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Abstract

Let G = (V,E) be a graph and let f : V (G) → {0, 1, 2} be a function. A
vertex v is said to be protected with respect to f , if f(v) > 0 or f(v) = 0 and
v is adjacent to a vertex of positive weight. The function f is a co-Roman

dominating function if (i) every vertex in V is protected, and (ii) each v ∈ V

with positive weight has a neighbor u ∈ V with f(u) = 0 such that the
function fuv : V → {0, 1, 2}, defined by fuv(u) = 1, fuv(v) = f(v) − 1 and
fuv(x) = f(x) for x ∈ V \ {v, u}, has no unprotected vertex. The weight

of f is ω(f) =
∑

v∈V
f(v). The co-Roman domination number of a graph

G, denoted by γcr(G), is the minimum weight of a co-Roman dominating
function on G. In this paper, we give a characterization of graphs of order
n for which co-Roman domination number is 2n

3
or n − 2, which settles
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two open problem in [S. Arumugam, K. Ebadi and M. Manrique, Co-Roman

domination in graphs, Proc. Indian Acad. Sci. Math. Sci. 125 (2015) 1–10].
Furthermore, we present some sharp bounds on the co-Roman domination
number.

Keywords: co-Roman dominating function, co-Roman domination number,
Roman domination.

2010 Mathematics Subject Classification: 05C69.

For terminology and notation on graph theory not given here, the reader is
referred to [9, 10]. In this paper, G is a simple graph with vertex set V = V (G)
and edge set E = E(G). The order |V | of G is denoted by n = n(G). For
every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V | uv ∈ E}
and the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a
vertex v ∈ V is degG(v) = deg(v) = |N(v)|. A universal vertex is a vertex that is
adjacent to all other vertices of G. The open neighborhood of a set S ⊆ V is the set
N(S) =

⋃

v∈S N(v), and the closed neighborhood of S is the set N [S] = N(S)∪S.
For a set S ⊆ V (G) and a vertex v ∈ S, the private neighborhood of v with respect
to S is the set pn(v;S) = {u|u ∈ N(v), N(u) ∩ S = {v}. A leaf is a vertex of
degree one, and a support vertex is a vertex adjacent to a leaf. We also denote by
Lv the set of all leaves adjacent to a support vertex v. For a vertex v in a rooted
tree T , let D(v) denote the set of descendants of v and D[v] = D(v) ∪ {v}. The
maximal subtree at v is the subtree of T induced by D[v], and is denoted by Tv. A
subdivision of an edge uv is obtained by replacing the edge uv with a path uwv,
where w is a new vertex. The subdivision graph S(G) is the graph obtained from
G by subdividing each edge of G. The subdivision star S(K1,t) for t ≥ 2, is called
a healthy spider. We write Pn for a path of length n− 1 and K1,n for a star. For
integers r ≥ s ≥ 1, the double star DS(r, s) is the tree obtained by connecting
the centers of two stars K1,r and K1,s with an edge. The diameter of G, denoted
by diam(G), is the maximum value among minimum distances between all pairs
of vertices of G. For a subset S of vertices of G, we denote by G[S] the subgraph
induced by S. For a subset S ⊆ V (G) of vertices of a graph G and a function
f : V (G) → R, we define f(S) =

∑

x∈S f(x). For a function f : V (G) → {0, 1, 2},
let Vi = {v ∈ V | f(v) = i} for i = 0, 1, 2. Since these three sets determine f , we

can equivalently write f = (V0, V1, V2) (or f = (V f
0 , V

f
1 , V

f
2 ) to refer f). We note

that ω(f) = |V1|+ 2|V2|.

A Roman dominating function on a graph G, abbreviated RD-function, is a
function f : V (G) −→ {0, 1, 2} satisfying the condition that every vertex u for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The
weight, ω(f), of f is defined as ω(f) =

∑

v∈V f(v). The Roman domination

number, denoted by γR(G). An RD-function with minimum weight γR(G) in G

is called a γR(G)-function. The definition of the Roman dominating function
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was given multiplicity by Steward [14] and ReVelle and Rosing [13]. Roman
domination is now well studied in graph theory [1, 3–7,15].

Let f : V (G) → {0, 1, 2} be a function. A vertex v is said to be protected

with respect to f , if f(v) > 0 or f(v) = 0 and v is adjacent to a vertex of positive
weight. The function f is a weak Roman dominating function if for every vertex
u with f(u) = 0 there exists a vertex v adjacent to u such that f(v) ∈ {1, 2}
and the function fuv : V → {0, 1, 2}, defined by fuv(u) = 1, fuv(v) = f(v) − 1
and fuv(x) = f(x) for x ∈ V \ {v, u}, has no unprotected vertex. The weak

Roman domination number of a graph G, denoted by γr(G), is the minimum
weight among all weak Roman dominating functions on G. The weak Roman
domination number was introduced by Henning and Hedetniemi in [11].

The function f : V (G) → {0, 1, 2} is a co-Roman dominating function, ab-
breviated CRDF if (i) every vertex in V is protected, and (ii) each v ∈ V with
positive weight has a neighbor u ∈ V with f(u) = 0 such that the function
fuv : V → {0, 1, 2}, defined by fuv(u) = 1, fuv(v) = f(v)−1 and fuv(x) = f(x) for
x ∈ V \ {v, u}, has no unprotected vertex. The weight of f is ω(f) =

∑

v∈V f(v).
The co-Roman domination number of a graph G, denoted by γcr(G), is the min-
imum weight of a co-Roman dominating function on G. It follows from the
definitions that for any connected graph G of order n ≥ 2,

γcr(G) ≤ n− 1.(1)

The co-Roman domination in graphs was investigated by Arumugam et al. in [2].
The proof of the next results can be found in [2].

Proposition 1. If H is a spanning subgraph of a graph H, then γcr(G) ≤ γcr(H).

Proposition 2. For n ≥ 2, γcr(K1,n) = 2.

Proposition 3. For n ≥ 4, γcr(Pn) = γcr(Cn) =
⌈

2n
5

⌉

.

Proposition 4. For every tree T of order n ≥ 2, γcr(T ) ≤
2n
3 .

The next result is an immediate consequence of Propositions 1 and 4.

Corollary 5. For every connected graph G of order n ≥ 2, γcr(G) ≤ 2n
3 .

Observation 6. Let G be a graph of order n ≥ 2. Then γcr(G) = 1 if and only

if G has two vertices of degree n− 1.

Theorem 7. For every graph G, γcr(G) ≤ γr(G).

In [2], the authors posed the following open problems.

Problem 1. Characterize graphs G of order n such that γcr(G) = n− 2.

Problem 2. Characterize trees T of order n such that γcr(T ) =
2n(T )

3 .

Problem 3. Characterize graphs G such that γcr(T ) = γ(G).

In this paper, we settle the above open problems. Furthermore, we establish some
sharp bounds on the co-Roman domination number.
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1. Graphs G with γcr(G) = γr(G) or γcr(G) = γ(G)

In this section, we study the properties of graphs G for which γcr(G) = γr(G) or
γcr(G) = γ(G).

Proposition 8. Let G be a connected graph of order at least two. Then γcr(G) =
γr(G) if and only if there exists a γcr(G)-function f = (V0, V1, V2) such that each

vertex x ∈ V0, either has a neighbor x′ in V2 or has a neighbor x′ in V1 for which

pn(x′, V1 ∪ V2) ⊆ N [x].

Proof. If there exists a γcr(G)-function f = (V0, V1, V2) such that each vertex
x ∈ V0, has a neighbor x′ ∈ V1 ∪ V2 with pn(x′, V1 ∪ V2) ⊆ N [x], then clearly f is
a weak Roman dominating function of G and so γr(G) ≤ γcr(G). It follows from
Theorem 7 that γr(G) = γcr(G).

Conversely, let γr(G) = γcr(G). There exists a γr(G)-function f = (V0, V1, V2)
such that f is a co-Roman dominating function of G (see Theorem 3.3 of [2]).
By assumption, f is a γcr(G)-function. Assume x ∈ V0 is an arbitrary vertex.
Since f is a weak Roman dominating function, x has a neighbor x′ in V1 ∪ V2

such that the function g : V (G) → {0, 1, 2} defined by g(x) = 1, g(x′) = f(x′)− 1
and g(u) = f(u) otherwise, is safe. If x has a neighbor in V2, then we are done.
Assume x has no neighbor in V2. It follows that x

′ ∈ V1. Since f is safe, we must
have pn(x′, V1 ∪ V2) ⊆ N [x] and the proof is complete.

Proposition 9. Let G be a connected graph of order at least two. Then γ(G) =
γcr(G) if and only if there exists a γ(G)-set S such that each vertex x ∈ S has a

neighbor x′ ∈ V \ S with pn(x, S) ⊆ N [x′].

Proof. Let γ(G) = γcr(G). Assume f = (V0, V1, V2) is a γcr(G)-function. Since
V1 ∪ V2 is a dominating set, we deduce from γ(G) ≤ |V1| + |V2| ≤ |V1| + 2|V2| =
γcr(G) that V2 = ∅ and V1 is a γ(G)-set. Let x ∈ V1 be an arbitrary vertex.
Since f is a co-Roman dominating function, there is a vertex x′ ∈ V0∩N(x) such
that ((V0 \ {x

′}) ∪ {x}, (V1 \ {x}) ∪ {x′}, ∅) is a γcr(G)-function. It follows that
(V1 \ {x}) ∪ {x′} is a γ(G)-set and this implies that pn(x, V1) ⊆ N [x′].

Conversely, let S be a γ(G)-set such that each vertex x ∈ S has a neighbor
x′ ∈ V \ S with pn(x, S) ⊆ N [x′]. Then the function f = (V (G) \ S, S, ∅) is
clearly a co-Roman dominating function of weight γ(G) and so γcr(G) ≤ γ(G).
It follows that γcr(G) = γ(G).

Corollary 10. Let G be a connected graph of order at least two with γ(G) =
γcr(G). Then for any γcr(G)-function f = (V0, V1, V2), V2 = ∅.

Corollary 11. Let G be a connected graph of order at least two. If γ(G) =
γcr(G), then G has no strong support vertex.
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For a tree T , let M(T ) = {v | there exists a γcr(T )-function f such that
f(v) = 1}. In what follows, we present a constructive characterization of trees T
with γ(T ) = γcr(T ). In order to do this, we define a family of trees as follows. Let
T be the collection of trees T that can be obtained from a sequence T1, T2, . . . , Tk

of trees for some k ≥ 1, where T1 is a P2 and T = Tk. If k ≥ 2, Ti+1 can be
obtained from Ti by one of the following three operations. Let one vertex of P2

be considered as a support vertex.

Operation O1. If v ∈ M(Ti), then the tree Ti+1 is obtained from Ti by adding
a pendant P3 = xyz and adding the edge vx (see Figure 1(a)).

Operation O2. If v is a support vertex of Ti, then the tree Ti+1 is obtained from
Ti by adding a pendant P2 = xy and adding the edge vx (see Figure 1(b)).

Operation O3. If v ∈ Ti, then the tree Ti+1 is obtained from Ti by adding a
healthy spider with at least two feet headed at x and adding the edge vx (see
Figure 1(c)).

v
x

y

z

x

y

v
v x

y1

z1

y2

z2

yk

zk

(a) (b) (c)

Figure 1. (a) Operation O1. (b) Operation O2. (c) Operation O3.

Lemma 12. If Ti is a tree with γ(Ti) = γcr(Ti) and Ti+1 is a tree obtained from

Ti by Operation O1, then γ(Ti+1) = γcr(Ti+1).

Proof. Let f be a γcr(Ti)-function and v a vertex of Ti with f(v) = 1. Then
the function f ′ : V (Ti+1) → {0, 1, 2} by f ′(y) = 1, f ′(x) = f ′(z) = 0 and
f ′(u) = f(u) for u ∈ V (Ti), is a co-Roman dominating function on Ti+1 and so
γcr(Ti+1) ≤ γcr(Ti) + 1.
It is easy to see that γ(Ti+1) = γ(Ti) + 1. Now we have

γ(Ti) + 1 = γ(Ti+1) ≤ γcr(Ti+1) ≤ γcr(Ti) + 1 = γ(Ti) + 1

yielding γ(Ti+1) = γcr(Ti+1).

Lemma 13. If Ti is a tree with γ(Ti) = γcr(Ti) and Ti+1 is a tree obtained from

Ti by Operation O2, then γ(Ti+1) = γcr(Ti+1).
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Proof. Clearly, any γcr(Ti)-function can be extended to a co-Roman dominating
function by assigning 1 to x and 0 to y implying that γcr(Ti+1) ≤ γcr(Ti) + 1.

Since v is a support vertex, one can easily check that γ(Ti+1) = γ(Ti) + 1.
Now the result follows as in the proof of Lemma 12.

Lemma 14. If Ti is a tree with γ(Ti) = γcr(Ti) and Ti+1 is a tree obtained from

Ti by Operation O3, then γ(Ti+1) = γcr(Ti+1).

Proof. Let the added spider has exactly k feet. Obviously, any γcr(Ti)-function
can be extended to a co-Roman dominating function by assigning 1 to the support
vertices of spider and 0 to the remaining vertices of spider and this implies that
γcr(Ti+1) ≤ γcr(Ti) + k. Moreover, it is easy to verify that γ(Ti+1) = γ(Ti) + k

and the result follows as in the proof of Lemma 12.

Lemma 15. If T ∈ T , then γ(T ) = γcr(T ).

Proof. Let T ∈ T . By definition, there exists a sequence of trees T1, T2, . . . , Tk

(k ≥ 1) such that T1 = K2, and if k ≥ 2, Ti+1 can be obtained recursively from Ti

by Operation O1, O2 or O3 for i = 1, 2, . . . , k−1. We proceed by induction on k.
If T = K2, then clearly γ(T ) = γcr(T ) = 1. Suppose k ≥ 2 and the result holds
for each tree T ∈ T which can be obtained from a sequence of operations of length
k − 1 and let T ′ = Tk−1. By the induction hypothesis, we have γ(T ′) = γcr(T

′).
Since T = Tk is obtained from T ′ by one of the Operations O1, O2 or O3 from
T ′, we have γ(T ) = γcr(T ) by Lemmas 12, 13 and 14.

Theorem 16. Let T be a tree of order n ≥ 2. Then γ(T ) = γcr(T ) if and only

if T ∈ T .

Proof. The sufficiency follows from Lemma 15. We use induction on n to prove
the necessity. If n = 2, then T = P2 that belongs to T . Assume n ≥ 3 and that
the result holds for any tree of order less than n. Let T be a tree of order n with
γ(T ) = γcr(T ). Let P = v1v2 · · · vℓ be a diametral path in T and root T at vℓ.
By Corollary 11, we have d(v2) = 2. Consider the following cases.

Case 1. v3 is a support vertex. Let w be a leaf adjacent to v3 and let
T ′ = T − {v1, v2}. If f is a γcr(T )-function, then clearly f(v1) + f(v2) ≥ 1 and
f(v3) + f(w) ≥ 2. It is easy to verify that the function f , restricted to T ′ is
a co-Roman dominating function implying that γcr(T ) ≥ γcr(T

′) + 1. Clearly
γ(T ) = γ(T ′) + 1, and we deduce from

γ(T ) = γcr(T ) ≥ γcr(T
′) + 1 = γ(T ′) + 1 = γ(T )

that γcr(T
′) = γ(T ′). By the induction hypothesis, we have T ′ ∈ T . Now T can

be obtained from T ′ by Operation O2.



On the Co-Roman Domination in Graphs 461

Case 2. d(v3) = 2. Let T ′ = T−{v1, v2, v3}. By Proposition 3, n ≥ 4. Clearly
γ(T ) = γ(T ′)+ 1. Assume f = (V0, V1, V2) is a γcr(T )-function. By Corollary 10,
V2 = ∅. Clearly f(v1) + f(v2) = 1 and f(v3) + f(v4) ≥ 1. If f(v3) = f(v4) = 1,
then the function g : V (T ) → {0, 1, 2} defined by g(v4) = g(v2) = 1, g(v1) =
g(v3) = 0 and g(x) = f(x) otherwise, is a co-Roman dominating function of T
of weight less than ω(f) which is a contradiction. Hence f(v3) = 0 or f(v4) = 0
and so f(v3) + f(v4) = 1. Consider the following.

• f(v3) = 1 and f(v4) = 0. If f(x) = 1 for some x ∈ NT ′(v4), then the
function g : V (G) → {0, 1} defined by g(v2) = 1, g(v1) = g(v3) = 0 and g(x) =
f(x) otherwise, is a dominating function of T of weight less than ω(f) which
contradicts γ(T ) = γcr(T ). Thus f(x) = 0 for each x ∈ NT ′(v4). Now the
function h : V (T ′) → {0, 1} defined by h(v4) = 1 and h(x) = f(x) otherwise, is a
co-Roman dominating function of T of weight ω(f)− 1. It follows from

γ(T ) = γcr(T ) ≥ γcr(T
′) + 1 = γ(T ′) + 1 = γ(T )

that γcr(T
′) = γ(T ′) and that h is a γcr(T

′)-function with h(v4) = 1. By the
induction hypothesis, we have T ′ ∈ T and so T can be obtained from T ′ by
Operation O1. Thus T ∈ T .

• f(v3) = 0 and f(v4) = 1. As above we have f(x) = 0 for some x ∈ NT ′(v4).
Then the function f restricted to T ′ is a co-Roman dominating function of T ′

and so γcr(T ) ≥ γcr(T
′) + 1. Using above argument, we obtain T ∈ T .

Case 3. v3 is not a support vertex and d(v3) ≥ 3. Let T ′ be the component
of T − v3v4 containing v3. Then T ′ is a spider with at least k feet where k =
deg(v3)−1. Clearly γ(T ) = γ(T ′)+k. Now we show that γcr(T ) ≥ γcr(T

′)+k. Let
u1, . . . , uk be the children of v3 and wi be the leaf adjacent to ui for i = 1, . . . , k.
Let f = (V0, V1, V2) be a γcr(T )-function. By Corollary 10, V2 = ∅. Obviously
f(ui)+f(wi) = 1 for each i. As Case 2, we can see that f(v4) = 0 or f(v3) = 0. If
f(v4) = f(v3) = 0, then the function f restricted to T ′ is a co-Roman dominating
function of weight γcr(T )−k and so γcr(T ) ≥ γcr(T

′)+k. Consider the following
subcases.

Subcase 3.1. f(v3) = 1 and f(v4) = 0. If f(x) = 1 for some x ∈ NT ′(v4),
then the function g : V (G) → {0, 1} defined by g(v3) = g(wi) = 0, g(ui) = 1 for
1 ≤ i ≤ k and g(x) = f(x) otherwise, is a dominating function of T of weight
less than ω(f) contradicting γ(T ) = γcr(T ). Thus f(x) = 0 for each x ∈ NT ′(v4).
Now the function h : V (T ′) → {0, 1} defined by h(v4) = 1 and h(x) = f(x)
otherwise, is a co-Roman dominating function of T of weight ω(f)− k and hence
γcr(T ) ≥ γcr(T

′) + k.

Subcase 3.2. f(v3) = 0 and f(v4) = 1. As above we have f(x) = 0 for some
x ∈ NT ′(v4). Then the function f , restricted to T ′ is a co-Roman dominating
function of T ′ and so γcr(T ) ≥ γcr(T

′) + k.
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Thus in all cases γcr(T ) ≥ γcr(T
′) + k. As Case 2, we deduce that γcr(T

′) =
γ(T ′) and so by the induction hypothesis we have T ′ ∈ T . Now T can be obtained
from T ′ by Operation O3 and hence T ∈ T . This completes the proof.

2. Bounds on Co-Roman Domination

In this section, we present some sharp bounds on the co-Roman domination
number. First we prove two upper bounds on the co-Roman domination number
in terms of matching number.

Theorem 17. For any connected graph G of order n ≥ 2,

γcr(G) ≤ n− α′(G).

Proof. Let M = {u1v1, . . . , uα′vα′} be a maximum matching of G and let X be
the independent set of M -unsaturated vertices. If y and z are vertices of X and
yui ∈ E(G), then since the matching M is maximum, zvi 6∈ E(G). Therefore,
for all i ∈ {1, 2, . . . , α′} there are at most two edges between the sets {ui, vi}
and {y, z}. Assume S is the set of all vertices in X which belongs to a triangle
with an edge in M . Let S = {x1, . . . , xs} if S 6= ∅ and X \ S = {y1, . . . , yk} if
X \ S 6= ∅.

First let S = ∅. Then vui 6∈ E(G) or vvi 6∈ E(G) for each v ∈ X and each
i ∈ {1, . . . , α′}. We may assume N(x) ⊆ {u1, . . . , uα′} for each x ∈ X. Define
f : V (G) → {0, 1, 2} by f(ui) = 0 for 1 ≤ i ≤ α′ and f(x) = 1 otherwise. Clearly,
f is a co-Roman dominating function of G of weight α′ + |X| and hence

γcr(G) ≤ α′(G) + |X| = α′(G) +
(

n− 2α′(G)
)

= n− α′(G).

Now let S 6= ∅. We may assume, without loss of generality, that xiui, xivi ∈
E(G) for i = 1, . . . , s. As above, we can assume that N(x) ⊆ {u1, . . . , uα′} for
each x ∈ X \S. Define f : V (G) → {0, 1, 2} by f(x) = 0 for x ∈ S∪{u1, . . . , uα′}
and f(x) = 1 otherwise. Obviously, f is a co-Roman dominating function of G
of weight α′(G) + |X| − |S| and hence

γcr(G) ≤ α′(G) + |X| − |S| = α′(G) + (n− 2α′)− |S| ≤ n− α′(G)− |S|.(2)

This completes the proof.

Theorem 18. For any connected graph G of order n ≥ 2 with δ(G) ≥ 2,

γcr(G) ≤ α′(G).
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Proof. Let M , X and S be the sets defined in the proof of Theorem 17. Assume
first that S = ∅. Then as above we may assume N(x) ⊆ {u1, . . . , uα′} for each
x ∈ X. Define f : V (G) → {0, 1, 2} by f(ui) = 1 for 1 ≤ i ≤ α′ and f(x) = 0
otherwise. Since δ(G) ≥ 2, the function fi : V (G) → {0, 1, 2} defined by f(ui) =
0, f(vi) = 1 and fi(x) = f(x) otherwise, is safe for each i. Thus f is a co-Roman
dominating function of G of weight α′(G) and so γcr(G) ≤ α′(G).

Now let S = {x1, . . . , xs}. We may assume, without loss of generality, that
xiui, xivi ∈ E(G) for i = 1, . . . , s. As above, we can assume that N(x) ⊆
{u1, . . . , uα′} for each x ∈ X \ S. It is easy to see that the function f defined
above is a co-Roman dominating function of G. Thus γcr(G) ≤ α′(G) and the
proof is complete.

Theorem 19. For any connected graph G of order n ≥ 2,

γcr(G) ≤ 2α′(G).

Proof. Let M , X and S be the sets defined in the proof of Theorem 17. As
Theorem 17, we may assume that xiui, xivi ∈ E(G) for i = 1, . . . , s if S 6= ∅ and
N(x) ⊆ {u1, . . . , uα′} for each x ∈ X \S. Then the function f : V (G) → {0, 1, 2}
defined by f(ui) = 1 if ui is adjacent to a vertex in S, f(ui) = 2 if ui is adjacent
to a vertex in X \ S and f(x) = 0 otherwise, is a co-Roman dominating function
of G and so γcr(G) ≤ |S|+ 2|X − S| = 2α′(G)− |S| ≤ 2α′(G).

A set X ⊆ V (G) is called a 2-packing if d(u, v) > 2 for any different vertices
u and v of X. The 2-packing number ρ(G) is the maximum cardinality of a
2-packing of G.

Theorem 20. For any connected graph G of order n ≥ 2 with δ(G) ≥ 2,

γcr(G) ≤ n− ρ(G)(δ(G)− 1).

Proof. Let S be a 2-packing of G of size ρ(G). Define f : V (G) → {0, 1, 2} by
f(x) = 2 for x ∈ S, f(x) = 0 for x ∈

⋃

v∈S N(v) and f(x) = 1 otherwise. Clearly,
f is a co-Roman dominating function of G and hence

γcr(G) ≤ (n− |
⋃

v∈S N [v]|) + 2|S| = n−
∑

v∈S |N [v]|+ 2ρ(G)
≤ n− ρ(G)(δ(G) + 1)− 2ρ(G) = n− ρ(G)(δ(G)− 1),

as desired.

Proposition 21. Let G be a simple connected graph of order n with δ(G) ≥ 2

and g(G) ≥ 5. Then γcr(G) ≤
2(n−g(G))

3 +

⌈

2g(G)
5

⌉

.
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Proof. If G is an n-cycle, then the result follows by Proposition 3. Assume
G is not a cycle and C is a cycle of length g(G) in G. Let G′ be the graph
obtained from G by removing the vertices of V (C). Since g(G) ≥ 5, each vertex
of G′ can be adjacent to at most one vertex of C which implies δ(G′) ≥ 1. By

Corollary 5, we have γcr(G
′) ≤ 2(n−g(G))

3 . Let g be a γcr(G
′)-function and h be a

γcr(C)-function. Define f : V (G) → {0, 1, 2} by f(v) = g(v) for v ∈ V (G′) and
f(v) = h(v) for v ∈ V (C). Obviously, f is a co-Roman dominating function and
so

γcr(G) ≤
2(n− g(G))

3
+

⌈

2g(G)

5

⌉

.

3. Characterization of Graphs G of Order n with γcr(G) = 2n
3

In this section, we characterize the graphs attaining the upper bound in Corollary
5. For any arbitrary tree T , let Tcr be the tree obtained from T by adding exactly
two pendant edges at each vertex of T . Note that n(Tcr) = 3n(T ). Let F be the
family of all trees Tcr. In fact, F is the family of trees T such that V (T ) can be
partitioned into sets inducing P3 such that the subgraph induced by the central
vertices of these paths is connected.

Lemma 22. If T ∈ F , then γcr(T ) =
2n(T )

3 .

Proof. Let T ∈ F and let f be a γcr-function on T . Then T is obtained from
a tree T ′ by adding exactly two pendant edges at each vertex of T ′. For each
non-leaf vertex v ∈ V (T ), let Lv = {v1, v2}. It is easy to see that for any
non-leaf vertex v ∈ V (T ), f(v) + f(v1) + f(v2) ≥ 2, otherwise we have an un-
protected vertex in either f or fvvi for some i = 1, 2. Hence, γcr(T ) = ω(f) =
∑

v∈V (T ′) (f(v) + f(v1) + f(v2)) ≥ 2n(T ′) = 2n(T )
3 . Now the result follows from

Proposition 4.

Lemma 23. Let q ≥ p ≥ 1 and let T = DS(p, q). Then γcr(T ) =
2n(T )

3 if and

only if q = p = 2.

Proof. If q = p = 2, then Lemma 22 implies γcr(T ) = 2n(T )
3 . Conversely, let

γcr(T ) =
2n(T )

3 . It follows from Proposition 3 that q ≥ 2. If p = 1, then clearly

γcr(T ) = 3 <
2n(T )

3 , a contradiction. Suppose that p ≥ 2. If q > 2, then we

have γcr(T ) ≤ 4 <
2n(T )

3 , a contradiction again. Thus q = p = 2 and the proof is
complete.

Theorem 24. Let T be a tree of order n ≥ 3. Then γcr(T ) =
2n
3 if and only if

T ∈ F .
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Proof. According to Lemma 22, we only need to prove the necessity. Let T be
a tree of order n ≥ 3 with γcr(T ) =

2n
3 . Note that n is a multiple of 3. The proof

is by induction on n. If n = 3, then the only tree T of order 3 and γcr(T ) = 2
is P3 ∈ F . Let n ≥ 4 and let the statement hold for all trees of order less than
n. Suppose that T is a tree of order n with γcr(T ) =

2n
3 . If diam(T ) = 2, then

T = K1,s and we deduce from Proposition 2 that T = P3 and so T ∈ F . If
diam(T ) = 3, then we deduce from Lemma 23 that T = DS(2, 2) and so T ∈ F .
Henceforth we assume that diam(T ) ≥ 4. Let v1v2 · · · vk (k ≥ 5) be a diametral
path in T and root T at vk. We show that degT (v2) = 3. Let T ′ = T − Tv2 and
f be a γcr(T

′)-function. If degT (v2) ≥ 4, then the function g : V (T ) → {0, 1, 2}
defined by g(v2) = 2, g(x) = 0 if x ∈ Lv2 and g(x) = f(x) for x ∈ T ′, is a CRDF
on T of weight ω(f)+2. By Proposition 4, we have γcr(T ) ≤ ω(g) ≤ γcr(T

′)+2 ≤
2n(T ′)

3 +2 ≤ 2(n−4)
3 +2 < 2n

3 , which is a contradiction. If degT (v2) = 2 , then the
function g : V (T ) → {0, 1, 2} defined by g(v2) = 1, g(v1) = 0 and g(x) = f(x)
for x ∈ T ′, is a CRDF on T of weight ω(f) + 1. By Proposition 4, we have

γcr(T ) ≤ ω(g) ≤ γcr(T
′) + 1 ≤ 2(n−2)

3 + 1 < 2n
3 , a contradiction again. Thus

deg(v2) = 3. Assume that T ′ = T − Tv2 . As above, we have

2n(T )

3
= γcr(T ) ≤ γcr(T

′) + 2 ≤
2n(T ′)

3
+ 2 =

2(n− 3)

3
+ 2 =

2n

3
.

Thus all inequalities in the above inequality chain must be equalities and so

γcr(T
′) = 2n(T ′)

3 . By the induction hypothesis we have T ′ ∈ F . Now we show
that v3 is not a leaf of T ′. If v3 is a leaf in T ′, then let T ′′ = T −Tv3 and let h be a
γcr(T

′′)-function. Define the function g : V (T ) → {0, 1, 2} by g(v2) = 2, g(v) = 0
if v ∈ NT (v2) and g(x) = h(x) for x ∈ T ′′. Clearly, g is a CRDF on T of weight

ω(f)+2. By Proposition 4, we have γcr(T ) ≤ ω(g) = γcr(T
′)+2 ≤ 2(n−4)

3 +2 < 2n
3 ,

a contradiction. Thus v3 is a non-leaf vertex of T ′ and so T ∈ F . This completes
the proof.

Theorem 25. Let G be a connected n-vertex graph with n ≥ 3. Then γcr(G) = 2n
3

if and only if G is obtained from n
3P3 by adding edges between the centers of the

paths P3 such that the resulting graph is connected.

Proof. If G has the specified form, then clearly every CRDF puts weight at least
2 on the vertex set of each copy of P3.

Now suppose that γcr(G) = 2n
3 . Since adding edges cannot increase γcr(G),

every spanning tree of G belongs to F . Given a spanning tree T , let S1, S2, . . . , Sn

3

be the 3-sets in the special partition of V (T ). The assignment of weight 2 that
guards Si can be chosen independently of any other Sj . If any edge of G joins
vertices of Si and Sj that are not the centers of the paths they induce, then a
CRDF with weight less than 2n

3 can be built as in the proof of Theorem 24. This
completes the proof.
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4. Graphs with Large Co-Roman Domination Number

In this section, we characterize all graphs of order n with co-Roman domination
number n−2 and n−3. The first result is an immediate consequence of Theorem
17.

Corollary 26 (Theorem 4.2 in [2]). Let G be a connected graph on n ≥ 2 vertices.

Then γcr(G) = n− 1 if and only if G = K2 or K1,2.

Arumugam et al. [2] posed the following problem.

Problem. Characterize graphs G such that γcr(G) = n− 2.
Next we solve this problem.

Theorem 27. Let G be a connected graph on n ≥ 2 vertices. Then γcr(G) = n−2
if and only if G is a graph on four vertices different from K4 and K4 − e, or

G ∼= DS(2, 1), or G ∼= DS(2, 2).

Proof. By Theorem 17, we have α′(G) ≤ 2. If α′(G) = 1, then G is the star
K1,n−1 and we conclude from Proposition 2 that G = K1,3. Assume that α′(G) =
2. Let M , X and S be the sets defined in the proof of Theorem 17. By (2), we
have S = ∅. As above, we may assume N(x) ⊆ {u1, . . . , uα′} for each x ∈ X.
If ui has at least two neighbors in X for some i, say i = 1, then the function
f : V (G) → {0, 1, 2} defined by f(u1) = 2, f(ui) = 0 for 2 ≤ i ≤ α′, f(x) = 0
if x = v1 or x ∈ N(u1) ∩ X and f(x) = 1 otherwise, is clearly a co-Roman
dominating function of G of weight n−α′(G)− 1 which leads to a contradiction.
Hence each ui has at most one neighbor in X and this implies that |X| ≤ 2.
If |X| = 0, then n = 4 and obviously G is a connected graph on four vertices
different from K4 and K4 − e. Hence |X| ≥ 1.

First let |X| = 2. Since X is independent and G is connected, we may assume
that uiyi ∈ E(G) for i = 1, 2. Since each ui has at most one neighbor in X, we
deduce that deg(yi) = 1 for i = 1, 2. Considering the matchingM ′ = {u1y1, u2y2}
instead of M , we have deg(v1) = deg(v2) = 1. Since G is connected, we have
u1u2 ∈ E(G) and hence G = DS(2, 2).

Now let |X| = 1. Since G is connected, we suppose that u1y1 ∈ E(G).
If u2y1 ∈ E(G), then the function f1 : V (G) → {0, 1, 2} defined by f1(u1) =
f1(u2) = 1 and f1(x) = 0 otherwise, is clearly a co-Roman dominating function
of G of weight 2, a contradiction. Thus deg(y1) = 1. Considering the matching
M ′ = {u1y1, u2v2} instead of M , we obtain deg(v1) = 1. Since G is connected, we
may assume that u1u2 ∈ E(G). If u1v2 ∈ E(G), then clearly γcr(G) ≤ 2 which is
a contradiction. Thus G = DS(1, 2) and the proof is complete.

The corona graph cor(H) of a graph H is the graph obtained from H by
attaching a leaf to every vertex of H. We recall the following result established
by Payan and Xuong [12] (see also Fink et al. [8]).
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Theorem 28. For a graph G with even order n and with no isolated vertices,

γ(G) = n
2 if and only if the components of G are the cycle C4 or the corona

cor(H) for any connected graph H.

Now we characterize all connected graphs G of order n ≥ 4 with γcr(G) =
n− 3. To do this, we introduced some families of graphs.

v2 v3 v2 v3 v2 v3 v2 v3

u2 u3 u2 u3 u2 u3 u2 u3

u1 u1 u1 u1

G1 G2 G3 G4

v2 v3 v3 v2 v3 v2 v3 v2

u2 u3 u3 u2 u3 u2 u3 u2

u1 u1 u1 u1

G5 G6 G7 G8

v3 v2 v3 v2

u3 u2 u3 u2

u1 u1

G9 G10 G11 G12 G13

Figure 2. The graphs G of order 7 with γcr(G) = 4.

Let

• G1 = {K4,K4 − e,K1,4},

• G2 be the family of connected graphs G obtained from a triangle and a path
P2 by adding some edges between them so that the resulting graph has at
most one universal vertex,
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• G3 be the family of connected graphs G obtained from a path P3 and a
path P2 by adding some edges between them such that the resulting graph
is different from DS(1, 2) and has at most one universal vertex,

• G4 be the family of connected graphs G 6∼= DS(2, 2) of order 6 consisting of
cor(P3), cor(C3) and all graphs G with ∆(G) ≤ 4, for which every γ(G)-set
S has a vertex x such that x has no neighbor x′ ∈ V \ S with pn(x, S) ⊆
N [x′].

• G5 = {G1, G2, . . . , G13},

• G6 be the family of connected graphs G obtained from three paths v1u1y1,
v2u2y2 and v3u3 by adding edges between u1, u2, u3 such that the resulting
graph is connected,

• G7 be the family of connected graphs G obtained from 3P3 by adding edges
between the centers of the paths P3 such that the resulting graph is con-
nected.

v1

u1

x1
u2

x2

v2 v1

u1

x1
u2

x2

v2

H1 H2

Figure 3. Two graphs G of order 6 with γcr(G) = 3.

Theorem 29. Let G be a connected graph on n ≥ 4 vertices, then γcr(G) = n−3
if and only if G ∈

⋃7
i=1 Gi.

Proof. Let G ∈
⋃7

i=1 Gi. We deduce from (1), Corollary 26 and Theorem 27
that γcr(G) ≤ n − 3. If G = K1,4, then γcr(G) = 2 = n − 3 by Proposition
2, and if G ∈ G1 \ {K1,4} then γcr(G) = 1 = n − 3 by Observation 6. If G ∈
G2 ∪ G3, then we conclude from Observation 6 that γcr(G) ≥ 2 = n − 3 and so
γcr(G) = n − 3. If G ∈ {cor(P3), cor(C3)}, then by Proposition 9 and Theorem
28 we have γcr(G) = γ(G) = 3, and if G ∈ G4 − {cor(P3), cor(C3)}, then clearly
γ(G) = 2 and Proposition 9 implies that γcr(G) ≥ γ(G) + 1 = 3 = n− 3 and so
γcr(G) = n−3. If G ∈ G5∪G6, then it is easy to see that γcr(G) = n−3. Finally,
if G ∈ G7, then by Theorem 25, we have γcr(G) = 6 = n− 3.
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Conversely, let γcr(G) = n − 3. By Corollary 5 and Theorem 17, we obtain
n ≤ 9 and α′(G) ≤ 3. If α′(G) = 1, then G is the star K1,n−1 and we conclude
from Proposition 2 that G = K1,4 ∈ G1. Assume that α′(G) ≥ 2. Suppose M , X
and S are the sets defined in the proof of Theorem 17. We consider the following
cases.

Case 1. α′(G) = 3. Since n ≤ 9, we must have |X| ≤ 3. If |X| = 3, then
n = 9 and we conclude from Theorem 25 that G ∈ G7. Let |X| ≤ 2. By (2),
we have S = ∅. As above, we may assume N(x) ⊆ {u1, u2, u3} for each x ∈ X.
Consider the following subcases.

Subcase 1.1. |X| = 2. If uiy1, uiy2 ∈ E(G) for some i, say i = 1, then
the function f1 : V (G) → {0, 1, 2} defined by f1(u1) = 2, f1(u2) = f1(u3) = 1
and f1(x) = 0 otherwise, is clearly a co-Roman dominating function of G of
weight 4 which is a contradiction. Thus each ui has at most one neighbor in X.
Assume without loss of generality that u1y1, u2y2 ∈ E(G). If y1u3 ∈ E(G) (the
case y2u3 ∈ E(G) is similar), then the function f2 : V (G) → {0, 1, 2} defined
by f2(u1) = f2(u3) = 1, f2(u2) = 2 and f2(x) = 0 otherwise, is clearly a co-
Roman dominating function of G of weight 4 which is a contradiction again.
Hence y1u3, y2u3 6∈ E(G). It follows that deg(y1) = deg(y2) = 1. Considering the
matchingM ′ = {u1y1, u2y2, u3v3} instead ofM , we obtain deg(v1) = deg(v2) = 1.
Since G is connected, we may assume, without loss of generality, that u1u3 ∈
E(G). If u1v3 ∈ E(G) or u2v3 ∈ E(G), then the function f3 : V (G) → {0, 1, 2}
defined by f3(u1) = f3(u2) = 2 and f3(x) = 0 otherwise, is clearly a co-Roman
dominating function of G of weight 4, a contradiction. Therefore, deg(v3) = 1.
Since G is connected, we conclude that G is a graph obtained from three paths
v1u1y1, v2u2y2 and v3u3 by adding edges between u1, u2, u3 such that the resulting
graph is connected. Hence G ∈ G6.

Subcase 1.2. |X| = 1. Assume that u1y1 ∈ E(G). If y1u3 ∈ E(G) (the
case y1u2 ∈ E(G) is similar), then the function f4 : V (G) → {0, 1, 2} defined by
f4(u1) = f4(u2) = f4(u3) = 1 and f4(x) = 0 otherwise, is clearly a co-Roman
dominating function of G of weight 3 which is a contradiction. Hence y1u3, y1u2 6∈
E(G). Hence deg(y1) = 1. Regarding the matching M ′ = {u1y1, u2v2, u3v3}
instead of M , we have deg(v1) = 1. Since G is connected, we may assume
that u1u3 ∈ E(G). If u1v3 ∈ E(G), then the function h1 : V (G) → {0, 1, 2}
defined by h1(u1) = 2, h1(u2) = 1 and h1(x) = 0 otherwise, is clearly a co-Roman
dominating function of G of weight 3, a contradiction. Therefore u1v3 6∈ E(G).
Consider the following.

• u1u2 ∈ E(G) (the case u1v2 ∈ E(G) is similar). Then as above u1v2 6∈
E(G). If v2v3 ∈ E(G), then the function h2 : V (G) → {0, 1, 2} defined by
h2(u1) = 2, h2(v2) = 1 and h2(x) = 0 otherwise, is clearly a co-Roman dom-
inating function of G of weight 3, a contradiction. Hence v2v3 6∈ E(G). If
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{u2u3, u2v3, u3v2} ⊆ E(G), then the function h3 : V (G) → {0, 1, 2} defined by
h3(u1) = 2, h3(u2) = 1 and h3(x) = 0 otherwise, is clearly a co-Roman dominat-
ing function of G of weight 3, a contradiction. Thus {u2u3, u2v3, u3v2} 6⊆ E(G).
It follows that G ∈ {G1, G2, G3, G4, G5} and so G ∈ G5.

• u1u2, u1v2 6∈ E(G). If {u2, v2, v3} induces a triangle, then the function
h4 : V (G) → {0, 1, 2} defined by h4(u1) = 2, h4(u2) = 1 and h4(x) = 0 otherwise,
is clearly a co-Roman dominating function of G of weight 3, a contradiction. Thus
{u2, v2, v3} does not induce a triangle. As above we have {u2u3, u2v3, u3v2} 6⊆
E(G). Since G is connected, the graph induced by u2, v2, u3, v3 is connected.
This implies that G ∈ {G6, G7, G8, G9, G10} and so G ∈ G5.

Subcase 1.3. |X| = 0. Then n = 6. Since γcr(G) = 3, we have ∆(G) ≤ 4
by Propositions 1 and 2. Hence γ(G) ≥ 2. If γ(G) = 3, then we deduce from
Theorem 28 that G is the corona cor(P3) or cor(C3) and so G ∈ G4. Assume
γ(G) = 2. Then we conclude from Proposition 9 that every γ(G)-set S contains
a vertex x such that x has no neighbor x′ ∈ V \ S with pn(x, S) ⊆ N [x′]. It
follows that G ∈ G4.

Case 2. α′(G) = 2. First let S 6= ∅. We deduce from (2) that |S| = 1 and so
S = {x1}. Let x1u1, x1v1 ∈ E(G). Then we assume that each other vertex of X
is adjacent only to u2. It follows that deg(x) = 1 for each x ∈ X \ {x1}. Since
the function g : V (G) → {0, 1, 2} defined by g(u1) = 1, g(u2) = 2 and g(x) = 0
otherwise, is an co-Roman dominating function of G, we deduce that n − 3 ≤ 3
and so n ≤ 6. If n = 6, then clearly X = {x1, y1}. By considering the matching
M ′ = {u1v1, u2y1} instead of M , we have deg(v2) = 1. Since G is connected and
γcr(G) = 3, u2 must be adjacent to at least one vertex and at most two vertices
in {u1, v1, x1}. Thus G is a graph obtained from a triangle by adding a path P3

and joining its center to at least one and at most two vertices of triangle and so
G ≃ H1 or H2. Hence G ∈ G4. Assume that n = 5. Since G is connected, G is
a graph obtained from a triangle and a path P2 by adding some edges between
them so that the resulting graph has at most one universal vertex. Thus G ∈ G2.

Now let S = ∅. As above, we may assume N(x) ⊆ {u1, u2} for each x ∈ X.
By Theorem 19, we have γcr(G) ≤ 4 and this implies that n ≤ 7. Thus |X| ≤ 3.
If n = 4, then we have γcr(G) = 1 yielding G ∈ {K4,K4−e} ⊆ G1 by Observation
6. If n = 5, then G is a graph obtained from a path P3 and a path P2 by adding
some edges between them such that the resulting graph is different from DS(1, 2)
and has at most one universal vertex. Thus G ∈ G3. Let n ≥ 6. Since γcr(G) ≥ 3,
G has no vertex of degree n− 1 and so γ(G) ≥ 2. Since {u1, u2} is a dominating
set, we have γ(G) = 2. If n = 6, then clearly G ∈ G4. Suppose n = 7. Then
X = {y1, y2, y3}. If ui is adjacent to all vertices of X for some i, say i = 1, then
the function g : V (G) → {0, 1, 2} defined by g(u1) = 2, g(u2) = 1 and g(x) = 0
otherwise, is an co-Roman dominating function of G of weight 3 which leads to a
contradiction. Hence, each ui is adjacent to at most two vertices in X. We may
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assume without loss of generality that u1y1, u1y2, u2y3 ∈ E(G) and u1y3 6∈ E(G).
Since {y1, y2, y3, v1} is independent, we deduce that deg(y3) = 1. Considering
the matching M ′ = {u1v1, u2y3} instead of M , we obtain deg(v2) = 1. Since
γcr(G) = 4, u2 is adjacent to at most one vertex in {y1, y2, v1}. Thus G is a
connected graph obtained from K1,3 and a path P3 by joining the center of P3

to the center or at most one leaf of K1,3. This implies that G ∈ {G11, G12, G13}
and so G ∈ G5. This completes the proof.
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