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Abstract

For a graph G = (V,E), a function f : V (G) → {1, 2, . . . , k} is a k-
ranking for G if f(u) = f(v) implies that every u− v path contains a vertex
w such that f(w) > f(u). A minimal k-ranking, f , of a graph, G, is a
k-ranking with the property that decreasing the label of any vertex results
in the ranking property being violated. The rank number χr(G) and the
arank number ψr(G) are, respectively, the minimum and maximum value of
k such that G has a minimal k-ranking. This paper establishes an upper
bound for ψr of a tree and shows the bound is sharp for perfect k-ary trees.
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1. Introduction

In this paper the term graph refers to a simple graph; i.e., a graph with undirected
edges, no loops, and no multiple edges between two vertices. Given a graph, G, a
function f : V (G) → {1, 2, . . . , k} is a k-ranking for G if f(u) = f(v) implies that
every u − v path P contains a vertex w such that f(w) > f(u). If the value of
k is unimportant then f will be referred to as a ranking of G. The rank number

of G, denoted χr(G), is the minimum value of k such that G has a k-ranking.
By definition every ranking is a coloring, hence χr(G) is bounded below by the
chromatic number, χ(G).

The rank number was initially studied from an algorithmic standpoint be-
cause it is related to the minimum height of an elimination tree [2] which has
applications to the sparse factorization of matrices [15]. Some early papers on
rankings include [3, 5, 6, 7].

A function f : V → {1, 2, . . . , k} is a minimal k-ranking of G if

1. f is a k-ranking and
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2. for all x ∈ V such that f(x) > 1 the function g defined on V by g(z) =
f(z) for z 6= x and 1 ≤ g(x) < f(x) is not a ranking.

A minimal k-ranking may be referred to as a minimal ranking when the value of
k is unimportant. Minimal rankings are introduced in [9] as a concept analagous
to complete colorings. The second condition is the minimality criteria; when
applied to rankings it allows for a worst case ranking, called the arank number of
G, and denoted by ψr(G). It is defined to be the maximum value of k for which
G has a minimal k-ranking.

Paths are one of the few classes of graphs that have both ranking and aranking
numbers determined. For Pn, the path on n vertices, both χr and ψr have been
established.

Theorem 1 [11]. χr(Pn) = ⌊ log2(n)⌋+ 1.

Theorem 2 [16]. ψr(Pn) = ⌊ log2(n+ 1)⌋+ ⌊ log2
(

n+ 1− 2⌊log2(n)⌋−1
)

⌋.

If n = 11, then χr(P11) = ⌊ log2(11)⌋ + 1 = 3 + 1 = 4 and ψr(P11) =
⌊ log2(12)⌋+⌊ log2(12−2⌊log2(11)⌋−1)⌋ = 3+⌊ log2

(

12− 23−1
)

⌋ = 3+⌊ log2(8)⌋ =
6. With χr(P11) and ψr(P11) known, consider the graphs in Figure 1.

1 5 1 2 3 2 1 4 1 2 1
(e)

5 1 2 1 3 4 3 1 2 1 6
(d)

1 2 1 3 1 2 1 4 1 2 1
(c)

1 2 1 3 1 2 1 4 2 3 2
(b)

3 2 1 6 8 7 6 1 2 1 3
(a)

Figure 1. Different rankings of P11.

The graph in (a) shows an 8-ranking since 8 is the largest label used. If the
number, in this case 8, is unimportant, then the term ranking can be used. To
establish that (a) is a ranking it is necessary to verify that every path between
any two vertices with the same label contains a higher labeled vertex. This is
true; for example, the vertices labeled 1 have a 2 or 6 on every path between
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them, the path between vertices labeled 2 contains a 7, the two vertices labeled 3
have an 8 between them, and the vertices labeled 6 have a 7 on the path between
them. Note that this ranking contains no vertex labeled 4 or 5. This ranking is
not minimal either; changing the label of any one of the vertices labeled 6 to a 4
still results in a ranking. The graph in part (b) can be verified as a ranking by
the process explained for (a). Since the maximum label used is 4 and χr(P11) = 4
it can be called a χr-ranking. This is not a minimal ranking because reducing
the label of the pendant vertex from 2 to a 1 results in a ranking. Reducing the
labels from (b) eventually results in the minimal χr-ranking shown in (c). This
ranking is minimal because no label can reduced and still result in a ranking.
The authors of [9] observe that the process of reducing the labels of a χr-ranking
which is not minimal, such as that in Figure 1(b), must eventually end with a
minimal ranking, hence χr(G) = min{k : G has a minimal k-ranking}. Next, it
can be easily checked that (d) is a minimal ranking. Since ψr(P11) = 6 and since
ψr implies minimality it is common to call this a ψr-ranking. Finally, one can
check that the graph in (e) has a minimal 5-ranking.

This paper relies on an extensive set of definitions. For definitions that are
not given, consult a standard graph theory book such as [4]. Let G = (V,E) be
a simple graph with vertex set V and edge set E. If x is a vertex of graph G

the neighborhood of x, denoted N(x), is the set of all vertices adjacent to x while
N [x] = N(x) ∪ {x}. A vertex x is simplicial if every vertex of N(x) is adjacent
to every other vertex of N(x); that is, N(x) is complete. If G is a graph with
vertex set V and S ⊆ V is nonempty then the induced subgraph of S, denoted
〈S〉, consists of all the vertices in S together with all the edges in E that are
incident with two elements of S. If S is a subset of vertices from graph H which
is a subgraph of G then 〈S〉H and 〈S〉G refer to the induced subgraph of S in
H and the induced subgraph of S in G, respectively. If G = (V,E) is a graph,
a set S ⊆ V is an independent set if whenever x, y ∈ S then (x, y) 6∈ E. A set
S ⊆ V is a dominating set if for each vertex y ∈ V − S there exists a vertex
x ∈ S such that (x, y) ∈ E. A set S ⊆ V is an independent dominating set if
S is an independent set and a dominating set. The domination number of G,
denoted γ(G), is the minimum cardinality of a dominating set for G and the
independent domination number of G, denoted i(G), is the minimum cardinality
of an independent dominating set for G. The independence number of G, denoted
β(G), is the maximum cardinality of an independent set for G. A set of edges
{e1, e2, . . . , em} is a strong matching if no two edges share a common vertex and
there is no edge in G between vertices ei and ej for 1 ≤ i 6= j ≤ m. A vertex, x,
is a cut vertex of graph G if G − v has more components than G. A clique in a
graph is a subgraph which is complete. Clique C is a maximal clique if there is
no clique properly containing C.

In general, the distance between vertices x and y in a graph G will be denoted
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by d(x, y) but if H is a subgraph of G then the distance between x and y could be
different in H and G. The notation dG(x, y) and dH(x, y) will be used as needed
to clarify whether the distance is in G or H, respectively. The notation rad(G)
refers to the radius of graph G.

The notation Kn will be used for the complete graph on n vertices. A chordal

graph is a graph in which every cycle of length greater than 3 contains a chord;
i.e., an edge which is not part of the cycle but connects two vertices of the cycle. A
perfect elimination ordering of a graph is an ordering of the vertices v1, v2, . . . , vn
such that, for each vi, N(vi) forms a clique in 〈vi+1, . . . , vn〉.

In a rooted tree, all vertices below v that are adjacent to it are children of
v and v is said to be their parent. All the vertices which have a path to v using
vertices below v are descendants of v. The root is the only vertex with no parent.
If the degree of a vertex v is 1 then v is a pendant vertex (or end vertex). An
internal vertex of a tree is any vertex which is not pendant.

For S ⊂ V the reduction of G by S, denoted by G∗
S , is the graph with vertex

set V − S and edge set given by (x, y) ∈ E(G∗
S) if and only if (x, y) ∈ E(G) or

there exists a path x− s1 − s2 − · · · − sk − y where si ∈ S for 1 ≤ i ≤ k. Figure 2
illustrates the reduction of the graph in (a) by the set S = {v3, v4} which results
in the graph (b).

v1 v2

v3

v4

v5

v6

v7

v8

v1 v2

v5

v6

v7

v8

(a) (b)

Figure 2. A graph and its reduction by {v3, v4}.

The edges (v2, v5) and (v5, v8) are in the original graph. The remaining edges,
which are dashed, indicate the new edges between vertices of G that have a path
between them containing internal vertices in {v3, v4}. For example, (v1, v6) is an
edge of G∗

S because of the path v1 − v3 − v6, where v3 ∈ S. Similarly, (v1, v5) is
an edge of G∗

S because the path v1 − v3 − v4 − v5 has internal vertices v3, v4 ∈ S.

2. Established Results

This paper also relies on many results that have already been established. Here
are some results on rankings which will be needed.
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Lemma 3 [9]. If G is a graph on n vertices then ψr(G) = n if and only if

∆(G) = n− 1.

Lemma 4 [9]. The set R of vertices with repeated labels is a dominating set for

G.

Lemma 5 [13]. Let f be a minimal ψr-ranking of a graph G and let t be the

largest repeated label. Any permutation of the distinct labels which are greater

than t+ 1 is a minimal ψr-ranking.

Lemma 6 [9]. If x is a pendant vertex of a graph G and y is the vertex adjacent

to x, then in any minimal ranking f of G, either f(x) = 1 or f(y) = 1.

Lemma 7 [9]. If f is a minimal ψr-ranking of a connected graph G, then there

exists a unique vertex x such that f(x) = ψr and there exists a unique vertex y

such that f(y) = ψr − 1.

Lemma 8 [9]. If G is a graph and A1, A2 ⊂ V (G) such that A1 ∩ A2 = ∅ and

A1 ∪A2 ⊂ V (G), then G∗
A1∪A2

=
(

G∗
A1

)∗

A2

.

Lemma 9 [9]. Let G be a graph and let f be a minimal ψr-ranking of G. If

S1 = {x : f(x) = 1}, then ψr(G
∗
S1
) = ψr(G)− 1.

Lemma 6 makes it immediately obvious the ranking in Figure 1(b) is not
minimal. Pendant vertices cannot be between two vertices with the same label,
so reducing the pendant vertex labeled 2 to a 1 will result in a ranking unless it is
adjacent to a vertex labeled 1. Since it is not, the ranking is not minimal. Lemma
9 is particularly important and is illustrated by the four graphs in Figure 3.

The graph, G, in (a) has a minimal 4-ranking. Reduction by S1, the set
of vertices labeled 1, creates the graph G∗

S1
in (b). The dashed edges indicate

edges that are in G∗
S1

but are not in G. The remaining vertices of G∗
S1

have been
assigned a label one less than what it was in G. Note that this is a minimal
3-ranking. Reduction on the vertices labeled 1 in (b), which is equivalent to
the reduction of the original graph by reduction on the vertices labeled 1 and
2, results in the graph in (c). This graph, (G∗

S1
)∗S2

, is equivalent to G∗
S1∪S2

by
Lemma 8 which is a formal way of saying the reduction of a graph, G, by S1
and then reduction of that graph by S2 is equivalent to the reduction of G by
S1 ∪ S2. Observe the two resulting edges which do not appear in G are dashed.
Once again, 1 has been subtracted from the each label of the vertices in (b), or
2 subtracted from the label the vertices had in G, and the result is a minimal
2-ranking. Reduction on the vertices labeled 1 in the graph of (c) results in an
isolate with label 1. Lemma 9 asserts that given a ψr(G)-ranking, reduction of
the graph by S1 followed by subtracting 1 from each label results in a ψr(G

∗
S1
)-

ranking. Indeed, even more can be said. The minimal 2-ranking in Figure 3 is
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1 4 2 1

1 3
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2

(a) (b)

1

2

1

1

(c) (d)

Figure 3. The reduction process for a ranking.

not a ψr-ranking. Lemma 3 asserts that the graph in (c) has ψr = 3 because the
vertex labeled 2 has ∆(G) = 3 − 1 = 2. This minimal ranking is achieved by
labeling the vertices 2, 1, 3 from left to right results in a minimal 3-ranking. Since
ψr = 3 for the graph in (c), Lemma 9 asserts the graph in (a) is not a ψr-ranking
either. If it were, the labeling of the graph in (c) would be a ψr-ranking. Lemma
7 states that in a ψr-ranking the largest label and the second largest label are
distinct labels. Therefore, the graph in (a) is not a ψr-ranking because although
the largest label, ψr = 4 is distinct the second largest label ψr − 1 = 3 is a
repeated label.

Figure 3 can illustrate some of the other lemmas as well. Lemma 4 asserts
that the repeated label vertices form a dominating set. The graph in (a) has
repeated labels 1, 2, 3 and every other vertex, in this case just the vertex labeled
4, is adjacent to some vertex with a repeated label.

Finally, the dashed edges are known as implicit edges of the graph for that
specific ranking. The concept of an implicit edge is introduced in [12] where
the precise formulation is: Let f be a k-ranking of a graph G = (V,E) and let
Si = {x : f(x) = i} for 1 ≤ i ≤ k. Define Im(G, f) = (V,E′) where (u, v) ∈ E′ if
and only if (u, v) ∈ E(G)∪E(G∗

S1
)∪ · · · ∪E(G∗

S1∪···∪Sk−1
). We call Im(G, f) the

implied graph of G with respect to f . An edge which is in the implied graph but
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not in the graph itself is an implicit edge.
Figure 4 shows the implied graph for the first graph, G, of Figure 3 under the

minimal 4-ranking it started with. The resulting graph is still minimally ranked.
The implied edges are dashed to distinguish them from the original edges of G.

3

2

1 4 2 1

1 3

Figure 4. The implied graph of G under the ranking in Figure 3.

Notice the implied graph is chordal. This is always true, for any graph G

and any ranking as has been established in Theorem 10.

Theorem 10 [12]. If G is a graph and f is a k-ranking of G, then Im(G, f) is

chordal.

Not every ranking will produce implicit edges; one trivial example is any
ranking of Kn. Since a chordal graphs is hiding under every minimal ranking
of a graph, the next well known characterization of chordal graphs is useful for
studying minimal rankings.

Theorem 11 [8]. A graph is chordal if and only if it has a perfect elimination

ordering.

3. Preliminary Results

This section begins with some results on how parameters change under the re-
duction process. Theorem 12 asserts that the distance between any two vertices
of G∗

S cannot be greater than in G.

Theorem 12. Let G be a connected graph, S ⊂ V (G), and suppose u, v ∈ V (G∗
S).

The graph H = G∗
S is connected and dH(u, v) ≤ dG(u, v).

Proof. Let u, v ∈ V (G∗
S); since G is connected there is a shortest path u = p1 −

p2− · · · − pk = v. If all edges (pi, pi+1) from G are in H then dH(u, v) ≤ dG(u, v)
is clearly true. If some of those edges are not in H then some pi are in S. Now
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u, v ∈ V (H) implies u = p1 and v = pk are in V −S. Removing the vertices of the
path that are in S results in a subsequence of p1, . . . , pk which will be represented
by u = a1, a2, . . . , am = v. Each ai and ai+1 which are not consecutive vertices
of p1, . . . , pk are separated by consectutive vertices pt − pt+1 − · · · − pt+r from S.
Therefore (ai, ai+1) is always an implicit edge ofH and so u = a1−a2−· · ·−am = v

is a path in H which is shorter than the path in G. As u and v are arbitrary, it
follows that H is connected and dH(u, v) ≤ dG(u, v).

Corollary 13 follows immediately.

Corollary 13. If G is a graph and S ⊂ V, then rad(G) ≥ rad(G∗
S) and diam(G)

≥ diam(G∗
S).

Corollary 14. If G is a graph and S ⊂ V, then β(G) ≥ β(G∗
S).

Proof. If A is an independent set in G∗
S with β(G∗

S) elements then the distance
in G∗

S between any two vertices of A is at least 2. By Theorem 12, the distance
in G between any two vertices of A is at least 2. It follows that A is independent
in G and β(G) ≥ |A| = β(G∗

S).

For any connnected graph G, let T denote the set of spanning trees of G
and let ε(T ) be the number of pendant vertices of tree T ∈ T . Finally, let
ε(G) = max{ε(T ) : T ∈ T }.

For the graph G in Figure 3(a) it is easy to calculate the maximum number
of pendant vertices in a spanning tree is 4. Likewise, the maximum number of
pendant vertices in a spanning tree of (b) ε(G∗

S1
) = 3, and ε(G∗

S1∪S2
) = 2 for

the graph in (c). Theorem 15 establishes that the maximum number of pendant
vertices in a spanning tree cannot increase after a reduction.

Theorem 15. If G is a connected graph and S ⊂ V, then ε(G) ≥ ε(G∗
S).

Proof. Let T ∗ be a spanning tree of G∗ with ε(T ∗) pendant vertices. A spanning
tree T of G will be constructed with at least ε(T ∗) pendant vertices in 3 steps.
First, any edges of T ∗ that are in G will be used in T . Second, edges of T ∗ that
are not in G are implicit edges of G∗

S . Each implicit edge corresponds to a path
in G using internal vertices which are only in S. The edges of this path are added
to T and then any cycle edges that may have resulted are removed. At this point
a tree has been created, not necessarily spanning, with ε(T ∗) pendant vertices
using edges of G. Third, if the tree is not a spanning tree then it will be extended
to create a spanning tree while not decreasing the number of pendant vertices.

The first step is easily accomplished. To complete the second step, observe
that any implicit edge in T ∗

S between vertices x and y is the result of a path
between x and y with internal vertices in S. Add those vertices and edges to T .
Note that if either x or y is a pendant vertex of T ∗ then it is still a pendant vertex
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in T . Continue the process of adding the vertices and edges to T for each implicit
edge of T ∗ until all implicit edges have been replaced. That resulting graph,
call it T ′, might not be a tree since a cycle could have been created along the
way. One by one, remove any edges from T and T ′ that are on a cycle. Observe
that removing a cycle edge cannot decrease the number of pendant vertices so
the process ends with a tree having at least as many pendant vertices as T ∗.
However, T ′ might not be a spanning tree. If T ′ is a spanning tree let T = T ′.
Otherwise T is created by finding a vertex s1 ∈ S which is not in T ′ and is
adjacent to some vertex x ∈ T ′; this is possible since G is connected. Add the
vertex s1 and edge (s1, x) to T . If x is a pendant vertex of T ′ then x is no longer
pendant but s1 is now pendant. If x is an internal vertex of T ′ then x is not
a pendant vertex but s1 is. Therefore, T has at least as many pendant vertices
as T ′. Continue the process of finding a vertex in S which is adjacent to T and
adding it along with the edge to connect it to T . Eventually, since S is finite, the
result is a spanning tree T which has at least ε(G∗

S) pendant vertices. It follows
that ε(G) ≥ ε(T ) ≥ ε(G∗

S).

Lemma 4, proven in [9], established R is a dominating set hence |R| ≥ γ(G).
The same paper noted |D| ≤ n − γ(G), and then used that to prove the upper
bound for ψr in Lemma 5.

Theorem 16 [9]. If G is a graph with n vertices such that i(G) > 1, then

ψr(G) ≤ n− γ(G)
2 .

The parameter ε(G) can be used to establish another upper bound for ψr(G).
First, observe that a minimal ranking, f , of a graph G partitions the vertices into
a set R of vertices that have a repeated label and a set D of vertices that have
a distinct label. If G is a ranking of a graph then R, the set of vertices with
a repeated label and D, the set of vertices with a distinct label, partition the
vertex set. For any graph, G, which is minimally ranked, reduction by R will
result in a graph which has a minimal ranking if the remaining vertices have their
label reduced by the number of different repeated labels. Take, for example, the
minimal 6-ranking of the graph, G, shown in Figure 5(a).

Reduction by the set of vertices with a repeated label, R = S1, results in
G∗

R, shown in Figure 5(b). It is vertex set is D and it can be minimally ranked
by reducing the label of each vertex by the number of different repeated labels,
which is 1. Once again, the dashed edges represent the edges that are not in the
graph in (a); that is, the implied edges.

Notice for the graph in Figure 5(b) that all vertices have a path to each other
through the vertex labeled 1. Lemma 5 asserts that the labels of vertices in G∗

R

bigger than 1 can be permuted; so labels bigger than 2 in G can be permuted.
Next, Lemma 3 says ∆(G∗

R) = |D| − 1. A spanning tree T ∗ of G∗
R can be
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5 1 3

(a) (b) (c)

Figure 5. A spanning tree of G with |D| − 1 pendant vertices exists.

constructed with ε(G∗
R) = |D| − 1 provided |D| − 2 > 0; T ∗ would consist of all

the vertices in Figure 5(b) with edges from the vertex labeled 1 to vertices labeled
2, 3, 4, 5. A spanning tree, T , of G in Figure 5(a) is achieved by first taking all
the vertices and the edges of T ∗ in G (the edge from vertices labeled 1 to 5 which
corresponds ot the edge from 2 to 6 in G) along with edges in G that create
implicit edges. For example, there is an implicit edge from vertices labeled 1 to
4 in T ∗ so there is a path from the vertex labeled 2 to the vertex labeled 5 in (a).
This process continues for each implicit edge. After removing any cycle edges
that may have resulted from crossing paths and connecting up any vertices of R
that have not been used, a spanning tree T for G is formed with |D| − 1 edges.
Figure 5(c) is one such possibility. This is the basic idea behind the next result,
Theorem 17, which more formally establishes a second upper bound for |D|.

Theorem 17. If f is a ψr-ranking of a connected graph G on n vertices, then

|D| ≤ ε(G) + 1.

Proof. If |V (G)| = 1 then G is a K1 and 1 = |D| ≤ ε(G) + 1, likewise if
|V (G)| = 2 then G is a K2 and 2 = |D| ≤ ε(G) + 1. Therefore, assume G is
a connected graph on at least three vertices. Since G is connected it contains
either P3 or K3 as an induced subgraph hence ψr(G) ≥ 3 and by Lemma 7,
|D| ≥ 2. Let R be the set of vertices that have a repeated label. If |R| = 0
then by Lemma 3 there is one vertex, v, adjacent to every other vertex. The
spanning tree consisting of every edge incident with v has n− 1 pendant vertices
and since every spanning tree has more than one edge, ε(G) ≤ n − 1, hence
n = |D| ≤ n− 1 + 1.

So suppose R is nonempty; form the reduction of G by the vertices labeled 1
then by the vertices labeled 2, and so on until all the repeated labels have been
used. The resulting graph G∗

R has |D| vertices and ψr(G
∗
R) = |D|. Once again,
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Lemma 3 implies there is a vertex v adjacent to every other vertex of G∗
R. Since

|D| ≥ 2, for every vertex u ∈ D − {v} is either adjacent to v in G or has a path
u− r1 − r2 − · · · − rk − v in G, where each ri is in the nonempty set R.

A spanning tree for G will be formed which has pendant vertices D−{v}. The
vertex v, which has the smallest distinct label, will be the root of the spanning
tree and the remaining vertices with distinct labels will be the pendant vertices
of the spanning tree. Since the spanning tree has more than two edges v will not
be pendant. Start by including all the edges from vertices in D − {v} to v. If
there exist vertices in D−{v} not adjacent to v in G then, since v is adjacent to
it in G∗

R, there exists a path from that vertex, call it x, to v through vertices of
R. Add all the edges to the tree and the number of pendant vertices increases
by one. Continue the process of connecting up the remaining vertices of D−{v}.
Remove any cycle edge that is created; this can only increase the number of
pendant vertices in the tree. The result is a tree T with at least |D| − 1 pendant
vertices.

Expand the tree one vertex at a time by finding a vertex not in T that is
adjacent to a vertex of T . Add any edge of G that connects it to T . The edge
either connects to a pendant vertex, in which case the number of pendant vertices
stays the same, or it connects with a vertex which is not pendant, in which case
the number of pendant vertices increases. Continue the process until all vertices
are used and the result is a spanning tree of T with at least |D| − 1 pendant
vertices. Therefore, |D| − 1 ≤ ε(T ) ≤ ε(G); that is, |D| ≤ ε(G) + 1.

This bound on the cardinality of D means that |R| ≤ n − (ε(G) + 1) which
results in another bound on ψr.

Corollary 18. If G has n vertices, then ψr(G) ≤
n+ε(T )+1

2 .

Proof. There can be at most ε(G) + 1 distinct labels and n−(ε(G)+1)
2 different

repeated labels. Therefore, ψr(G) ≤
n−(ε(G)+1)

2 + ε(G) + 1 = n+ε(G)+1
2 .

If n ≥ 3 then ε(Kn) = n − 1, hence ψr(Kn) ≤ n+ε(G)+1
2 = n+(n−1)+1

2 = n

shows the bound is sharp.

4. Reductions on Chordal Graphs and Reduction Trees

Theorem 19 will be used to show the reduction of a chordal graph is a chordal
graph. This will allow the possibility of using induction on any chordal graph.

Theorem 19. If G is a chordal graph on n ≥ 2 vertices and v ∈ V (G), then G∗
v

is a chordal graph.
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Proof. The proof is by induction on the number of vertices. If G is a chordal
graph on n = 2 vertices then G is either two isolated vertices or G is K2. In either
case, G∗

v
∼= K1 which is chordal. Suppose the statement is true for any chordal

graph on n vertices and consider a chordal graph on n + 1 vertices. If v is a
simplicial vertex then G∗

v is equivalent to 〈V − v〉, the graph formed by removing
v, which is chordal. If v is not simplicial then, since G is chordal, there exists a
perfect elimination ordering for G, say p1, p2, . . . , pk = v, pk+1, . . . , pn. It will be
shown that p1, p2, . . . , pk−1, pk+1, . . . , pn is a perfect elimination ordering for H =
G∗

v. Now NG(pi) is already complete in the induced subgraph 〈{pi+1, . . . , pn}〉
of G and that does not change in H if v 6∈ (NH(pi) ∩ {pi+1, . . . , pn}). If v ∈
(NH(pi) ∩ {pi+1, . . . , pn}) then v is adjacent to every other vertex in NH(pi)
contained in {pi+1, . . . , pn}. Therefore, for each x ∈ (NH(pi) ∩ {pi+1, . . . , pn})
and for each y ∈ (NH(v) ∩ {pi+1, . . . , pn}) there is always an x − v − y path
hence (x, y) is an edge of H. Moreover, if y1, y2 ∈ (N(v) ∩ {pi+1, . . . , pn}) then
there is a y1 − v − y2 path in G hence y1 and y2 are adjacent in H. Therefore
NH(pi) is simplicial in the graph 〈{pi+1, . . . , pn}〉H . It follows that this is a perfect
elimination ordering and G∗

v is a chordal graph.

Apply Theorem 19 for each s in a proper subset S ⊂ V to get Corollary 20.

Corollary 20. If G is a chordal graph on n ≥ 2 vertices and S ⊂ V, then G∗
S is

a chordal graph.

In order to prove a bound for the arank number of a tree, a new concept is
introduced. A graph, G, is defined to be a reduction tree if there exists a tree T
and subset A ⊂ V (T ) such that G = T ∗

A. This is illustrated in Figure 6.

v1 v2 v3

r

v4

a3

v3

a1 a2

v1

r

v4

v2

(a) (b)

Figure 6. The graph, G, in (a) is a reduction tree of the tree, T in (b).

Graph, G, in (a) is a reduction tree because the tree T in (b) contains a
set of vertices A = {a1, a2, a3} with the property that G = T ∗

A. Observe that
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T is not unique; adding another vertex a4 ∈ A and making it adjacent to any
vertex of the tree in Figure 6 results in the same reduction tree. Of course, any
vertices of A which are pendant are not needed to create a reduction tree. Also
notice, by Theorem 12, the distance between two vertices in G is less than the
distance between them in T . For example, the distance from dG(r, v2) = 1 but
dT (r, v2) = 3.

Theorem 21. The reduction of a reduction tree is a reduction tree.

Proof. If G is a reduction tree then there exists a tree T and a set of vertices A
such that G=T ∗

A. The reduction G
∗
B is equivalent to (T ∗

A)
∗
B=T ∗

A∪B by Lemma 8.

Since a tree is a chordal graph and the reduction of a chordal graph is a
chordal graph by Corollary 20, reduction trees are chordal graphs. In order to
characterize reduction trees, consider Figure 7, which is chordal with perfect
elimination order c, b, a, d.

a b

c d

Figure 7. K4 minus an edge.

Theorem 22 asserts that an induced subgraph ofK4 minus an edge is precisely
what keeps a chordal graph from being a reduction tree. Therefore, K4 minus an
edge is an example of a chordal graph which is not a reduction tree.

Theorem 22. Let G be a chordal graph. G is a reduction tree if and only if it

contains no induced subgraph isomorphic to K4 minus an edge.

Proof. Let F denote the forbidden induced subgraph K4 minus an edge shown
in Figure 7. Let T be a tree rooted at r whose reduction by a set of vertices, A,
results in the reduction tree G containing F as an induced subgraph. Consider
the vertices a, c, d; there is only one path between these vertices in T . If one
of the vertices was on the path between the other, such as a path from a to d
which contained c, then the vertices would not from a clique in G because there
is no path from a to d with internal vertices in A. The only way that the clique
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can form is if there is some vertex x in A such that the paths from x to a, b, c
whose internal vertices are entirely within A. This makes it impossible for there
(a, b) and (b, d) to be edges of G. Imagine that the tree is rooted at x; of course
b cannot be on any path from x to a (or b or c) because that would imply that x
and a (or b or c) are adjacent after reduction by A. Since T is a tree, this would
imply that there is a path from b to a as well as d whose internal vertices are in
A. But this would mean that there is a path from b to c with internal vertices in
A, hence a, b, c, d induce a K4. It follows that F cannot be an induced subgraph
of G as all cases result in a contradiction.

Conversely, given a connected chordal graph, G, without F as an induced
subgraph, identify the m maximal cliques of G and assign a one vertex ai, such
that 1 ≤ i ≤ m, to the vertices in maximal clique i. Let A = {a1, . . . , am} and T
be the graph with vertex set V (T ) = V (G) ∪ A. The edges of T will consist of
ordered pairs {(ai, x) : ai ∈ A and x is in maximal clique i}. If T were to have a
cycle then it would require an even number of vertices which alternate between
being in A and being in G. Let a1−v1−a2−v2−· · ·−ak, vk be such a cycle where
a1, . . . , ak are elements of A and v1, . . . , vk are vertices of T . Since the vertices
of A only connect to vertices of their respective maximal cliques, v1, . . . , vk is a
cycle of chordal graph. Therefore, there is a chord for each cycle greater than
3 hence assume the 3 consecutive vertices v1, v2, v3 form a K3 in G. Now a2 is
adjacent to v1 and v2 because (v1, v2) is part of a maximal clique C1 containing
v1 and v2. Similarly, there is a maximal clique C2 for the cycle containing the K3

formed by v1, v2, v3. Since the C1 and C2 are different there exists x ∈ C1 and
y ∈ C2 which are not adjacent, hence 〈{x, y, v1, v2}〉 forms a K4 minus an edge.

Figure 8 illustrates the process of constructing the tree, T and the set, A, of
vertices such that T ∗

A = G.
Graph G in (a) is a chordal graph with simplicial vertices {s1, s2, s3, s4, s5, s6}

and cut vertices {c1, c2}. The proof assumes that K4 minus an edge is not an
induced subgraph, and that forbidden subgraph is not part of G. The graph
in (b) adds vertices a1, a2, a3, a4; one vertex to associate with each of the four
maximal cliques of G. That is, a1 is associated with the clique containing vertices
s1, s2, c1, vertex a2 is associated with the clique containing vertices c1, s6, vertex
a3 is associated with the clique containing vertices c1, c2, and a4 is associated
with the clique containing vertices c2, s3, s4, s5. In graph (c) all the edges of G
are removed. In (d), edges are added from each ai to the vertices which are
in the clique it is associated with. This creates a tree, T , along with a set,
A = {a1, a2, a3, a4} such that T ∗

A = G so the graph in (a) is a reduction tree.
Theorem 22 gives another way to show that a tree on n > 1 vertices is a

reduction tree: replace the ith edge, (x, y), of the tree with two edges (x, ai) and
(ai, y), where a1 ∈ A for 1 ≤ i ≤ n− 1.
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s1

c1 c2 s5

s6

s4s3

s2

s1

c1 c2 s5

s6

s4s3a1 a2

a3

a4

(a) (b)

s2

s1

c1 c2 s5

s6

s4s3a1 a2

a3 a4 s2

s1

c1 c2 s5

s6

s4s3a1 a2

a3

a4

(c) (d)

Figure 8. A graph is shown to be a reduction tree using Theorem 22.

Reduction trees can be distinguished from chordal graphs in another way.
Borrowing from tree vocabulary, Lemma 23 asserts that the parent of a vertex in
a reduction tree is unique.

Lemma 23. If G is a reduction tree and x is a vertex distance k from a central

vertex r, then there is a unique vertex y in G that is distance k − 1 from r such

that (x, y) is an edge of G.

Proof. Let r be a central vertex of the reduction tree, G. The vertices distance
1 from r will be on the first level below r, the vertices distance 2 from r will be
on the second level below r, and so until the vertices which are distance rad(G)
from r are on the final level. Corresponding to the reduction tree there is a tree
T with a subset A of vertices such that G = T ∗

A. If y1 and y2 are adjacent to x
in G and both y1 and y2 are distance k− 1 from the root r in G then there exist
paths y1 − a1 − a2 − · · · − am − x and y2 − b1 − b2 − · · · − bt − x in T such that
a1, a2, . . . , am ∈ A and b1, b2, . . . , bt ∈ A. Since T is a tree there exists a smallest
i such that ai = bj . Likewise, since there is a unique path from the root, r, of T
to both y1 and y2 there is a vertex c (which may be r) in common to the r − y1
path and the r − y2 path. This implies c, y1, x, and y2 are on a common cycle,
contradicting that T is a tree. It follows that result is true.
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The graph in Figure 9 is chordal because every cycle of length greater than
3 contains a chord. One perfect elimination ordering is s1, s2, x, y, r, z, s3.

By Lemma 23 the graph is not a reduction tree since s1 (and s2) has two
vertices, x and y above it that it is adjacent to. Likewise, the graph is chordal
and the vertices r, x, y, s1 induce a K4 minus an edge so Theorem 22 could also
be used to establish the graph is not a reduction tree.

x

s1

y

r

s2

z

s3

Figure 9. This chordal graph contains the forbidden subgraph of Figure 7.

Lemma 6 can be generalized to any simplicial vertex. It asserts that a simpli-
cial vertex does not really separate vertices, hence the only reason its label could
not be decreased to 1 is because it is adjacent to some vertex labeled 1.

Lemma 24. If G is a graph with simplicial vertex s and f is a minimal ranking

of G, then either f(s) = 1 or there exists a y ∈ N(s) such that f(y) = 1.

Proof. Let f be any minimal ranking of G with simplicial vertex s. By Lemma
6 the degree of s can be assumed to be at least 2. If either f(s) = 1 or f(y) = 1
then there is nothing to prove so assume that both f(s) and f(y) are greater than
1. Consider any path, P , containing s between two vertices u and v such that
f(u) = f(v). Let P be represented by u = a1−a2−· · ·−am−s−b1−b2−· · ·−bn−v.
Since s is simplicial, (am, b1) is an edge of G hence P contains a shorter path P ′

given by u = a1−a2−· · ·−am−b1−b2−· · ·−bn−v. Since f(u) = f(v) and f is a
ranking there exists an x on P ′ such that f(x) > f(u). This means that the label
of s can be decreased to 1 because x is a vertex of P such that f(x) > f(u). This
contradicts the fact that f is a minimal ranking, which establishes the result.

Lemma 25. If f is a minimal ranking of a reduction tree G and S1 is the set of

vertices labeled 1, then rad(G)− rad(G∗
S1
) + ε(G)− ε(G∗

S1
) > 0.

Proof. Since rad(G) ≥ rad(G∗
S1
) by Corollary 13 and ε(G) ≥ ε(G∗

S1
) by Theorem

15, it suffices to show that rad(G) > rad(G∗
S1
) or ε(G) > ε(G∗

S1
). Now G is a
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reduction tree so by Lemma 23 every vertex which is rad(G) away from a central
vertex, r, has a unique parent, p. It follows that the parent is an internal vertex
of any spanning tree G. By Lemma 31 those vertices rad(G) from r are simplicial
so by Lemma 24 each vertex is either labeled 1 or is adjacent to a vertex labeled
1. There are three cases to consider.

Case 1. If the parent is labeled 1 then all vertices below it are distance
rad(G)− 1 after reduction.

Case 2. If a simplicial vertex which is not pendant is labeled 1 then, since a
unique parent implies all its children are pendant in any spanning tree of G with
ε(G) vertices, it follows ε(G) > ε(G∗

S1
).

Case 3. If a simplicial vertex is pendant and labeled 1 then ε(G) > ε(G∗
S1
)

unless the parent, p, becomes pendant. In this case, p is now distance rad(G)−1
from r. Therefore, if Case 2 occurs then the result is true since ε(G) > ε(G∗

S1
)

while if only Case 1 and Case 3 occur then rad(G) > rad(G∗
S1
). It follows

rad(G)− rad(G∗
S1
) + ε(G)− ε(G∗

S1
) > 0.

5. Main Results

With the preliminary results complete, the main results follow easily.

Theorem 26. If G is a reduction tree on more than one vertex, then ψr(G) ≤
rad(G) + ε(G).

Proof. Observe that ψr(K2) = 2 ≤ 3 = rad(K2)+ε(K2). Let G be the reduction
tree on the smallest number of vertices for which ψr(G) > rad(G) + ε(G). By
Lemma 9, ψr(G)− 1 = ψr(G

∗
S1
) and since G∗

S1
is a reduction tree by Theorem 21

it follows that rad(G) + ε(G)− 1 < ψr(G) − 1 = ψr(G
∗
S1
) ≤ rad(G∗

S1
) + ε(G∗

S1
).

Therefore, rad(G) − rad(G∗
S1
) + ε(G) − ε(G∗

S1
) < 1. Now every quantity is an

integer so this is equivalent to rad(G) − rad(G∗
S1
) + ε(G) − ε(G∗

S1
) ≤ 0 which

contradicts Lemma 25. Therefore, there does not exist a graph G for which
ψr(G) > rad(G) + ε(G), which establishes the result.

Corollary 27. If G is a tree on more than one vertex, then ψr(G) ≤ rad(G) +
ε(G).

Proof. By Theorem 22, every tree is a reduction tree, hence Theorem 26 applies
to trees as well.

The next theorem gives a sufficient condition to achieve the bound.
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Theorem 28. Let T be a tree with rad(T ) ≥ 3 and c the unique central vertex

of T . If 1) every pendant vertex is rad(T ) from the center, and 2) d(x, c) ≤
rad(T )− 3 implies x has at least two children, then ψr(T ) = rad(T ) + ε(T ).

Proof. Root the tree at c and label the vertices distance k (0 ≤ k ≤ rad(T )− 1)
from c with rad(T )− k. The ε(T ) pendant vertices which are rad(T ) away from
c are labeled rad(T ) + 1 to rad(T ) + ε(T ). This labeling is a ranking because
whenever two vertices are the same label, the only path between them is through
their parent, which has a higher label. The ranking is minimal as well. The
vertices labeled 2 are rad(T )− 2 away from c and since every pendant vertex is
rad(T ) away from the center, they all have a child labeled 1. Vertices labeled 3 are
distance rad(T )− 3 from c; it has two children labeled 2, so it is label cannot be
reduced. The same argument applies to every label up to rad(T ); it has at least
two children with labeled rad(T ) − 1 below it preventing it from being lowered.
The remaining ε(T ) pendant vertices are all, by hypothesis, rad(T ) from c. The
vertex labeled rad(T )+1 is cannot be changed to k (1 ≤ k ≤ rad(T )) because the
vertices above it form a path with labels k−1−2−· · ·−k path which would not
be a ranking. The same argument applies to the vertex labeled rad(T ) + 2 and
above. These vertices cannot be lowered to k for rad(T ) ≤ k ≤ rad(T )+ε(T )−1
either because then there is a path with labels k−1−2−· · ·−rad(T )−(rad(T )−
1)− · · · − 1− k. Since this is a minimal ranking uses rad(T ) + ε(T ) labels it is a
ψr-ranking.

The ranking scheme using Theorem 28 is demonstrated in Figure 10. Notice,
for example, that the vertex labeled 11 cannot have its label reduced to 1 because
it is adjacent to 1 and cannot be reduced to 2 or 3 because that would create a
path with labels 2−1−2 and 3−1−2−3, respectively. Reducing the label from
11 to 4 creates a path with labels 4 − 1 − 2 − 3 − 4 − 1 − 4. Similarly, reducing
the label from 11 to any distinct label results in a path where two vertices have
the same label and are connected by a path containing no higher labeled vertex.

Theorem 28 applies to a specific class of trees but first some more definitions
are needed. A k-ary tree is a rooted tree in which each node has no more than k
children. A full k-ary tree is a k-ary tree where within each level every node has
either 0 or k children. A perfect k-ary tree is a full k-ary tree in which all pendant
vertices are the same distance from the root. Figure 10 shows a ψr-ranking of
a perfect k-ary tree. Lemma 5 tells us that this is not the only ψr-ranking; the
labels greater than 3 can be permuted to get a different ψr-ranking.

Corollary 29. If G is a perfect k-ary tree where k ≥ 2, then ψr(G) = rad(G) +
ε(G).

Proof. By Corollary 27, ψr(T ) ≤ rad(T ) + ε(T ) and the ranking scheme of
Theorem 28 shows ψr(T ) = rad(T ) + ε(T ).
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4 5 6 7 8 9 10 11

1 1 1 1

2 2

3

Figure 10. A ψr-ranking for a perfect 2-ary tree with radius 3.

Corollary 30. If T is a perfect k-ary tree (k ≥ 2), then ψr(T ) = rad(T )+krad(T ).

Lemma 31. If G is a reduction tree, then every vertex rad(G) from a central

vertex is simplicial.

Proof. Let G be a reduction tree. There exists a tree T and set of vertices A
in T such that T ∗

A = G. Color the vertices of A with blue and the rest of the
vertices of tree T with white. The white vertices are the vertices that form G

after T is reduced by the blue vertices of A. Root T at r, a (white) central vertex
of G. Any vertex rad(G) away from r in G is at least rad(G) away from r in
T by Theorem 12. Moreover, that vertex can have no descendants in T which
are white vertices as they would be at least rad(G) + 1 from the center of G.
Consider any white vertex, x, which is rad(G) away from r. If x has a parent
in T which is a white vertex then x is pendant in G, hence x is simplicial in G.
If x has a parent in T which is blue then consider any white vertex y for which
x − b1 − b2 − · · · − bk − y is a path in which b1, b2, . . . , bk, y ∈ A. The vertices x
and y are adjacent in G. Moreover, if there exist white vertices y1, y2 ∈ T such
that x − b1 − b2 − · · · − bk − y1 and x − a1 − a2 − · · · − am − y2 are paths with
b1, b2, . . . , bk ∈ A and a1, a2, . . . , am ∈ A then a1 = b1 since T is a tree. It follows
that y1 − bk − · · · − b2 − b1 = a1 − a2 − · · · − am − y2 is a path from y1 to y2 with
internal vertices in A. This implies (y1, y2) is an edge of G and since y1 and y2
are arbitrary, NG(x) is complete. That is, x is a simplicial vertex of G.

Theorem 32. If G is a reduction tree such that ψr(G) = rad(G) + ε(G) and S1
is the set of vertices labeled 1 in a ψr(G)-ranking, then ψr(G

∗
S1
) = rad(G∗

S1
) +

ε(G∗
S1
).

Proof. The proof is by induction on rad(G). If G is a graph on n ≥ 4 vertices
such that rad(G) = 1 then G contains a vertex, x such that ∆(G) = n − 1.
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This implies ψr(G) = n by labeling x with 1 and the rest of the vertices labeled
2 through n, in any order. For this graph ε(G) = n − 1 by taking the G is
a K2 and has ψr(G)-ranking consisting of one vertex labeled 1 and the other
labeled 2. Suppose ψr(G

∗
S1
) = rad(G∗

S1
)+ε(G∗

S1
) for any reduction tree such that

rad(G) = k and let G be a reduction tree with ψr(G
∗
S1
) = rad(G∗

S1
)+ε(G∗

S1
) and

rad(G) > 1. Since every vertex rad(G) from the center is simplicial by Lemma
31 either the simplicial vertex, s is labeled 1 or a vertex in N(s) is labeled 1.
Since G is a reduction tree, there exists a tree T and a subset A of vertices such
that T ∗

A = G. If the tree is ranked at vertex r then x is a pendant vertex of T
and looking at the vertices that x is descended from means that there is some
vertex y closest to x which is not in A. This implies that y is a cut vertex since
the only implied edge are between vertices that are connected through a path
whose internal vertices are in A. This implies that all the simplicial vertices that
every spanning tree must contain y hence all the vertices would be pendant in
a tree having ε(G) pendant vertices. Making a simplicial vertex 1 will decrease
ε(G) by one while choosing labeling the cut vertex adjacent to s will decrease the
distance of the simplicial vertices from the root.

Now ψr(G) = rad(G)+ε(G) by hypothesis, ψr(G
∗
S1
) ≤ rad(G∗

S1
)+ε(G∗

S1
) by

the Theorem and ψr(G
∗
S1
) = ψr(G)−1 by Theorem . Combining the results gives

rad(G) + ε(G)− 1 = ψr(G)− 1 = ψr(G
∗
S1
) ≤ rad(G∗

S1
) + ε(G∗

S1
) which simplifies

to rad(G) + ε(G)− 1 ≤ rad(G∗
S1
) + ε(G∗

S1
). By Theorem 15, ε(G) ≥ ε(G∗

S).

Case 1. ε(G) = ε(G∗
S). This gives rad(G)−1 ≤ rad(G∗

S1
) so by Corollary 13,

rad(G) ≥ rad(G∗
S1
) and therefore rad(G)− 1 ≤ rad(G∗

S1
). That is, if the number

of pendant vertices does not change then the radius must decrease by 1.

Case 2. ε(G) > ε(G∗
S). It follows that ε(G) − 1 ≥ ε(G∗

S) and so rad(G) +
ε(G∗

S1
) ≤ rad(G∗

S1
)+ε(G∗

S1
). This simplifies to rad(G) ≤ rad(G∗

S1
). By Corollary

13 rad(G) = rad(G∗
S1
); that is, if the number of pendant vertices decreases then

the radius does not change. This implies that all the distinct label vertices must
be simplicial.

6. Conclusion

Although a sharp upper bound for the the arank number of a tree has been found,
it is natural to try to extend Theorem 32 to other classes of graphs. The graph in
Figure 11 will show the bound can fail for chordal graphs which are not reduction
trees. The graph is chordal since every cycle with more 4 vertices contains a
chord. A possible perfect elimination ordering is t1, t3, t2, s1, s2, r, t4, t6, t5, s3, s4.
This graph is not a reduction tree because 〈{t1, t2, s1, s2}〉 induces K4 minus an
edge. However, it will be shown that ψr(G) > rad(G) + ε(G) for this graph.

It is easy to see that ∆(G) = 4, |V (G)| = 11, and γ(G) ≥ 3. The set of
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s1

t1

s2

r

t2 t3

s3

t4

s4

t5 t6

Figure 11. This graph will be a counterexample.

vertices {t2, t5, r} is a dominating set for G, hence γ(G) = 3. Likewise, r is the
only central vertex and rad(G) = 2. To establish ε(G), note that a spanning tree
must contain either the edge (s1, r) or (s2, r). Likewise, a spanning tree must
contain (s3, r) or (s4, r). The symmetry of the graph means you can assume that
the spanning tree must contain edges (s1, r) and (s3, r). In order for t1, t3, t4 and
t6 to be part of the spanning tree 4 other vertices will need to be internal vertices.
This implies ε(G) ≤ 6 and the spanning tree consisting of edges (s1, r), (s3, r),
(s1, t1), (s1, t2), (s2, r), (s2, t3), (s3, t4), (s3, t5), (s3, s4), (s4, t6) establishes that
ε(G) = 6.

5

4

2

3

1 6

2

8

7

1 9

Figure 12. This chordal graph has ψr(G) = 9 > 8 = rad(G) + ε(G).
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To establish this as a counterexample, it must be shown that ψr(G) >

rad(G) + ε(G) = 2 + 6. Since γ(G) = 3 it follows that ψr(G) ≤ 11− 3
2 = 9.5 by

Theorem 16. Now consider the labeling shown in Figure 12.
This is a ranking because the only vertices labeled 1 are not adjacent and the

only vertices labeled 2 are separated by a vertex labeled 3. It is straightforward
to check that this is a minimal ranking as well. For example the vertex 9 cannot
be labeled 1 because it is adjacent to a vertex labeled 1. Making it 2 creates a
2 − 1 − 2 path and making it 3 creates a 3 − 1 − 2 − 3 path. Likewise, making
the label 4 creates a 4 − 1 − 2 − 3 − 2 − 1 − 4 path and changing the label to 5
creates a 5− 1− 2− 3− 5 path. Changing it to 6 creates a 6− 1− 2− 3− 2− 6
path, making it 7 creates a 7− 7 path and making it 8 creates an 8− 1− 8 path.
The reader can easily confirm that no other label can be reduced.

Here are some other questions to consider.

1. Is the converse of Theorem 28 true? That is, if T is a tree with rad(T ) ≥ 3
such that ψr(T ) = rad(T )+ε(T ) then is it true that T has a unique central
vertex c such that 1) every pendant vertex is rad(T ) from the center, and
2) d(x, c) ≤ rad(T )− 3 implies x has at least two children?

2. Are there other classes of graphs, besides reduction trees, for which ψr(G) =
rad(G) + ε(G)?

3. It was shown that reduction of a chordal graph is chordal and certainly
the reduction of a path is a path. What other classes of graphs have this
property?

4. Since the reduction of a chordal graph is chordal an inductive argument
could be used in finding a bound. What is a good bound for the arank
number of a chordal graph?
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