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Abstract

In [C. Thomassen, Tilings of the torus and the Klein bottle and vertex-

transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991)
605–635], Thomassen described completely all (except finitely many) regular
tilings of the torus S1 and the Klein bottle N2 into (3,6)-tilings, (4,4)-tilings
and (6,3)-tilings. Many authors made great efforts to investigate the crossing
number (in the plane) of the Cartesian product of an m-cycle and an n-cycle,
which is a special (4,4)-tiling. For other tilings, there are quite rare results
concerning on their crossing numbers. This motivates us in the paper to
determine the crossing number of a hexagonal graph H3,n, which is a special
kind of (3,6)-tilings.

Keywords: hexagonal graph, Cartesian product, crossing number, draw-
ing.

2010 Mathematics Subject Classification: 05C10, 05C62.

http://dx.doi.org/10.7151/dmgt.2092


548 J. Wang, Z.D. Ouyang and Y.Q. Huang

1. Introduction

In [13], Thomassen described completely all (except finitely many) regular tilings
of the torus S1 and the Klein bottle N2 into hexagons, quadrilaterals and triangles
in which the vertices have degree 3, 4 and 6, respectively. To be more specific,
let G be a connected d-regular graph (d ≥ 3) and ϕ a collection of m-cycles in G,
assume that each edge of G is contained in precisely two cycles in ϕ and that, for
each vertex v in G, the edges incident with v can be labelled e1, e2, . . . , ed such
that for each i = 1, 2, . . . , d, there is a cycle in ϕ containing ei and ei+1 (where
ed+1 = e1). Then a surface S can be obtained by letting the cycles of ϕ be disjoint
convex polygons in the Euclidean plane pasted together by the graph G, and G

is said to be a (d,m)-tiling of S. Using Euler’s formula, Thomassen observed
that a regular tiling of the torus or the Klein bottle fit into three categories:
(3,6)-tilings, (4,4)-tilings and (6,3)-tilings.

Note that the Cartesian product of an m-cycle and an n-cycle, denoted by
Cm�Cn, is a special kind of (4,4)-tilings. It is well known that Cm�Cn can be
embedded in the torus whose genus is 1, but cannot be embedded in the plane.
Therefore, many authors made great efforts to determine the crossing number of
Cm�Cn in the plane. However, determining the crossing number of graphs is a
tedious problem [6], and only very few families of graphs whose crossing number
are known [3, 4, 8, 9, 14]. According to its difficulty, it is not surprising that
there are very few exact results concerning on the crossing number of Cm�Cn

[1, 2, 7, 10, 12].

For other regular tilings, to the best of our knowledge, there are quite rare
results focus on determining their crossing numbers in the plane. Therefore, this
arises our intensive interest in studying the problem, and this contribution is
devoted to determine the crossing number of H3,n, which is a special kind of
(3,6)-tilings.
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Figure 1. The embedding of the hexagonal graph H3,n of breadth three and length n

(n ≥ 3) in the torus.
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2. Definitions

We shall introduce some basic definitions in this section.
All graphs considered here are finite, simple and connected. Let G be a graph

with vertex set V and edge set E. The crossing number cr(G) of a graph G is
the minimum number of pairwise intersections of edges in a drawing of G in the
plane. It is well known that the crossing number of a graph is attained only in
good drawings of the graph, which are the drawings where no edge crosses itself,
no adjacent edges cross each other, no two edges intersect more than once, and
no three edges have a common point. Let D be a good drawing of the graph G,

we denote the number of crossings in D by crD(G). If D is a good drawing of G
satisfying crD(G) = cr(G), then D is an optimal drawing of G. In a drawing D, if
an edge is not crossed by any other edge, we say that it is clean in D, otherwise,
we say it is crossed. For definitions not explained here, readers are referred to [5].

Figure 1 shows the embedding of the hexagonal graph H3,n of breadth three
and length n (n ≥ 2) in the torus, it is seen that the number of 6-cycles in
the meridional (respectively, longitudinal) direction is three (respectively, n). To
be more specific, H3,n is the graph with vertex set V (H3,n) = {ai, bi, ci : i =
1, 2, . . . , 2n}, and edge set E(H3,n) = {aiai+1, bibi+1, cici+1 : i = 1, 2, . . . , 2n} ∪
{a2i−1b2i−1, b2ic2i, c2i−1a2i : i = 1, 2, . . . , n}. The indices are expressed modulo
2n. See Figure 1. Clearly, the hexagonal graph H3,n is 3-regular, and can be
viewed as by pasting together with 6-cycles. Thus, H3,n is a special (3,6)-tiling.

Deleting all the edges c2i−1a2i (i = 1, 2, . . . , n) from Figure 1, the resulted
graph is the hexagonal cylinder of breadth 2 and length n. In the hexagonal
cylinder, two cycles a1a2 · · · a2na1 and c1c2 · · · c2nc1 are called peripheral cycles.

The hexagonal graph Hm,n of breadth m and length n can be defined as: let
a1a2 · · · a2na1 and c1c2 · · · c2nc1 be two peripheral cycles of the hexagonal cylinder
of breadth m − 1 and length n, Hm,n is obtained from the hexagonal cylinder
of breadth m − 1 and length n by adding all the edges a2ic2i−1 (i = 1, 2, . . . , n)
when m is odd, and by adding all the edges a2ic2i (i = 1, 2, . . . , n) when m is
even. Figure 2 is an embedding of Hm,n in the torus when m is even and m ≥ 4.

It is easy to see that H2,n is planar, therefore, we begin to investigate the
crossing number of Hm,n for m = 3, and get the main result.

Theorem 1. For n ≥ 2, cr(H3,n) = n.

3. The Proof of Theorem 1

We shall proceed our proof of Theorem 1 by induction on n. The base case is
n = 2, which needs to be discussed firstly.

Lemma 2. cr(H3,2) = 2.
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Figure 2. The embedding of Hm,n in the torus for m is even and m ≥ 4.

Proof. Figure 3 shows a good drawing of H3,2 in the plane, which indicates that
cr(H3,2) ≤ 2. We prove the reverse inequality by assuming to the contrary that
there is a good drawing D of H3,2 with fewer than 2 crossings, then crD(H3,2) = 1
since H3,2 contains a subdivision of K3,3 whose crossing number is 1 [11], see
Figure 4. Thus, a planar graph can be obtained from D by removing one of the
crossed edge. Nevertheless, one can testify that, for any e ∈ E(H3,2), H3,2 − e

contains a subdivision of K3,3. This contradiction completes the proof.
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Figure 3. A good drawing of H3,2

in the plane.
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Figure 4. A subdivision of K3,3.

For 1 ≤ i ≤ n, let Fi = {a2i−2a2i−1, a2i−1a2i, b2i−2b2i−1, b2i−1b2i, c2i−2c2i−1,

c2i−1c2i, a2i−1b2i−1, b2ic2i, c2i−1a2i}, the indices are read modulo 2n. Then F1, F2,

. . . , Fn is a partition of E(H3,n), that is to say, E(H3,n) =
⋃n

i=1
Fi, and Fi∩Fj =

∅ for i 6= j.

Let D be a good drawing of H3,n, we define fD(Fi) (1 ≤ i ≤ n) to be the
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function counting the number of crossings related to Fi in D as follows:

fD(Fi) = crD(Fi, Fi) +
1

2

∑

1≤j≤n, j 6=i

crD(Fi, Fj).

By counting the number of crossings in D, we can get

Lemma 3. crD(H3,n) =
n∑

i=1

fD(Fi).

Lemma 4. cr(H3,n) ≥ n for n ≥ 2.

Proof. We prove the lemma by induction on n. Lemma 2 enforces the inequality
holds for n = 2. Suppose that cr(H3,k) ≥ k for k < n, and that there exists a
good drawing D of H3,n satisfying crD(H3,n) < n. Together with our assumption,
it has crD(H3,n) = n− 1 since H3,n contains a subdivision of H3,n−1.

Let E0 = {a2i−1b2i−1, b2ic2i, c2i−1a2i : i = 1, 2, . . . , n}. For any e ∈ E0, it is
not difficult to see that H3,n − e contains a subgraph homeomorphic to H3,n−1,
therefore, e must be clean in D, otherwise, a good drawing of H3,n−1 with less
than n− 1 crossings can be constructed from D by removing e.

By combining Lemma 3 with the fact that crD(H3,n) = n − 1, there must
exist an i (1 ≤ i ≤ n) such that fD(Fi) < 1. Without loss of generality, let
fD(F2) < 1.

The following two cases are considered.

Case 1. fD(F2) = 0. That is to say, all the edges of F2 are clean in D. Note
that the subgraph induced on six edges, {a3a4, a4c3, c3c4, c4b4, b4b3, b3a3}, of F2

is a 6-cycle, thus, the subdrawing of the 6-cycle partite the plane into two faces.

We conclude that vertices b2 and c2 must lie in the same face since b2c2 ∈ E0.
Without loss of generality, assume that both b2 and c2 lie in the interior face IntC.
Moreover, the vertex a2 should also lie in IntC, otherwise, the path a2c1c2 will
cross the boundary of the 6-cycle.

Consider now the edge b2c2, it is clean in D since b2c2 ∈ E0. Therefore, the
subdrawing of F2∪{b2c2} must be as shown in Figure 1. The face IntC has been
divided into two regions, with vertices a2 and c4 do not lie on the boundary of
the same region. Hence, the path a2c1c2nc2n−1 · · · c5c4 will cross F2 at least once,
which is contradicts with fD(F2) = 0.

Case 2. fD(F2) > 0. From the definition of fD, it has fD(F2) = 1

2
and

crD(F2, F2) = 0, which means that exactly one edge of F2 is crossed in D, and
that F2 does not have internal crossing in D.

By the analogous arguments to those of Case 1, the subdrawing of the 6-cycle
a3a4c3c4b4b3a3 partite the plane into two faces, moreover, the vertices b2 and c2
should lie in the same face since the edge b2c2 is clean in D. Without loss of
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Figure 5. The subdrawing of F2 ∪ {b2c2}.

generality, assume that both b2 and c2 lie in the interior face IntC. By adding
two edges b2b3 and c2c3 without any internal crossing occurred in F2, and by
adding the clean edge b2c2, one can see that the face IntC has been divided into
two regions, denoted as x and y. See Figure 5.

Consider the vertex a2. If a2 lies in the exterior face ExtC, then the two
edge-disjoint paths a2a1b1b2 and a2c1c2 will cross the boundary of the 6-cycle at
least once respectively, contradicts with fD(F2) = 1

2
. If a2 lies in the region y,

then there will be at least one internal crossing in F2 made by the edge a2a3,

which is impossible. Hence, a2 must lie in the region x.

Now consider the vertices a5 and b5, they must lie in the same region since
a5b5 ∈ E0. The following three subcases are discussed according to in which
region do a5 and b5 lie.

Subcase 2.1. Both a5 and b5 lie in ExtC. Notice that vertices a2 and a5
do not lie on the boundary of a same region, thus the two edge-disjoint paths
a2a1a2na2n−1 · · · a5 and a2c1c2nc2n−1 · · · c6b6b5a5 will cross at least once with the
edges of F2, respectively, which implies fD(F2) ≥ 1, contradicts with fD(F2) =

1

2
.

Subcase 2.2. Both a5 and b5 lie in the region x. Remind that the edge b2c2
is clean in D, therefore, the edge b4b5 and the path c4c5c6b6b5 will cross at least
once with the edges of F2, respectively, which is impossible.

Subcase 2.3. Both a5 and b5 lie in the region y. By the analogous arguments
to that of Subcase 2.2, the edge a4a5 and the path a2a1a2na2n−1 · · · a5 will cross
at least once with the edges of F2, respectively, which is absurd.

All the above contradictions confirm that cr(H3,n) ≥ n.

Lemma 5. cr(Hm,n) ≤ (m− 2)n for n ≥ 2.
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Figure 6. A good drawing of Hm,n

when m is odd.

Figure 7. A good drawing of Hm,n

when m is even.

Proof. Form is odd (respectively, even), Figure 6 (respectively, Figure 7) demon-
strates a good drawing ofHm,n in the plane with exactly (m−2)n crossings. Thus,
cr(Hm,n) ≤ (m− 2)n.

According to Lemmas 4 and 5, Theorem 1 is easily followed.
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