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Abstract

Let S ⊆ V . A vertex v ∈ V is a dominator of S if v dominates every
vertex in S and v is said to be an anti-dominator of S if v dominates none
of the vertices of S. Let C = (V1, V2, . . . , Vk) be a coloring of G and let
v ∈ V (G). A color class Vi is called a dom-color class or an anti dom-
color class of the vertex v according as v is a dominator of Vi or an anti-
dominator of Vi. The coloring C is called a global dominator coloring of G
if every vertex of G has a dom-color class and an anti dom-color class in C.
The minimum number of colors required for a global dominator coloring of G
is called the global dominator chromatic number and is denoted by χgd(G).
This paper initiates a study on this notion of global dominator coloring.

Keywords: global domination, coloring, global dominator coloring, domi-
nator coloring.
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1. Introduction

By a graph G = (V,E), we mean a finite, non-trivial, undirected graph with
neither loops nor multiple edges. The order and size of G are denoted by n
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and m respectively. For graph theoretic terminology we refer to Chartrand and
Lesniak [3].

A subset S of V is called a dominating set of G if every vertex in V \ S
is adjacent to a vertex in S. The domination number γ(G) is the minimum
cardinality of a dominating set in G. A set D of vertices is said to be a global
dominating set of G if D is a dominating set of both G and G. The global
domination number γg(G) is the minimum cardinality of a global dominating
set of G. For more details on domination related parameters, see [6]. A coloring
of a graph G is an assignment of colors to the vertices of G in such a way that no
two adjacent vertices receive the same color. In other words, a coloring of G is a
partition (V1, V2, . . . , Vk) of V (G) into independent sets; here V

′

i s are called the
color classes. The chromatic number χ(G) is the minimum number of colors
required for a coloring of G and such a coloring is called χ-coloring of G. Let
(V1, V2, . . . , Vk) be a coloring of G. A vertex v ∈ Vi is called solitary if |Vi| = 1.

Several concepts relating domination and coloring have been introduced and
well-studied. For example, Fall coloring [7], dominating-χ-coloring [2], dominator
coloring [5] and chromatic transversal domination [9] are some such concepts.
A dominator coloring of a graph G is a coloring of G in which every vertex
dominates every vertex of at least one color class. The minimum number of colors
required for a dominator coloring of G is called the dominator chromatic number
of G and is denoted by χd(G) and a dominator coloring that uses χd colors is
called a χd-coloring of G.

This paper introduces such a variation connecting coloring and global domi-
nation namely global dominator coloring. If S ⊆ V , we say that a vertex v ∈ V
is a dominator of S if v dominates every vertex in S and v is said to be an anti-
dominator of S if v dominates none of the vertices of S. Let C = (V1, V2, . . . , Vk)
be a coloring of G and let v ∈ V (G). A color class Vi is called a dom-color class
or an anti dom-color class of the vertex v according as v is a dominator of Vi

or an anti-dominator of Vi. With these terminologies, a dominator coloring is
a coloring with the property that every vertex has a dom-color class. We de-
fine a coloring C of G to be a global dominator coloring of G if every vertex
of G has both a dom-color class and an anti dom-color class in C. The mini-
mum number of colors required for a global dominator coloring of G is called the
global dominator chromatic number of G and is denoted by χgd(G).

As a vertex v dominates itself, the vertex v is a dominator of {v}, whereas
it is not an anti-dominator of {v}. Hence a graph G does not admit a global
dominator coloring when ∆(G) = n−1. When ∆(G) < n−1, the trivial coloring
(that assigns distinct colors to distinct vertices) would serve as a global dominator
coloring. Thus, a graph G admits a global dominator coloring if and only if
∆(G) < n− 1, and so throughout this paper, all the graphs G for which χgd(G)
is discussed are assumed to have maximum degree at most |V (G)| − 2.
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2. Common Classes of Graphs

Here, we determine the value of χgd for some common classes of graphs such as
paths, cycles, complete multipartite graphs and the Petersen graph. For this, we
state the following propositions proved in [4].

Proposition 1 [4]. The path Pn of order n ≥ 2 has

χd(Pn) =

{

⌈

n
3

⌉

+ 1 if n = 2, 3, 4, 5, 7,
⌈

n
3

⌉

+ 2 elsewhere.

Proposition 2 [4]. The cycle Cn of order n ≥ 4 has

χd(Cn) =



















⌈

n
3

⌉

if n = 4,
⌈

n
3

⌉

+ 1 if n = 5,
⌈

n
3

⌉

+ 2 elsewhere.

The following lemma is an useful tool in determining the value of χgd for
several graphs. Note that a global dominator coloring of a graph G is obviously
a dominator coloring of G and so one has χd(G) ≤ χgd(G). Further, χgd(G) =
χd(G) if and only if there is a χd-coloring of G that is also a global dominator
coloring for G.

Lemma 3. If G is a connected graph with χd(G) ≥ ∆(G) + 2, then χgd(G) =
χd(G).

Proof. Consider a χd-coloring (V1, V2, . . . , Vχd
) of G. If u is an arbitrary vertex

of G, then it has a dom-color class in this coloring. Further, for instance if u ∈ V1,
then at most ∆(G) color classes other than V1 can have a neighbour of u. But
χd(G) ≥ ∆(G) + 2. Therefore, there is a color class containing no neighbour of
the vertex u; this class would serve as an anti dom-color class of u. Hence this
χd-coloring is also a global dominator coloring of G so that χgd(G) = χd(G).

Corollary 4. (i) For the path Pn on n ≥ 4 vertices, we have

χgd(Pn) =

{

⌈

n
3

⌉

+ 1 if n = 7,
⌈

n
3

⌉

+ 2 elsewhere.

(ii) For the cycle Cn on n ≥ 4 vertices, χgd(Cn) = ⌈n/3⌉+ 2.

Proof. For n = 4, 5, the proof is a simple verification. Further, if G is either a
path or a cycle on n ≥ 6 vertices, it follows from the Propositions 1 and 2 that
χd(G) ≥ ∆(G) + 2 and so the result follows from Lemma 3.



328 I. Sahul Hamid and M. Rajeswari

Corollary 5. The global dominator chromatic number of the Petersen graph PG
is 5.

Proof. Since ∆(PG) = 3 and χd(PG) = 5, by Lemma 3 χgd(PG) = 5.

Theorem 6. The global dominator chromatic number of a complete m-partite

graph is 2m.

Proof. Let G be a complete m-partite graph with partition (X1, X2, . . . , Xm).
By our convention, ∆(G) < |V (G)− 1|; that is, |Xi| ≥ 2, for each i = 1, 2, . . . ,m.
Now for each i with 1 ≤ i ≤ m, choose a vertex in Xi, say xi. Then ({x1},
{x2} , . . . , {xm}, V1\{x1}, V2\{x2} , . . . , Vm\{xm}) is a global dominator coloring
of G so that χgd(G) ≤ 2m. Since a part cannot be an anti dom-color class of a
vertex lying in a different part it follows that χgd(G) ≥ 2m.

For disconnected graphs G, χgd(G) coincides with χd(G) as shown below.

Proposition 7. For a disconnected graph G, we have χgd(G) = χd(G).

Proof. Under any χd-coloring of a disconnected graph G, for each component of
G, there exists a color class that intersects only the vertex set of this component.
In other words, for a vertex v of G belonging to a component Gi, there will be a
color class Vi which does not intersect V (Gi) so that Vi is an anti dom-color class
of v. As a result, every χd-coloring of G is a global dominator coloring as well.
Hence χgd(G) = χd(G).

3. Bounds

In this section, we characterize the graphs for which χgd = 2 and χgd = 3. We
also establish some bounds for the global dominator chromatic number.

Lemma 8. Let G be a graph. Then χgd(G) = 2 if and only if G = K2.

Proof. Suppose χgd(G) = 2. Let (V1, V2) be a global dominator coloring of G. If
|V1| ≥ 2, then V1 cannot be a dom-color class of a vertex v ∈ V1 so that V2 is the
only dom-color class of the vertex v. This implies that the vertex v has no anti
dom-color class, which is a contradiction. Hence V1 and V2 are singleton sets,
say V1 = {x} and V2 = {y}. Certainly, x and y are non-adjacent and therefore
G = K2. Converse is obvious.

Lemma 9. Let G be a graph. Then χgd(G) = 3 if and only if G ∈ {Ka,b ∪
K1,K3,K1,r ∪K1,s}, where a, b, r, s ∈ Z+.
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Proof. Suppose (V1, V2, V3) be a χgd-coloring of G. We first prove that at least
one color class must be singleton. If not, then |Vi| ≥ 2, for each i = 1, 2, 3.
Consider a vertex u in V1. Then V1 cannot be a dom-color class of u. Therefore,
one of the remaining color classes must be a dom-color class of u and the other one
would be an anti dom-color class of u. Let us assume without loss of generality
that V2 is the dom-color class of u and V3 is the anti dom-color class of u. Then
V2 is the only dom-color class of a vertex w ∈ V3. Thus every vertex of V2 has a
neighbour in V1 and a neighbour in V3 which implies that no vertex of V2 has an
anti dom-color class, which is a contradiction.

If each Vi, where 1 ≤ i ≤ 3, is singleton, then G is either K3 or K1 ∪ K1,1

as ∆(G) < |V (G)| − 1. Suppose exactly two color classes are singleton, say V1

and V2. Let V1 = {u} and V2 = {v}. Now, if u is adjacent to all the vertices
of V3, then V2 is the only anti dom-color class of u and also for each vertex of
V3. Therefore G is isomorphic to K1 ∪ K1,b, where b ≥ 2. If u is adjacent to
none of the vertices of V3, then V2 is the dom-color class of each vertex in V3 and
also V1 is the anti dom-color class of v. Therefore G is isomorphic to K1 ∪K1,b,
where b ≥ 2. If u has some neighbours and non-neighbours in V3, then V2 is
the dom-color class of non-neighbours of u in V3 and V1 is the anti dom-color
class of v. Therefore G is isomorphic to K1,s ∪ K1,t, where s, t ≥ 1. Suppose
exactly one color class is singleton, say V1 = {u}. As u has an anti dom-color
class, N(u) can intersect at most one of the color classes V2 and V3. Further, if
N(u) intersects exactly one of V2 and V3, say V2; let v ∈ N(u) ∩ V2. Then V3 is
the anti dom-color class of v. This means that no vertex of V3 has a dom-color
class, a contradiction. Hence u is an isolate vertex of G which in turn implies
that 〈V2 ∪ V3〉 is a complete bipartite graph and so G is isomorphic to K1 ∪Kr,s,
where r, s > 1. Converse is a simple verification.

Theorem 10. For any connected graph G of order n ≥ 4, we have 4 ≤ χgd(G) ≤
n. Further, given integers k and n with 4 ≤ k ≤ n, there exists a connected graph

G of order n with χgd(G) = k.

Proof. The inequalities follow from Lemma 8 and Lemma 9. Now, suppose n
and k are the integers with 4 ≤ k ≤ n. We construct a required graph G as
follows. Consider the complete graph Kk−2 with the vertex set {v1, v2, . . . , vk−2}.
Now, attach a pendant edge at exactly one of the vertices of Kk−2, say v1; let x1
be the corresponding pendant vertex. Now, attach n − k + 1 pendant edges at
one of the vertices of Kk−2 other than v1, say v2; let x2, x3, . . . , xn−k+2 be the
corresponding pendant vertices. Let G be the resultant graph. For n = 12 and
k = 8, the graph G is given in Figure 1. Now, ({v1}, {v2} , . . . , {vk−2}, {x1},
{x2, x3, . . . , xn−k+2}) is a global dominator coloring of G so that χgd(G) ≤ k.
Since Kk−2 is a subgraph of G, we need at least k− 2 colors to color the vertices
of G. Also, to get an anti dom-color class for v1, we should give an unique color
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to at least one of the pendant vertices of x2, x3, . . . , xn−k+2. Further, x1 needs
a unique color as it is the only non-neighbour of v2. This gives the inequality
χgd(G) ≥ k.

u u
u uuuu

u

K6

Figure 1. A graph G of order 12 with χgd(G) = 8.

Even if the value of χgd for a graph G of order n is ranging from 4 to n, the
upper bound of χgd(G) is substantially reduced in the case when G belongs to
the class of all bipartite graphs as shown in the following theorem.

Theorem 11. Let G be a connected bipartite graph on n ≥ 4 vertices. Then

4 ≤ χgd(G) ≤
⌊

n
2

⌋

+ 2 and these bounds are sharp.

Proof. Let G be a connected bipartite graph with partition (V1, V2) with |V1| ≥
|V2|. Certainly, |V2| ≥ 2 as ∆(G) < n − 1. Now, assign an unique color to each
vertex of V2 and also to exactly one vertex of V1. Also, assign a new color to all
the remaining vertices of V1. Then this assignment of colors is a global dominator
coloring of G with |V2|+2 colors so that χgd(G) ≤

⌊

n
2

⌋

+2. For complete bipartite
graphs, the value of χgd is 4.

vv1 vv2 vvt
v
u1

v
u2

v
ut

vv
q qq
q qq

Figure 2. A graph G of order n with χgd(G) =
⌊

n
2

⌋

+ 2.

For the sharpness of the upper bound, consider the graph G obtained from
a star K1,t, where t ≥ 2, by attaching exactly one edge at each pendant vertex
of the star. Let the vertices of G be labeled as given in Figure 2. It is clear
that ({v}, {v1}, {v2}, . . . , {vt}, {u1, u2, . . . , ut}) is a global dominator coloring of
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G so that χgd(G) ≤ t + 2 =
⌊

n
2

⌋

+ 2. For the other inequality, consider a global
dominator coloring C of G. Then, for all i, 1 ≤ i ≤ t, either vi or ui is solitary.
Suppose each vi is solitary with respect to C. Then the vertex v must receive
a new color t + 1 in C. Also, in order to get an anti dom-color class for v, at
least one of the pendant vertices must receive a new color t + 2 in C and so
χgd(G) ≥ t + 2 =

⌊

n
2

⌋

+ 2. On the other hand, if at least one vi is not solitary,
say v1 is not solitary, then u1 must be solitary. Also, for each i with 2 ≤ i ≤ t,
one of ui and vi is solitary. Hence, we need at least t colors to color the vertices
of G− {v, v1}. Thus G needs at least t+ 2 colors as vv1 ∈ E(G).

4. Relationship

Here, we discuss some relationships of the parameter χgd with the parameters χ,
χd and γg. We establish the following two such relations.

Theorem A. For any graph G, we have max {γg(G), χ(G) + 1} ≤ χgd(G) ≤
χ(G) + γg(G).

Theorem B. For any graph G, we have χd(G) ≤ χgd(G) ≤ 2χd(G).

We prove these theorems with the aid of the following lemmas. We say that
a vertex v is a colorful vertex with respect to a coloring C of a graph G if v has a
neighbour in every color class of C other than the color class where v lies. Here,
we say that the coloring C admits such a vertex.

Lemma 12. Every χ-coloring of G admits a colorful vertex.

Proof. Suppose C = (V1, V2, . . . , Vχ) is a χ-coloring of G not admitting a colorful
vertex. In particular, no vertex of V1 is colorful with respect to C. That is, every
vertex belonging to V1 has an anti dom-color class and consequently we can have
a coloring of G with χ− 1 colors by putting each vertex of V1 into one of its anti
dom-color classes.

Corollary 13. For any graph G, we have χ(G) + 1 ≤ χgd(G).

Proof. Certainly, no global dominator coloring of G admits a colorful vertex.
So, by Lemma 12, there is no global dominator coloring using χ colors and so the
inequality follows.

Lemma 14. Let G be any graph. Then γg(G) ≤ χgd(G).

Proof. Consider a χgd-coloring of G. Choose exactly one vertex from each color
class. Let D be the set of those vertices. Now, it is enough to show that the
set D is a global dominating set of G. This is certainly true because each vertex
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v ∈ V (G) \ D has both a dom-color class and an anti dom-color class and so v
has a neighbour as well as a non-neighbour in D.

Lemma 15. For any graph G, we have χgd(G) ≤ γg(G) + χ(G).

Proof. Let (V1, V2, . . . , Vχ) be a χ-coloring of G. Consider a minimum global
dominating set D of G. Let Di = D ∩ Vi for each i with 1 ≤ i ≤ χ. Consider the
coloring C = {{x} : x ∈ D} ∪ {V1 \D1, . . . , Vχ \Dχ} of G. Let v be an arbitrary
vertex of G. If v is not in D, then it has a neighbour as well as non-neighbour in
D, say x and x

′

, respectively, and so {x} is a dom-color class of v and
{

x
′
}

is an
anti dom-color class of v. On the other hand, if v lies in D, then {v} is a dom-
color class of itself. Certainly, v ∈ Vi for some i = 1, 2, . . . , χ. Now, if |Di| > 1,
then the singleton color class (under the coloring C) consisting of a vertex of Di

other than v, is an anti dom-color class of v. Suppose |Di| = 1. Now, if |Vi| ≥ 2,
then Vi \Di is an anti dom-color class of v. Therefore C serves a global dominator
coloring of G if for no i with 1 ≤ i ≤ χ, it is not true that |Vi| = |Di| = 1.
Further, when |Vi| = |Di| = 1 for at least one i, the coloring C need not be a
global dominator coloring of G. In this case, we look for a new coloring as follows.
If, for instance, Vi = Di = {ui} for i = 1, 2, . . . , k, let u

′

i be a non-neighbour of ui
as ∆(G) < n− 1. If u

′

i ∈ D for all i, then C serves a global dominator coloring of
G. In case, at least one such u

′

i is not in D, say, for instance u
′

i /∈ D for all i with
1 ≤ i ≤ l ≤ k and u

′

j ∈ D for all j > l. In this case, one can verify that the coloring

C
′

=
{

{x} : x ∈ D
}

∪
{{

u
′

i

}

: 1 ≤ i ≤ l
}

∪
{

Vk+1 \Dk+1 \ U
′

, . . . , Vχ \Dχ \ U
′
}

,

where U
′

= {u
′

i : 1 ≤ i ≤ l} is a global dominator coloring of G (of course, some
of the sets Vk+1 \Dk+1 \U

′

, . . . , Vχ \Dχ \U
′

may be empty; in that case we can
manage with less number of colors). Hence the result.

Now, Theorem A is an immediate consequence of Corollary 13, Lemma 14
and Lemma 15.

Proof of Theorem B. The first inequality is already seen. We proceed to prove
the rest. For this, consider a χd-coloring (V1, V2, . . . , Vχd

) of G. Now, for each
i with 1 ≤ i ≤ χd, choose a vertex in Vi, say vi. Suppose |Vi| ≥ 2, for all i
with 1 ≤ i ≤ χd. Then {Vi \ {vi} : 1 ≤ i ≤ χd} ∪ {{vi} : 1 ≤ i ≤ χd} is a global
dominator coloring of G. Suppose |Vi| = 1, for all i with 1 ≤ i ≤ k < χd. Consider
a non-neighbour v

′

i of vi for all i with 1 ≤ i ≤ k. Then {Vi : 1 ≤ i ≤ k} ∪
{

Vi \

{vi} \ U
′

: k + 1 ≤ i ≤ χd

}

∪
{

{vi} : k + 1 ≤ i ≤ χd

}

∪
{

{v
′

i} : 1 ≤ i ≤ k
}

, where

U
′

= {v
′

i : 1 ≤ i ≤ k} is a global dominator coloring of G (of course some of the
sets Vk+1 \ {vk+1} \ U

′

, . . . , Vχd
\ {vχd

} \ U
′

may be empty; in that case we can
manage with less number of colors). Hence χgd(G) ≤ 2χd(G).

The bounds established in Theorem A and Theorem B are sharp. That is,
there exist graphs G1, G2, G3, G4 and G5 such that
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(a) χ(G1) + 1 > γg(G1) and χ(G1) + 1 = χgd(G1).

(b) γg(G2) > χ(G2) + 1 and γg(G2) = χgd(G2).

(c) χgd(G3) = χ(G3) + γg(G3).

(d) χgd(G4) = χd(G4).

(e) χgd(G5) = 2χd(G5).

u
u u u u

u
G1 G2 G3

G4

u
u

u uu
u

u u
u u

u
u

u u
u u

u
u

Figure 3. Examples of graphs achieving the bounds of Theorem A and Theorem B.

The graphs G1 to G4 are given in Figure 3. Let the graph G5 be a complete
multipartite graph. Also, it seems that complete multipartite graphs are the
only graphs in which the global dominator chromatic number equals twice the
dominator chromatic number. So we pose the following Conjecture.

Conjecture 16. Let G be a graph with ∆(G) < n − 1. Then χgd(G) = 2χd(G)
if and only if G is a complete multipartite graph.

5. Trees

Here, we determine the value of χgd for trees in terms of γg and χd indepen-
dently as shown in Theorem C and Theorem D. In this connection, we define the
following classes of trees.

I. Let ℑ1 be the collection of all trees T of diameter 4 which are constructed
from two or more stars with at least two vertices by joining the centers of
these stars to a common vertex.

II. Let ℑ2 be the collection of all trees T of diameter 4 that are constructed
as follows. Consider r ≥ 2 stars K1,t1 ,K1,t2 , . . . ,K1,tr , where ti ≥ 2 and
let v1, v2, . . . , vr be the respective centers. Now, consider another star K1,t,
where t ≥ 1 and let v be its center. Join the vertex v with all the centers
v1, v2, . . . , vr. Let T be resultant tree.
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Some trees belonging to the classes ℑ1 and ℑ2 are given in Figure 4.

Theorem C. For any tree T , the value of χgd is either γg(T ) + 1 or γg(T ) + 2.

Theorem D. For a tree T , χgd(T ) is either χd(T ) or χd(T ) + 1. Further,

χgd(T ) = χd(T ) + 1 if and only if T is either a double star or T ∈ ℑ1 ∪ ℑ2.

Theorem C is an immediate consequence of Lemma 15 and the following
lemma.

u
(a)

u
uu u
u

uu
u
uu u

uu

u
uu u
u

u
uu uu

u

u u
(b)

u u

Figure 4. (a) A tree in ℑ1, (b) a tree in ℑ2.

Lemma 17. Let G be a graph with δ(G) = 1. Then χgd(G) ≥ γg(G) + 1 and the

bound is sharp.

Proof. Consider a χgd-coloring
(

V1, V2, . . . , Vχgd

)

of G. Let v be a support vertex
of G and let u be one of its pendant neighbour. Assume without loss of generality
that u ∈ V1 and v ∈ V2. Now for each i ≥ 2, choose a vertex vi from Vi. Let
S =

{

v = v2, v3, . . . , vχgd

}

. It is enough to prove that S is a global dominating
set of G.

u u
u
u
u

u
Figure 5. A graph G with δ(G) = 1 and χgd(G) = γg(G) + 1.

Let x ∈ V \ S. Suppose x ∈ V1. Now, if x = u, then v is the neighbour of u
in S and every vertex of S other than v is a non-neighbour of u. If x 6= u, then
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|V1| ≥ 2 and so V1 cannot be a dom-color class of x. Further, V1 is not an anti-
dom-color class of x. This means that x has a neighbour and a non-neighbour
in S.

Now, suppose x /∈ V1, say x ∈ Vk, where k > 1. Then |Vk| ≥ 2 as x ∈ V \ S
and so the vertex vk is a non-neighbour of x in S. Also if Vl is a dom-color
class of x, then l /∈ {1, k} and so vl is a neighbour of x in S. Thus every vertex
outside S has both a neighbour and a non-neighbour in S. That is, S is a global
dominating set of G. Sharpness of the bound follows from Figure 5.

Now, Theorem D is proved with the aid of the following lemmas.

Lemma 18. If G is a graph with δ(G) = 1, then χgd(G) ≤ χd(G) + 2.

Proof. Consider a χd-coloring of G. Let v be a support vertex of G and let
u be a non-neighbour of v in G. Consider a pendant neighbour w of v. Now
recolor w with the color χd+1 and u with the color χd+2 and keep the colors
of the remaining vertices unchanged. Let C be the resultant coloring. We now
claim that C is a global dominator coloring of G. Clearly, every vertex of G has
a dom-color class in C. Now, {w} is an anti dom-color class for every vertex of
G other than v and w. Also, for v and w, {u} is an anti dom-color class. This
implies that C is a global dominator coloring and so χgd(G) ≤ χd(G) + 2.

&%
'$
Kk(k ≥ 3)

(c)

&%
'$
Kk(k ≥ 1)

(a)

Figure 6. (a) A graph G with χgd(G) = χd(G).

(b) A graph G with χgd(G) = χd(G) + 1.

(c) A graph G with χgd(G) = χd(G) + 2.

tt t
ttt t

tt t

&%
'$
Kk(k ≥ 2)

(b)

tt
tt t

X
X

tt t t tttt

As for any graph G, χgd(G) ≥ χd(G), by Lemma 18, the value of χgd(G) for
a graph G with δ(G) = 1 is either χd(G) or χd(G) + 1 or χd(G) + 2. Further,
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graphs for each of these possibilities are shown in Figure 6. However, there is no
tree for which the bound is attained as shown in the following lemma.

It is shown in [8] that every tree T admits a χd-coloring in which every
support vertex is solitary and all the pendant vertices of T have the same color.

Lemma 19. If T is a tree, then χgd(T ) is either χd(T ) or χd(T ) + 1.

Proof. Consider a χd-coloring C of T in which every support vertex is solitary
and all the pendant vertices of T have the same color. Consider a support vertex
v of T . Recolor all the pendant neighbours of v with the new color χd + 1 and
keep the colors of remaining vertices unchanged. Let C

′

be the resultant coloring.
We claim that C

′

is a global dominator coloring of T . Clearly, every vertex of
T has a dom-color class in C

′

. Also, for every vertex of T other than v has the
χd + 1-color class as an anti dom-color class. For the vertex v, if there exists a
support vertex u that is not adjacent to v, then {u} is an anti dom-color class of
v in C

′

. On the other hand, if every support vertex of T is adjacent to v, then
every non-neighbour of v is a pendant vertex in T . This shows the color class of
C

′

which contains the pendant vertices of T other than the pendant neighbours
of v becomes an anti dom-color class for v. Thus C

′

is a global dominator coloring
of G and so χgd(T ) ≤ χd(T ) + 1.

The following two theorems concerning the value of χd for trees are proved
in [1] and [8], respectively.

Theorem 20 [1]. If G is a graph with δ(G) = 1 and k support vertices, then

χd(G) ≥ k + 1, and χd(G) = k + 1 if and only if the set of non-support vertices

is an independent dominating set of G.

Theorem 21 [8]. Let T be a nontrivial tree. Then for every χd-coloring of T ,
either each support is solitary or it is adjacent to exactly one pendant and that

pendant is solitary.

Lemma 22. If T ∈ ℑ1 ∪ ℑ2, then χgd(T ) = χd(T ) + 1.

Proof. Suppose T ∈ ℑ1. Let v1, v2, . . . , vr, where r ≥ 2, be the support vertices
of T and let v be the vertex of T that is adjacent to all the supports. We claim
that every support vertex is solitary in any χd-coloring of T . If not, consider a
χd-coloring C of T in which not all support vertices are solitary. If v1, v2, . . . , vl
(l ≤ r) are the support vertices of T which are not solitary in C, then by Theorem
21, each of these support vertices is adjacent to exactly one pendant vertex and
that pendant is solitary in C; let them be u1, u2, . . . , ul, respectively. That is,
u1, u2, . . . , ul, vl+1, vl+2, . . . , vr are solitary in C. Since v and v1 are adjacent in
T , they must receive two different colors other than the colors of the vertices
u1, u2, . . . , ul, vl+1, vl+2, . . . , vr. Therefore χd(T ) ≥ r+2, which is a contradiction
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to Theorem 20. So, what we have proved is that in every χd-coloring of T , all the
support vertices are solitary. Therefore, under any χd-coloring of T , the vertex
v does not have an anti dom-color class and consequently χgd(T ) > χd(T ). This
implies from Lemma 19 that χgd(T ) = χd(T ) + 1.

Suppose T ∈ ℑ2. Let v1, v2, . . . , vr and v be the support vertices of T as
described in the construction of ℑ2. By Theorem 20, χd(T ) = r + 2. Now, since
each vi has at least two pendant neighbours, by Theorem 21, they are solitary in
any χd-coloring of T . Therefore the vertex v must receive a new color. Certainly,
one of the pendant neighbours of v also gets a new color. So, the vertex v is
adjacent to a vertex in every color class under any χd-coloring of T . That is,
there is no χd - coloring for T that is also a global dominator coloring so that by
Lemma 19, χgd(T ) = χd(T ) + 1.

Lemma 23. If a tree T has two support vertices with the property that the dis-

tance between the support vertices is at least three, then χd(T ) = χgd(T ).

Proof. Let u and v be two support vertices in T such that d(u, v) ≥ 3. Then
there is no vertex in T which is adjacent to both u and v. Consider a χd-coloring
C of T in which u and v are solitary. Then C is a global dominator coloring of T .
If a vertex x of T does not lie on N [u], then {u} is an anti dom-color class of x
and if x does not lie on N [v], then {v} is an anti dom-color class of x. Hence the
result follows.

Converse of the above lemma is not true. For the tree T given in Figure 7,
χd(T ) = χgd(T ). But the distance between every pair of support vertices is at
most 2 in T .

u u u u
u
u

u u u uu u
Figure 7. A counterexample to the converse of the Lemma 23.

Proof of Theorem D. By Lemma 19, χgd(T ) is either χd(T ) or χd(T )+1. Now,
suppose χgd(T ) = χd(T ) + 1. Then by Lemma 23, the distance between every
pair of support vertices is at most 2 in T . Therefore either there exists exactly
one vertex in T which is adjacent to all the support vertices of T or there exists
exactly one support vertex which is adjacent to all the remaining support vertices
of T . If the earlier case happens, then T is a tree belonging to the family ℑ1. If
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the later case happens, let v be the respective support vertex (that is adjacent to
all the remaining support vertices of T ). Let k be the number of support vertices
of T other than v. If k = 1, then T is a double star. Assume k ≥ 2. In this case
we prove that T ∈ ℑ2. Let v1, v2, . . . , vk be the support vertices of T other than
v. So, we need to prove that each vi has at least two pendant neighbours. If not,
let v1 be a support vertex having exactly one pendant neighbour, say u1. Now,
consider a χd-coloring of T in which every support vertex is solitary. In particular,
the vertex v1 has a unique color. Let C be the coloring of T obtained from this
χd-coloring by interchanging the colors of u1 and v1. Certainly, C is a dominator
coloring of T . Also, the color class {u1} of C is an anti dom-color class of every
vertex of T other than v1. For the vertex v1, the color class {v2} of C is an anti
dom-color class (this is possible as k ≥ 2). So, C is a global dominator coloring of
T with χd colors, which is a contradiction to our assumption. Therefore T ∈ ℑ2.

Conversely, if T is a double star, then χd(T ) = 3 and χgd(T ) = 4. On the
other hand, if T ∈ ℑ1 ∪ ℑ2, then by Lemma 22, χgd(T ) = χd(T ) + 1.

Open Problems

This paper introduces a new variation of coloring namely global dominator color-
ing connecting the concepts of domination and coloring. We have just initiated a
study on this coloring parameter. However, there are abundant scope for further
research on χgd and we list some of them.

1. Find a characterization of connected bipartite graphs of order n ≥ 4, for which
χgd(G) =

⌊

n
2

⌋

+ 2. One can try this problem in the case when G is a tree.

2. Characterize connected graphs G for which

(i) χgd(G) = 4.

(ii) χgd(G) = χd(G).

(iii) χgd(G) = 2χd(G).

(iv) χgd(G) = χ(G) + 1.

(v) χgd(G) = γg(G).

(vi) χgd(G) = χ(G) + γg(G).

3. By virtue of Theorem C, the family of trees can be split into two classes,
namely Class 1 and Class 2. A tree T is of Class 1 or Class 2 according as
χgd(T ) = γg(T ) + 1 or χgd(T ) = γg(T ) + 2. The Class 1 is non-empty, as for the
family of subdivision of stars K1,t(t ≥ 3), we have χgd = γg + 1. Further, for the
double star, χgd = γg+2 and so Class 2 is also non-empty. However, the problem
of characterizing trees of Class 1 or Class 2 seems to be little challenging.
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