$. If

$$
m>\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left\lfloor\frac{r \delta}{r-1}\right\rfloor^{2}-2 n\left\lfloor\frac{r \delta}{r-1}\right\rfloor\right)\right\rfloor+\delta-1
$$

then $\lambda=\delta$.
Proof. If $\delta=1$, then $\lambda=\delta$ in every case. Thus assume in the following that $\delta \geq 2$. Suppose to the contrary that $\lambda \leq \delta-1$. Then there exist two disjoint sets $X, Y \subset V(G)$ with $X \cup Y=V(G)$ and $|[X, Y]|=\lambda$. Assume, without loss of generality, that $|X| \leq|Y|$.

We first show that X contains at least $\delta+1$ vertices. Otherwise, suppose that X contains at most δ vertices. Then we obtain

$$
\delta|X| \leq \sum_{x \in X} d_{G}(x) \leq|X|(|X|-1)+\lambda \leq \delta(|X|-1)+\delta-1 .
$$

Obviously, this is a contradiction and thus $|X| \geq \delta+1$. Using Theorem 3, we conclude that

$$
\begin{equation*}
|E(G[X])| \leq\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|E(G[Y])| \leq\left\lfloor\frac{(r-1)|Y|^{2}}{2 r}\right\rfloor \tag{2}
\end{equation*}
$$

Next we show that $|X| \geq\lfloor(r \delta) /(r-1)\rfloor$. Suppose to the contrary that $|X| \leq$ $\lfloor(r \delta) /(r-1)\rfloor-1$. Since $2|E(G[X])|=\sum_{x \in X} d_{G}(x)-\lambda,(1)$ implies that

$$
\begin{aligned}
|X| \delta & \leq \sum_{x \in X} d_{G}(x) \leq 2\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor+\lambda \leq \frac{(r-1)|X|^{2}}{r}+\delta-1 \\
& \leq|X| \frac{r-1}{r}\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)+\delta-1 \leq|X| \frac{r-1}{r}\left(\frac{r \delta}{r-1}-1\right)+\delta-1 \\
& =|X| \delta-\frac{r-1}{r}|X|+\delta-1
\end{aligned}
$$

and thus $|X| \leq \frac{r(\delta-1)}{r-1}$. Using this argument once more, we arrive at

$$
\begin{aligned}
|X| \delta & \leq \frac{(r-1)|X|^{2}}{r}+\delta-1 \leq|X| \frac{r-1}{r} \cdot \frac{r(\delta-1)}{r-1}+\delta-1 \\
& =|X|(\delta-1)+\delta-1
\end{aligned}
$$

and thus $|X| \leq \delta-1$, which contradicts the fact that $|X| \geq \delta+1$. Hence $|X| \geq\lfloor(r \delta) /(r-1)\rfloor$. Since $|X|+|Y|=n$ and $|X| \leq n / 2$, the inequalities (1) and (2) lead to

$$
\begin{aligned}
m & =|E(G[X])|+|E(G[Y])|+\lambda \\
& \leq\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor+\left\lfloor\frac{(r-1)|Y|^{2}}{2 r}\right\rfloor+\delta-1 \\
& =\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor+\left\lfloor\frac{(r-1)(n-|X|)^{2}}{2 r}\right\rfloor+\delta-1 \\
& \leq\left\lfloor\frac{(r-1)}{2 r}\left(|X|^{2}+(n-|X|)^{2}\right)\right\rfloor+\delta-1 \\
& =\left\lfloor\frac{(r-1)}{2 r}\left(n^{2}+2\left(|X|^{2}-n|X|\right)\right)\right\rfloor+\delta-1 \\
& \leq\left\lfloor\frac{(r-1)}{2 r}\left(n^{2}+2\left\lfloor\frac{r \delta}{r-1}\right\rfloor^{2}-2 n\left\lfloor\frac{r \delta}{r-1}\right\rfloor\right)\right\rfloor+\delta-1
\end{aligned}
$$

a contradiction to the hypothesis. Thus $\lambda=\delta$.
Theorem 1 is the special case $r=2$ of Theorem 4. The next family of graphs shows that Theorem 4 is best possible in the sense that

$$
m=\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left\lfloor\frac{r \delta}{r-1}\right\rfloor^{2}-2 n\left\lfloor\frac{r \delta}{r-1}\right\rfloor\right)\right\rfloor+\delta-1
$$

does not guarantee $\lambda=\delta$.
Example 5. Let $r \geq 2$ and $q \geq 1$ be integers. Let H_{1} and H_{2} be two disjoint copies of the complete r-partite graph with q vertices in each partite set. Define H as the union of H_{1} and H_{2} by adding $\delta-1=q(r-1)-1$ edges between H_{1} and H_{2} such that $\omega(H) \leq r$. Then H has order $n=2 q r$, minimum degree $\delta=q(r-1)$ such that

$$
\begin{aligned}
m(H) & =q^{2} r(r-1)+q(r-1)-1 \\
& =\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left\lfloor\frac{r \delta}{r-1}\right\rfloor^{2}-2 n\left\lfloor\frac{r \delta}{r-1}\right\rfloor\right)\right\rfloor+\delta-1
\end{aligned}
$$

but obviously, $\lambda(H)=\delta(H)-1$.

3. Super Edge-Connected Graphs

Theorem 6. Let $r \geq 2$ be an integer, and let G be a connected graph of order n, size m, minimum degree $\delta \geq 2$, edge-connectivity λ and $\omega(G) \leq r$. If $\delta \geq 3$ or $r \geq 3$ and

$$
m>\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)^{2}-2 n\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)\right)\right\rfloor+\delta
$$

then G is super- λ.
Proof. Suppose to the contrary that G is not super- λ. Then there exist two disjoint sets $X, Y \subset V(G)$ such that $X \cup Y=V(G),|X|,|Y| \geq 2$ and $|[X, Y]|=\lambda$. Assume, without loss of generality, that $2 \leq|X| \leq|Y|$.

We first show that X contains at least δ vertices. Otherwise, suppose that X contains at most $\delta-1$ vertices. Then we obtain

$$
\delta|X| \leq \sum_{x \in X} d_{G}(x) \leq|X|(|X|-1)+\lambda \leq(\delta-1)(|X|-1)+\delta,
$$

which implies that $|X| \leq 1$, contradicting that $|X| \geq 2$. Thus $|X| \geq \delta$.
Next we show that $|X| \geq\lfloor(r \delta) /(r-1)\rfloor-1$. If $\delta=2$ and $r \geq 3$, then

$$
|X| \geq \delta=2 \geq\lfloor(2 r) /(r-1)\rfloor-1=\lfloor(r \delta) /(r-1)\rfloor-1
$$

Let now $\delta \geq 3$. Suppose to the contrary that X contains at most $\lfloor(r \delta) /(r-1)\rfloor-2$ vertices. Since $2|E(G[X])|=\sum_{x \in X} d_{G}(x)-\lambda$, we conclude from (1) that

$$
\begin{aligned}
|X| \delta & \leq \sum_{x \in X} d_{G}(x) \leq 2\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor+\lambda \leq \frac{(r-1)|X|^{2}}{r}+\delta \\
& \leq|X| \frac{r-1}{r}\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-2\right)+\delta \leq|X| \frac{r-1}{r}\left(\frac{r \delta}{r-1}-2\right)+\delta \\
& =|X| \delta-\frac{2(r-1)}{r}|X|+\delta
\end{aligned}
$$

and thus $|X| \leq \frac{r \delta}{2(r-1)}$. Using this argument once more, we arrive at

$$
|X| \delta \leq \frac{(r-1)|X|^{2}}{r}+\delta \leq|X| \frac{r-1}{r} \cdot \frac{r \delta}{2(r-1)}+\delta=\frac{|X| \delta}{2}+\delta
$$

and thus $|X| \leq 2$, which contradicts the fact that $3 \leq \delta \leq|X|$. Hence we have shown that $|X| \geq\lfloor(r \delta) /(r-1)\rfloor-1$ when $\delta \geq 3$ or $r \geq 3$. Since $|X|+|Y|=n$
and $|X| \leq n / 2$, the inequalities (1) and (2) lead to

$$
\begin{aligned}
m & =|E(G[X])|+|E(G[Y])|+\lambda \leq\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor+\left\lfloor\frac{(r-1)|Y|^{2}}{2 r}\right\rfloor+\delta \\
& =\left\lfloor\frac{(r-1)|X|^{2}}{2 r}\right\rfloor+\left\lfloor\frac{(r-1)(n-|X|)^{2}}{2 r}\right\rfloor+\delta \\
& \leq\left\lfloor\frac{(r-1)}{2 r}\left(|X|^{2}+(n-|X|)^{2}\right)\right\rfloor+\delta \\
& =\left\lfloor\frac{(r-1)}{2 r}\left(n^{2}+2\left(|X|^{2}-n|X|\right)\right)\right\rfloor+\delta \\
& \leq\left\lfloor\frac{(r-1)}{2 r}\left(n^{2}+2\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)^{2}-2 n\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)\right)\right\rfloor+\delta,
\end{aligned}
$$

a contradiction to the hypothesis. Thus G is super- λ.
Theorem 2 is the special case $r=2$ of Theorem 6. The next family of graphs shows that Theorem 6 is best possible in the sense that

$$
m=\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)^{2}-2 n\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)\right)\right\rfloor+\delta
$$

does not guarantee that the graph is super- λ.
Example 7. Let $r \geq 2$ and $q \geq 3$ be integers. Let H_{1} be the complete r-partite graph with $q-1$ vertices in one partite set and q vertices in $r-1$ partite sets, and let H_{2} be the complete r-partite graph with q vertices in each partite set. Define H as the union of H_{1} and H_{2} by adding $\delta=q(r-1)$ edges between H_{1} and H_{2} such that $\omega(H) \leq r$ and $\delta(H)=\delta=q(r-1)$. Then H has order $n=2 q r-1$, minimum degree $\delta=q(r-1)$ such that

$$
\begin{aligned}
m(H) & =q^{2} r^{2}-q^{2} r \\
& =\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)^{2}-2 n\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)\right)\right\rfloor+\delta
\end{aligned}
$$

but obviously, H is not super- λ.
Our last example demonstrates that Theorem 6 is not valid for $\delta=2$ and $r=2$ in general.

Example 8. Let $q \geq 2$ be an integer, and let $K_{q, q}$ be the complete bipartite graph with the partite sets $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$, and let u and v be two further vertices. Define the graph H as the union of $K_{q, q}, u$ and
v together with the edges $u v, u x_{1}$ and $v x_{2}$. Then H has order $n(H)=2 q+2$, minimum degree $\delta(H)=2$ and $\omega(H) \leq 2$. Furthermore,

$$
\begin{aligned}
m(H) & =q^{2}+3>q^{2}-q+4 \\
& =\left\lfloor\frac{r-1}{2 r}\left(n^{2}+2\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)^{2}-2 n\left(\left\lfloor\frac{r \delta}{r-1}\right\rfloor-1\right)\right)\right\rfloor+\delta
\end{aligned}
$$

but H is not super- λ.

References

[1] D. Bauer, C. Suffel, F. Boesch and R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: The Theory and Applications of Graphs, Kalamazoo MI (Wiley, New York, 1981) 45-54.
[2] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778-781. doi:10.1137/0114065
[3] A. Hellwig and L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265-3296. doi:10.1016/j.disc.2007.06.035
[4] A.K. Kelmans Asymptotic formulas for the probability of k-connectedness of random graphs, Theory Probab. Appl. 17 (1972) 243-254. doi:10.1137/1117029
[5] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452, in Hungarian.
[6] L. Volkmann and Z.-M. Hong, Sufficient conditions for maximally edge-connected and super-edge-connected graphs, Commun. Comb. Optim. 2 (2017) 35-41.

Received 8 June 2017
Revised 19 October 2017
Accepted 23 October 2017

