ERDŐS-GALLAI-TYPE RESULTS FOR TOTAL MONOCHROMATIC CONNECTION OF GRAPHS

Hui Jiang ${ }^{1}$, Xueliang Li ${ }^{1,2}$
AND
Yingying Zhang ${ }^{1}$
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University
Tianjin 300071, China
${ }^{2}$ School of Mathematics and Statistics
Qinghai Normal University
Xining, Qinghai 810008, China
e-mail: jhuink@163.com
lxl@nankai.edu.cn
zyydlwyx@163.com

Abstract

A graph is said to be total-colored if all the edges and the vertices of the graph are colored. A total-coloring of a graph is a total monochromaticallyconnecting coloring (TMC-coloring, for short) if any two vertices of the graph are connected by a path whose edges and internal vertices have the same color. For a connected graph G, the total monochromatic connection number, denoted by $\operatorname{tmc}(G)$, is defined as the maximum number of colors used in a TMC-coloring of G. In this paper, we study two kinds of Erdős-Gallai-type problems for $\operatorname{tmc}(G)$ and completely solve them.

Keywords: total-colored graph, total monochromatic connection, Erdős-Gallai-type problem.
2010 Mathematics Subject Classification: 05C15, 05C35, 05C38, 05C40.

1. Introduction

In this paper, all graphs are simple, finite and undirected. We refer to book [1] for undefined notation and terminology in graph theory. Throughout this paper,
let n and m (or $m(G)$) denote the order (number of vertices) and size (number of edges) of a graph G, respectively. Moreover, a vertex of a connected graph is called a leaf if its degree is one; otherwise, it is an internal vertex. Let $l(T)$ and $q(T)$ denote the number of leaves and the number of internal vertices of a tree T, respectively, and let $l(G)=\max \{l(T) \mid T$ is a spanning tree of $G\}$ and $q(G)=\min \{q(T) \mid T$ is a spanning tree of $G\}$ for a connected graph G. Note that the sum of $l(G)$ and $q(G)$ is n for any connected graph G of order n. A path in an edge-colored graph is a monochromatic path if all the edges on the path have the same color. An edge-coloring of a connected graph is a monochromaticallyconnecting coloring (MC-coloring, for short) if any two vertices of the graph are connected by a monochromatic path of the graph. For a connected graph G, the monochromatic connection number of G, denoted by $m c(G)$, is defined as the maximum number of colors used in an MC-coloring of G. An extremal MCcoloring is an MC-coloring that uses $m c(G)$ colors. Note that $m c(G)=m$ if and only if G is a complete graph. The concept of $m c(G)$ was first introduced by Caro and Yuster [4] and has been well-studied recently. We refer the reader to $[2,6,7]$ for more details.

Jiang et al. [9] introduced the concept of total monochromatic connection of graphs. A graph is said to be total-colored if all the edges and the vertices of the graph are colored. A path in a total-colored graph is a total monochromatic path if all the edges and internal vertices on the path have the same color. A total-coloring of a graph is a total monochromatically-connecting coloring (TMCcoloring, for short) if any two vertices of the graph are connected by a total monochromatic path of the graph. For a connected graph G, the total monochromatic connection number, denoted by $\operatorname{tmc}(G)$, is defined as the maximum number of colors used in a TMC-coloring of G. An extremal TMC-coloring is a TMCcoloring that uses $\operatorname{tmc}(G)$ colors. It is easy to check that $\operatorname{tmc}(G)=m+n$ if and only if G is a complete graph. Moreover, Jiang et al. [8] determined the threshold function for a random graph to have $\operatorname{tmc}(G) \geq f(n)$, where $f(n)$ is a function satisfying $1 \leq f(n)<\frac{1}{2} n(n-1)+n$. Actually, these concepts are not only inspired by the concept of monochromatic connection number but also by the concepts of monochromatic vertex connection number and total rainbow connection number of connected graphs. For details about them we refer to [3, 10-12]. From the definition of the total monochromatic connection number, the following results are immediate.

Proposition 1.1 [9]. If G is a connected graph and H is a connected spanning subgraph of G, then $\operatorname{tmc}(G) \geq m(G)-m(H)+\operatorname{tmc}(H)$.

Theorem 1.2 [9]. For a connected graph $G, \operatorname{tmc}(G) \geq m-n+2+l(G)$.
In particular, $\operatorname{tmc}(G)=m-n+2+l(G)$ if G is a tree. Jiang et al. [9] also showed that there are dense graphs that still meet this lower bound.

Theorem 1.3 [9]. Let G be a connected graph of order $n>3$. If G satisfies any of the following properties, then $\operatorname{tmc}(G)=m-n+2+l(G)$.
(a) The complement \bar{G} of G is 4-connected.
(b) G is K_{3}-free.
(c) $\Delta(G)<n-\frac{2 m-3(n-1)}{n-3}$.
(d) $\operatorname{diam}(G) \geq 3$.
(e) G has a cut vertex.

Moreover, we gave an example [9] to show that the lower bound $m-n+2+$ $l(G)$ is not always attained.

Lemma 1.1 [9]. Let $G=K_{n_{1}, \ldots, n_{r}}$ be a complete multipartite graph with $n_{1} \geq$ $\cdots \geq n_{t} \geq 2$ and $n_{t+1}=\cdots=n_{r}=1$. Then $\operatorname{tmc}(G)=m+r-t$.

Let G be a connected graph and f be an extremal TMC-coloring of G that uses a given color c. Note that the subgraph H formed by the edges and vertices with color c is a tree where the color of each internal vertex is c, see [9]. Now we define the color tree as the tree formed by the edges and vertices with color c, denoted by T_{c}. If T_{c} has at least two edges, the color c is called non-trivial; otherwise, c is trivial. We call an extremal TMC-coloring simple if for any two non-trivial colors c and d, the corresponding trees T_{c} and T_{d} intersect in at most one vertex. If f is simple, then the leaves of T_{c} must have distinct colors different from color c. Moreover, a non-trivial color tree of f with m^{\prime} edges and q^{\prime} internal vertices is said to waste $m^{\prime}-1+q^{\prime}$ colors since the edges and internal vertices of a non-trivial color tree must have the same color. In fact, we can use at most $m+n$ colors to assign its edges and vertices with different colors. Thus, if f wastes x colors, then $\operatorname{tmc}(G)=m+n-x$. For the rest of this paper we will use these facts without further mentioning them. In addition, we list a helpful lemma below.

Lemma 1.2 [9]. Every connected graph G has a simple extremal TMC-coloring.
Among many interesting problems in extremal graph theory is the Erdős-Gallai-type problem, which is to determine the maximum or minimum value of a graph parameter with some given properties. The authors $[2,3]$ investigated two kinds of Erdős-Gallai-type problems for monochromatic connection number and monochromatic vertex connection number, respectively. Motivated by these, we study the following two kinds of Erdős-Gallai-type problems for the new parameter $\operatorname{tmc}(G)$.
Problem A. Given two positive integers n and k, compute the minimum integer $f(n, k)$ such that for any connected graph G of order n, if $|E(G)| \geq f(n, k)$ then $\operatorname{tmc}(G) \geq k$.

Problem B. Given two positive integers n and k, compute the maximum integer $g(n, k)$ such that for any connected graph G of order n, if $|E(G)| \leq g(n, k)$ then $\operatorname{tmc}(G) \leq k$.

Note that for a connected graph G with at least one edge we have $3 \leq$ $\operatorname{tmc}(G) \leq\binom{ n}{2}+n$, and that $g(n, k)$ does not exist for $3 \leq k \leq n-1$ since for a star S_{n} on n vertices we have $\operatorname{tmc}\left(S_{n}\right)=n$. Hence, for $f(n, k)$, it is trivial when $k=1,2$ and it is meaningless when $k>\binom{n}{2}+n$; for $g(n, k)$, it is trivial when $k>\binom{n}{2}+n$ and it is meaningless when $k<n$. Thus we just need to determine the exact values of $f(n, k)$ for $3 \leq k \leq\binom{ n}{2}+n$ and $g(n, k)$ for $n \leq k \leq\binom{ n}{2}+n$. Our main results are stated as follows.

Theorem 1.4. For any positive integers n and k with $3 \leq k \leq\binom{ n}{2}+n$,
(1)

$$
f(n, k)= \begin{cases}n-1 & \text { if } k=3, \\ n+k-t-2 & \text { if } k=\binom{t}{2}+t+2-s, \text { where } 0 \leq s \leq t-1 \\ & \text { and } 2 \leq t \leq n-2, \\ k & \text { if }\binom{n}{2}-n+4 \leq k \leq\binom{ n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor \text { except } \\ & \text { for } n \text { odd and } k=\binom{n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor \\ \binom{n}{2}-r & \text { if }\binom{n}{2}+n-3(r+1)<k \leq\binom{ n}{2}+n-3 r \\ & \text { where } 0 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \text { or } n \text { is odd } \\ & r=\left\lfloor\frac{n}{2}\right\rfloor \text { and } k=\binom{n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor .\end{cases}
$$

Theorem 1.5. For any positive integers n and k with $n \leq k \leq\binom{ n}{2}+n$,

$$
g(n, k)= \begin{cases}k-n+t & \text { if }\binom{n-t}{2}+t(n-t-1)+n \leq k \leq \tag{2}\\ \binom{n-t}{2}+t(n-t)+n-2 \\ k-n+t-1 & \text { if } k=\binom{n-t}{2}+t(n-t)+n-1 \\ \binom{n}{2}-1 & \text { if } k=\binom{n}{2}+n-1, \\ \binom{n}{2} & \text { if } k=\binom{n}{2}+n,\end{cases}
$$

for $2 \leq t \leq n-1$.
In the next sections we will give the proofs of the two theorems. The thoughts of our proofs are inspired by many ideas in [2] and [4].

2. Proof of Theorem 1.4

First, we give some useful lemmas.

Lemma 2.1 [5]. Let G be a connected graph with $|E(G)| \geq|V(G)|+\binom{t}{2}$ and $t \leq|V(G)|-3$. Then G has a spanning tree with at least $t+1$ leaves and this is best possible.

Given three non-negative integers n, t and s such that $2 \leq t \leq n-2$ and $0 \leq s \leq t-1$. We can find a graph $G_{t, s}$ on n vertices with $m\left(G_{t, s}\right)=n+\binom{t}{2}-1-s$ and $l\left(G_{t, s}\right)=t$. Construct $G_{t, s}$ as follows. First let H be the graph obtained from a complete graph K_{t+1} by replacing one edge $u v$ by a path of $n-t$ edges between the ends of $u v$; next we delete s edges between u and the vertices of $V\left(K_{t+1}\right) \backslash\{u, v\}$ from H. It can be checked that $m\left(G_{t, s}\right)=n+\binom{t}{2}-1-s$ and $l\left(G_{t, s}\right)=t$. Next we will show that $\operatorname{tmc}\left(G_{t, s}\right)=m\left(G_{t, s}\right)-n+2+l\left(G_{t, s}\right)$.

Figure 1. An example of $G_{t, s}$ where $n=10, t=5$ and $s=2$.
Lemma 2.2. Let G be the graph $G_{t, s}$ described above. Then $\operatorname{tmc}(G)=m-n+$ $2+l(G)$.
Proof. Let f be a simple extremal TMC-coloring of G. Suppose that f consists of k non-trivial color trees, denoted by T_{1}, \ldots, T_{k}. Observe that every vertex appears in at least one of the non-trivial color trees. Suppose $k \geq 2$. Let T_{i} and T_{j} be two non-trivial color trees of f, where $1 \leq i, j \leq k$. Since f is simple, there is at most one common vertex between T_{i} and T_{j}. If T_{i} and T_{j} have no common vertex, then there is a total monochromatic path between each vertex of $V\left(T_{i}\right)$ and each vertex of $V\left(T_{j}\right)$. If T_{i} and T_{j} have a common vertex w^{\prime}, then there is a total monochromatic path between each vertex of $V\left(T_{i}\right)$ and each vertex of $V\left(T_{j}\right) \backslash\left\{w^{\prime}\right\}$. Moreover, $\delta(G) \leq 2$. Hence, $k=2$ and there exists a common vertex w between T_{1} and T_{2}, which is a leaf of T_{1} and T_{2}, respectively. In addition, w is the unique vertex of degree two in G. If $t<n-2$, then there exist at least two vertices of degree two in G, a contradiction. If $t=n-2$, then there exists an edge between the two neighbors of w, a contradiction to the construction of G. Hence, $k=1$ and so $\operatorname{tmc}(G)=m-n+2+l(G)$.

Given two positive integers n and p with $\frac{n}{2}<p<n-2$, let $t=2(p+1)-n$ and G_{n}^{t} be the graph defined as follows. Partition the vertex set of the complete
graph K_{n} into $n-p$ vertex-classes $V_{1}, V_{2}, \ldots, V_{n-p}$, where $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=$ $\left|V_{n-p-1}\right|=2$ and $\left|V_{n-p}\right|=t$; for each $j \in\{1, \ldots, n-p\}$, select a vertex v_{j}^{*} from V_{j}, and delete all the edges joining v_{j}^{*} to the other vertices in V_{j}. Next we will show that $\operatorname{tmc}\left(G_{n}^{t}\right)=m\left(G_{n}^{t}\right)=\binom{n}{2}-n+p+2-t$.

Figure 2. An example of G_{n}^{t} where $n=8$ and $t=4$.
Lemma 2.3. Let G be the graph G_{n}^{t} described above. Then $\operatorname{tmc}(G)=m$.
Proof. Let f be a simple extremal TMC-coloring of G. Suppose that f consists of k non-trivial color trees, denoted by T_{1}, \ldots, T_{k}, where $t_{i}=\left|V\left(T_{i}\right)\right|$ and $q_{i}=q\left(T_{i}\right)$ for $1 \leq i \leq k$. Observe that every vertex appears in at least one of the non-trivial color trees. Note that $m-n+2+l(G)=m$ and $\operatorname{tmc}(G) \geq m$ by Theorem 1.2. As T_{i} has $t_{i}-1$ edges and q_{i} internal vertices, it wastes $t_{i}-2+q_{i}$ colors. To show $\operatorname{tmc}(G) \leq m$, we just need to show that f wastes at least n colors, i.e., $\sum_{i=1}^{k}\left(t_{i}-2+q_{i}\right) \geq n$. In fact, consider the spanning subgraph G^{\prime} consisting of the union of the T_{i} 's and let C_{1}, \ldots, C_{s} denote its components. We claim that for $1 \leq i \leq n-p$, the vertices of V_{i} are in the same component. Otherwise, there exist two nonadjacent vertices of V_{i} which are not total-monochromatically connected, a contradiction. Thus, the components C_{1}, \ldots, C_{s} form a partition of the vertex classes of G. Let C be a component of C_{1}, \ldots, C_{s}. If there is exactly one non-trivial color tree in C, it cannot be a star. Otherwise, there exist two nonadjacent vertices of the vertex class containing the center, which are not total-monochromatically connected, a contradiction. Hence, there exist at least two internal vertices. Then the non-trivial color tree of C wastes at least $|V(C)|-2+2=|V(C)|$ colors. Suppose C contains $k_{c}(\geq 2)$ non-trivial color trees, denoted by $T_{1}, \ldots, T_{k_{c}}$ without loss of generality. If $q_{i}=1$ for some $i \in\left\{1,2, \ldots, k_{c}\right\}$, then T_{i} is a star and the center of T_{i} must be in at least one other non-trivial color tree of C since the vertices of the vertex-class containing the center must be total-monochromatically connected. So we have that

$$
\begin{aligned}
\sum_{i=1}^{k_{c}}\left(t_{i}-2+q_{i}\right) & \geq \sum_{i=1, q_{i} \geq 2}^{k_{c}}\left(t_{i}-2+2\right)+\sum_{i=1, q_{i}=1}^{k_{c}}\left(t_{i}-2+1\right) \\
& =\sum_{i=1, q_{i} \geq 2}^{k_{c}} t_{i}+\sum_{i=1, q_{i}=1}^{k_{c}}\left(t_{i}-1\right)=\sum_{i=1}^{k_{c}} t_{i}-\sum_{i=1, q_{i}=1}^{k_{c}} 1 \\
& \geq|V(C)|+\sum_{i=1, q_{i}=1}^{k_{c}} 1-\sum_{i=1, q_{i}=1}^{k_{c}} 1=|V(C)|
\end{aligned}
$$

Then the non-trivial color trees of C waste at least $|V(C)|$ colors. Thus for $1 \leq i \leq s$ the non-trivial color trees of C_{i} waste at least $\left|V\left(C_{i}\right)\right|$ colors. Then f wastes at least $\sum_{i=1}^{s}\left|V\left(C_{i}\right)\right|=n$ colors and so $\operatorname{tmc}(G) \leq m$.

Lemma 2.4. Let n and p be two integers with $0 \leq p \leq n-3$. Then every connected graph G with n vertices and $m=\binom{n}{2}-p$ edges satisfies that $\operatorname{tmc}(G) \geq$ $\binom{n}{2}+n-3 p$ if $0 \leq p \leq \frac{n}{2}$ and $\operatorname{tmc}(G) \geq\binom{ n}{2}-p$ if $\frac{n}{2}<p \leq n-3$.

Proof. It is trivial for $p=0$, and so assume $1 \leq p \leq n-3$. Let \widetilde{G} be the graph obtained from \bar{G} by deleting all the isolated vertices. If $n(\widetilde{G}) \leq p+1(\leq n-2)$, then we can find at least two vertices v_{1}, v_{2} of degree $n-1$ in G. Take a star S with $E(S)=\left\{v_{1} v: v \in V(\widetilde{G})\right\}$. We give all the edges and the internal vertex in S one color, and every other edge and vertex in G a different fresh color. Obviously, it is a TMC-coloring of G, which wastes at most $n(\widetilde{G})$ colors. If $n(\widetilde{G}) \geq p+2$, say $n(\widetilde{G})=p+t(t \geq 2)$, then \widetilde{G} has at least t components since $m(\widetilde{G})=p$. Let u and v be two vertices of \widetilde{G} which are in two different components. We obtain a double star S^{\prime} in G by connecting u to each vertex in the same component with v of \widetilde{G} and v to the other vertices of \widetilde{G}. Assign all the edges and internal vertices in S^{\prime} one color, and all the other edges and vertices in G different new colors. Clearly, this is a TMC-coloring of G, which wastes $n(\widetilde{G})$ colors. If $1 \leq p \leq \frac{n}{2}$, then $n(\widetilde{G}) \leq 2 p$ since $m(\widetilde{G})=p$, implying $\operatorname{tmc}(G) \geq m+n-2 p=\binom{n}{2}+n-3 p$. If $\frac{n}{2}<p \leq n-3$, then we have that $\operatorname{tmc}(G) \geq\binom{ n}{2}-p$ since $n(\widetilde{G}) \leq n$.

The proof is now complete.
Now we are ready to prove Theorem 1.4.
Proof of Theorem 1.4. Clearly, $f(n, 3)=n-1$, so the assertion holds for $k=3$.

Suppose that $k=\binom{t}{2}+t+2-s$ where $0 \leq s \leq t-1$ and $2 \leq t \leq n-2$, namely $4 \leq k \leq\binom{ n}{2}-n+3$. If a connected graph G with n vertices satisfies $m(G) \geq$ $n+k-t-2$, then $l(G) \geq t$ by Lemma 2.1 since $n+k-t-2=n+\binom{t}{2}-s \geq n+\binom{t-1}{2}$. By Theorem 1.2, we have that $\operatorname{tmc}(G) \geq m-n+2+l(G) \geq n+k-t-2-n+2+t=$
k. Thus $f(n, k) \leq n+k-t-2$. To show $f(n, k) \geq n+k-t-2$, it suffices to find a connected graph G_{k} on n vertices such that $m\left(G_{k}\right)=n+k-t-3$ and $\operatorname{tmc}\left(G_{k}\right)<k$. Take G_{k} as the graph $G_{t, s}$ described in Lemma 2.2 such that $m\left(G_{k}\right)=n+\binom{t}{2}-1-s=n+k-t-3$ and $l\left(G_{k}\right)=t$. By Lemma 2.2, we have that $\operatorname{tmc}\left(G_{k}\right)=m\left(G_{k}\right)-n+2+l\left(G_{k}\right)=n+k-t-3-n+2+t=k-1<k$.

Assume that $\binom{n}{2}-n+4 \leq k=\binom{n}{2}-q \leq\binom{ n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor$ except for n odd and $k=\binom{n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor$. For a connected graph G with n vertices and $m(G)=\binom{n}{2}-q^{\prime} \geq k\left(q^{\prime} \leq q\right)$, it follows from Lemma 2.4 that $\operatorname{tmc}(G) \geq$ $\binom{n}{2}+n-3 q^{\prime} \geq\binom{ n}{2}-q^{\prime} \geq k$ if $0 \leq q^{\prime} \leq \frac{n}{2}$ and $\operatorname{tmc}(G) \geq\binom{ n}{2}-q^{\prime} \geq k$ if $\frac{n}{2}<q^{\prime} \leq q$, implying $f(n, k) \leq k$. To show $f(n, k) \geq k$, it suffices to find a connected graph G_{k} on n vertices such that $m\left(G_{k}\right)=k-1=\binom{n}{2}-q-1$ and $\operatorname{tmc}\left(G_{k}\right)<k=\binom{n}{2}-q$. Take G_{k} as G_{n}^{t} described in Lemma 2.3 such that $t=2(p+1)-n(p=q+1)$ and $m\left(G_{k}\right)=\binom{n}{2}-q-1$. By Lemma 2.3, we have that $\operatorname{tmc}\left(G_{k}\right)=m\left(G_{k}\right)=k-1<k$.

Suppose that $\binom{n}{2}+n-3(r+1)<k \leq\binom{ n}{2}+n-3 r\left(0 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right)$ or n is odd, $r=\left\lfloor\frac{n}{2}\right\rfloor$ and $k=\binom{n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor$. If a connected graph G on n vertices satisfies $m(G)=\binom{n}{2}-r^{\prime} \geq\binom{ n}{2}-r\left(r^{\prime} \leq r\right)$, then $\operatorname{tmc}(G) \geq\binom{ n}{2}+n-3 r^{\prime} \geq\binom{ n}{2}+n-3 r \geq k$ by Lemma 2.4. Thus, $f(n, k) \leq\binom{ n}{2}-r$. To show $f(n, k) \geq\binom{ n}{2}-r$, it suffices to find a connected graph G_{k} on n vertices such that $m\left(G_{k}\right)=\binom{n}{2}-r-1$ and $\operatorname{tmc}\left(G_{k}\right)<k$. For the case that $\binom{n}{2}+n-3(r+1)<k \leq\binom{ n}{2}+n-3 r$, where $0 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, take G_{k} as a complete multipartite graph $K_{n_{1}, \ldots, n_{n-(r+1)}}$ with $n_{1}=\cdots=n_{r+1}=2$ and $n_{r+2}=\cdots=n_{n-(r+1)}=1$. It can be checked that $m\left(G_{k}\right)=\binom{n}{2}-r-1$ and $\operatorname{tmc}\left(G_{k}\right)=m\left(G_{k}\right)+n-(r+1)-(r+1)=$ $\binom{n}{2}+n-3(r+1)<k$ by Lemma 1.1. For the case that n is odd, $r=\left\lfloor\frac{n}{2}\right\rfloor$ and $k=\binom{n}{2}+n-3\left\lfloor\frac{n}{2}\right\rfloor$, take G_{k} as G_{n}^{3} such that $m\left(G_{k}\right)=\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor-1$. By Lemma 2.3, we have that $\operatorname{tmc}\left(G_{k}\right)=m\left(G_{k}\right)=\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor-1<k$.

The proof is thus complete.

3. Proof of Theorem 1.5

In order to prove Theorem 1.5, we need the following lemma.
Lemma 3.1. Let G be a connected graph with n vertices and m edges. If $\binom{n-t}{2}+$ $t(n-t) \leq m \leq\binom{ n-t}{2}+t(n-t)+(t-2)$ for some $t \in\{2, \ldots, n-1\}$, then $\operatorname{tmc}(G) \leq m+n-t$. Moreover, the bound is sharp.

Proof. Let f be a simple extremal TMC-coloring of G. Since $2 \leq t \leq n-1$, we have $m \leq\binom{ n}{2}-1$. Then G is not the complete graph and there is at least one non-trivial color tree. Suppose that f consists of k non-trivial color trees, denoted by T_{1}, \ldots, T_{k} where $t_{i}=\left|V\left(T_{i}\right)\right|$ and $q_{i}=q\left(T_{i}\right)$ for $1 \leq i \leq k$. Since T_{i} has $t_{i}-1$ edges and q_{i} internal vertices, it wastes $t_{i}-2+q_{i}$ colors. In order to show $\operatorname{tmc}(G) \leq m+n-t$, we just need to show that f wastes at least t colors,
i.e., $\sum_{i=1}^{k}\left(t_{i}-2+q_{i}\right) \geq t$. Next it suffices to show that $\sum_{i=1}^{k}\left(t_{i}-2\right) \geq t-1$ since $\sum_{t_{i=1}}^{k} q_{i} \geq 1$. Note that each T_{i} can total-monochromatically connect at most $\binom{t_{i}-1}{2}$ pairs of nonadjacent vertices in G. Then we have

$$
\sum_{i=1}^{k}\binom{t_{i}-1}{2} \geq\binom{ n}{2}-m
$$

Suppose $\sum_{i=1}^{k}\left(t_{i}-2\right)<t-1$, that is, $\sum_{i=1}^{k}\left(t_{i}-1\right)<t-1+k$. Since T_{i} is nontrivial, we have $t_{i}-1 \geq 2$. Then $1 \leq k \leq t-2$. By straight forward convexity, the expression $\sum_{i=1}^{k}\binom{t_{i}-1}{2}$, subject to $t_{i}-1 \geq 2$, is maximized when $k-1$ of the $t_{i}^{\prime} \mathrm{s}$ equal 3 and one of the $t_{i}^{\prime} \mathrm{s}$, say t_{k}, is as large as it can be, namely, $t_{k}-1$ is the largest integer smaller than $(t-1+k)-2(k-1)=t-k+1$. Hence $t_{k}-1=t-k$. In this extremal case, we have that

$$
\sum_{i=1}^{k}\binom{t_{i}-1}{2} \leq(k-1)+\binom{t-k}{2} \leq\binom{ t-1}{2}
$$

In fact,

$$
\binom{t-1}{2}+m \leq\binom{ t-1}{2}+\binom{n-t}{2}+t(n-t)+(t-2)=\binom{n}{2}-1
$$

Hence, $\sum_{i=1}^{k}\binom{t_{i}-1}{2} \leq\binom{ n}{2}-m-1<\binom{n}{2}-m$, a contradiction.
Next we will show that the bound is sharp. Let G^{*} be the graph defined as follows. First take a complete $(n-t+1)$-partite graph with vertex-classes V_{1}, \ldots, V_{n-t+1} such that $\left|V_{j}\right|=1$ for $1 \leq j \leq n-t$ and $V_{n-t+1}=t$; then add the remaining (at most $t-2$) edges to V_{n-t+1} randomly. Clearly, G^{*} has a spanning subgraph isomorphic to a complete $(n-t+1)$-partite graph $K_{1, \ldots, 1, t}$. By Proposition 1.1 and Theorem 1.2, it follows that $\operatorname{tmc}(G) \geq m+n-t$. Hence, $t m c(G)=m+n-t$.

Proof of Theorem 1.5. It is trivial for the case that $k=\binom{n}{2}+n$. If $k=$ $\binom{n}{2}+n-1$, we have $g(n, k) \leq\binom{ n}{2}-1$ since $\operatorname{tmc}(G)=\binom{n}{2}+n$ for a complete graph G. If a connected graph G on n vertices satisfies $m(G) \leq\binom{ n}{2}-1$, then there exist two nonadjacent vertices which are total-monochromatically connected by a non-trivial color tree and so it wastes at least two colors, implying $\operatorname{tmc}(G) \leq$ $\binom{n}{2}+n-3<k$. Thus, $g(n, k) \geq\binom{ n}{2}-1$ and so $g(n, k)=\binom{n}{2}-1$.

For $\binom{n-t}{2}+t(n-t-1)+n \leq k \leq\binom{ n-t}{2}+t(n-t)+n-2$ where $2 \leq t \leq n-1$, if a connected graph G on n vertices satisfies $m(G) \leq k-n+t \leq\binom{ n-t}{2}+t(n-t)+t-2$, then $\operatorname{tmc}(G) \leq m(G)+n-t \leq k$ by Lemma 3.1. Hence, $g(n, k) \geq k-n+t$. To show $g(n, k) \leq k-n+t$, it suffices to find a connected graph G on n vertices such that $m(G)=k-n+t+1$ and $\operatorname{tmc}(G)>k$. If $t=2$, then $k=\binom{n}{2}+n-3$ and take
G as a complete graph K_{n}. Hence $\operatorname{tmc}(G)=\binom{n}{2}+n=k+3>k$. If $t \geq 3$, then take G as the graph G^{*} described in Lemma 3.1 such that $m(G)=k-n+t+1$. It follows from Lemma 3.1 that $\operatorname{tmc}(G)=m(G)+n-t=k+1>k$ for $\binom{n-t}{2}+t(n-$ $t-1)+n \leq k \leq\binom{ n-t}{2}+t(n-t)+n-3$, and $\operatorname{tmc}(G)=m(G)+n-(t-1)=k+2>k$ for $k=\binom{n-t}{2}+t(n-t)+n-2$. Thus $g(n, k)=k-n+t$.

For $k=\binom{n-t}{2}+t(n-t)+n-1$ where $2 \leq t \leq n-1$, if a connected graph G on n vertices satisfies $m(G) \leq k-n+t-1=\binom{n-t}{2}+t(n-t)+t-2$, then $\operatorname{tmc}(G) \leq m(G)+n-t \leq k-1<k$ by Lemma 3.1. Hence, $g(n, k) \geq k-n+t-1$. To show $g(n, k) \leq k-n+t-1$, it suffices to find a connected graph G on n vertices such that $m(G)=k-n+t$ and $\operatorname{tmc}(G)>k$. If $t=2$, take G as the complete graph K_{n} and then $\operatorname{tmc}(G)=\binom{n}{2}+n=k+2>k$. If $t \geq 3$, take G as the graph G^{*} described in Lemma 3.1 such that $m(G)=k-n+t$. It follows from Lemma 3.1 that $\operatorname{tmc}(G)=m(G)+n-(t-1)=k+1>k$. Thus, $g(n, k)=k-n+t-1$.

The proof is now complete.

Acknowledgments

The authors are very grateful to the referees for their helpful comments and suggestions. The project was supported by NSFC No. 11371205 and 11531011, and NSFQH No.2017-ZJ-790.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, 2008).
[2] Q. Cai, X. Li and D. Wu, Erdős-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33 (2017) 123-131. doi:10.1007/s10878-015-9938-y
[3] Q. Cai, X. Li and D. Wu, Some extremal results on the colorful monochromatic vertex-connectivity of a graph. arXiv: 1503.08941v1.
[4] Y. Caro and R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311 (2011) 1786-1792. doi:10.1016/j.disc.2011.04.020
[5] G. Ding, T. Hohnson and P. Seymour, Spanning trees with many leaves, J. Graph Theory 37 (2001) 189-197.
doi:10.1002/jgt. 1013
[6] D. González-Moreno, M. Guevara and J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340 (2017) 578-584.
doi:10.1016/j.disc.2016.11.016
[7] R. Gu, X. Li, Z. Qin and Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40 (2017) 1769-1779. doi:10.1007/s40840-015-0274-2
[8] H. Jiang, X. Li and Y. Zhang, More on total monochromatic connection of graphs, Ars Combin. 136 (2018), to appear.
[9] H. Jiang, X. Li and Y. Zhang, Total monochromatic connection of graphs, Discrete Math. 340 (2017) 175-180. doi:10.1016/j.disc.2016.08.020
[10] H. Jiang, X. Li and Y. Zhang, Upper bounds for the total rainbow connection of graphs, J. Comb. Optim. 32 (2016) 260-266. doi:10.1007/s10878-015-9874-x
[11] H. Liu, A. Mestre and T. Sousa, Total rainbow k-connection in graphs, Discrete Appl. Math. 174 (2014) 92-101. doi:10.1016/j.dam.2014.04.012
[12] Y. Sun, On rainbow total-coloring of a graph, Discrete Appl. Math. 194 (2015) 171-177.
doi:10.1016/j.dam.2015.05.012
Received 29 March 2017
Revised 14 November 2017
Accepted 20 November 2017

