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Abstract

For k ≥ 1, a k-fair dominating set (or just kFD-set) in a graph G is
a dominating set S such that

∣

∣N(v) ∩ S
∣

∣ = k for every vertex v ∈ V \ S.
The k-fair domination number of G, denoted by fdk(G), is the minimum
cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a
kFD-set for some integer k ≥ 1. The fair domination number, denoted by
fd(G), of G that is not the empty graph, is the minimum cardinality of
an FD-set in G. In this paper, aiming to provide a particular answer to a
problem posed in [Y. Caro, A. Hansberg and M.A. Henning, Fair domination

in graphs, Discrete Math. 312 (2012) 2905–2914], we present a new upper
bound for the fair domination number of a cactus graph, and characterize
all cactus graphs G achieving equality in the upper bound of fd1(G).
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1. Introduction

For notation and graph theory terminology not given here, we follow [10]. Specif-
ically, let G be a graph with vertex set V (G) = V of order |V | = n and let v be
a vertex in V . The open neighborhood of v is NG(v) = {u ∈ V |uv ∈ E(G)} and
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the closed neighborhood of v is NG[v] =
⋃

v∈S NG(v). If the graph G is clear from
the context, we simply write N(v) rather than NG(v). The degree of a vertex
v, is deg(v) = |N(v)|. A vertex of degree one is called a leaf and its neighbor
a support vertex. We denote the set of leaves and support vertices of a graph
G by L(G) and S(G), respectively. A strong support vertex is a support vertex
adjacent to at least two leaves, and a weak support vertex is a support vertex
adjacent to precisely one leaf. For a set S ⊆ V , its open neighborhood is the set
N(S) =

⋃

v∈S N(v), and its closed neighborhood is the set N [S] = N(S) ∪ S.
The corona graph cor(G) of a graph G is a graph obtained by adding a leaf to
every vertex of G. We denote by Pn a path on n vertices. The distance d(u, v)
between two vertices u and v in a graph G is the minimum number of edges of
a path from u to v. The diameter diam(G) of G, is maxu,v∈V (G) d(u, v). A path
of length diam(G) is called a diameterical path. A cactus graph is a connected
graph in which any two cycles have at most one vertex in common. For a subset
S of vertices of G, we denote by G[S] the subgraph of G induced by S.

A subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent
to a vertex in S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A vertex v is said to be dominated by a set
S if N(v) ∩ S 6= ∅.

Caro et al. [1] studied the concept of fair domination in graphs. For k ≥ 1, a
k-fair dominating set, abbreviated kFD-set, in G is a dominating set S such that
∣

∣N(v) ∩D
∣

∣ = k for every vertex v ∈ V \D. The k-fair domination number of G,
denoted by fdk(G), is the minimum cardinality of a kFD-set. A kFD-set of G
of cardinality fdk(G) is called a fdk(G)-set. A fair dominating set, abbreviated
FD-set, in G is a kFD-set for some integer k ≥ 1. The fair domination number,
denoted by fd(G), of a graph G that is not the empty graph is the minimum
cardinality of an FD-set in G. An FD-set of G of cardinality fd(G) is called a
fd(G)-set.

A perfect dominating set in a graph G is a dominating set S such that every
vertex in V (G) \ S is adjacent to exactly one vertex in S. Hence a 1FD-set
is precisely a perfect dominating set. The concept of perfect domination was
introduced by Cockayne et al. in [4], and Fellows et al. [7] with a different
terminology which they called semiperfect domination. This concept was further
studied, see for example, [2, 3, 5, 6, 9].

Observation 1 (Caro et al. [1]). Every 1FD-set in a graph contains all its strong

support vertices.

The following is easily verified.

Observation 2. Let S be a 1FD-set in a graph G, v a support vertex of G and

v′ a leaf adjacent to v. If S contains a vertex u ∈ NG(v) \ {v
′}, then v ∈ S.



Fair Domination Number in Cactus Graphs 491

Among other results, Caro et al. [1] proved that fd(G) ≤ n − 2 for any
connected graph G of order n ≥ 3 with no isolated vertex, and constructed
an infinite family of connected graphs achieving equality in this bound. They
showed that fd(G) < 17n/19 for any maximal outerplanar graph G of order n,
and fd(T ) ≤ n/2 for any tree T of order n ≥ 2. They then showed that equality
for the bound fd(T ) ≤ n/2 holds if and only if T is the corona of a tree. Among
open problems posed by Caro et al. [1], one asks to find fd(G) for other families
of graphs.

Problem 3 (Caro et al. [1]). Find fd(G) for other families of graphs.

In this paper, aiming to study Problem 3, we present a new upper bound for
the 1-fair domination number of cactus graphs and characterize all cactus graphs
achieving equality for the upper bound. We show that if G is a cactus graph of
order n ≥ 5 with k ≥ 1 cycles, then fd1(G) ≤ (n−1)/2+k. We also characterize
all cactus graphs achieving equality for the upper bound.

2. Unicyclic Graphs

Fair domination in unicyclic graphs has been studied in [8]. A vertex v of a cactus
graph G is a special vertex if degG(v) = 2 and v belongs to a cycle of G. Let H1

be the class of all graphs G that can be obtained from the corona cor(C) of a
cycle C by removing precisely one leaf of cor(C). Let G1 be the class of all graphs
G that can be obtained from a sequence G1, G2, . . . , Gs = G, where G1 ∈ H1,
and if s ≥ 2, then Gj+1 is obtained from Gj by one of the following Operations
O1 or O2, for j = 1, 2, . . . , s− 1.

Operation O1. Let v be a vertex of Gj with deg(v) ≥ 2 such that v is not a
special vertex of Gj . Then Gj+1 is obtained from Gj by adding a path P2 and
joining v to a leaf of P2.

Operation O2. Let v be a leaf of Gj . Then Gj+1 is obtained from Gj by adding
two leaves to v.

Lemma 4 [8]. If G ∈ G1, then every 1FD-set in G contains every vertex of G of

degree at least two.

Theorem 5 [8]. If G is a unicyclic graph of order n, then fd1(G) ≤ (n+ 1)/2,
with equality if and only if G = C5 or G ∈ G1.

3. Main Result

Our aim in this paper is to give an upper bound for the fair domination number
of a cactus graph G in terms of the number of cycles of G, and then characterize
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Figure 1. Construction of the family Gk.

all cactus graphs achieving equality for the proposed bound. For this purpose we
first introduce some families of graphs. Let H1 and G1 be the families of unicyclic
graphs described in Section 2. For i = 2, 3, . . . , k , we construct a family Hi from
Gi−1, and a family Gi from Hi as follows.

• Family Hi. Let Hi be the family of all graphs Hi such that Hi can be obtained
from a graph H1 ∈ H1 and a graph G ∈ Gi−1, by the following Procedure.

Procedure A. Let w0 ∈ V (H1) be a support vertex of H1, and w ∈ V (Gi−1)
be a support vertex of Gi−1. We remove precisely one leaf adjacent to w0 and
precisely one leaf adjacent to w, and then identify the vertices w0 and w.

• Family Gi. Let Gi be the family of all graphs G that can be obtained from
a sequence G1, G2, . . . , Gs = G, where G1 ∈ Hi, and if s ≥ 2 then Gj+1 is
obtained from Gj by one of the Operations O1 or O2, described in Section 2, for
j = 1, 2, . . . , s− 1.

Note thatHi ⊆ Gi, for i = 1, 2, . . . , k. Figure 1 demonstrates the construction
of the family Gk.

We will prove the following.

Theorem 6. If G is a cactus graph of order n ≥ 5 with k ≥ 1 cycles, then

fd1(G) ≤ (n− 1)/2 + k, with equality if and only if G = C5 or G ∈ Gk.

Corollary 7. If G is a cactus graph of order n ≥ 5 with k ≥ 1 cycles, then

fd(G) ≤ (n− 1)/2 + k.

4. Preliminary Results and Observations

4.1. Notation

We call a vertex w in a cycle C of a cactus graph G a special cut-vertex if w
belongs to a shortest path from C to a cycle C ′ 6= C. We call a cycle C in a
cactus graph G, a leaf-cycle if C contains exactly one special cut-vertex. In the
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Figure 2. Ci is a leaf-cycle for i = 1, 2, 3 and vj is a special cut-vertex for j = 1, 2, . . . , 8.

cactus graph presented in Figure 2, vi is a special cut-vertex, for i = 1, 2, . . . , 8.
Moreover, Cj is a leaf-cycle for j = 1, 2, 3.

Observation 8. Every cactus graph with at least two cycles contains at least two

leaf-cycles.

4.2. Properties of the family Gk

The following observation can be proved by a simple induction on k.

Observation 9. If G ∈ Gk is a cactus graph of order n, then the following

conditions are satisfied.

(1) No cycle of G contains a strong support vertex. Furthermore, any cycle of

G contains precisely one special vertex.

(2) n is odd.

(3) |L(G)| = (n+ 1)/2− k.

(4) If a vertex v of G belongs to at least two cycles of G, then v is not a support

vertex, and v belongs to precisely two cycles of G.

Observation 10. Let G ∈ Gk. Let G be obtained from a sequence G1, G2, . . . ,
Gs = G (s ≥ 2) such that G1 ∈ H1 and Gj+1 is obtained from Gj by one of the

Operations O1 or O2 or procedure A, for j = 1, 2, . . . , s − 1. If v is a vertex of

G belonging to two cycles of G then there is an integer i ∈ {2, 3, . . . , s} such that

Gi is obtained from Gi−1 by applying Procedure A on the vertex v using a graph

H ∈ H1, such that v belongs to a cycle of Gi−1.

Observation 11. Assume that G ∈ Gk and v ∈ V (G) is a vertex of degree four

belonging to two cycles. Let D1 and D2 be the components of G − v, G∗

1 be the
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graph obtained from G[D1 ∪ {v}] by adding a leaf v∗1 to v, and G∗

2 be the graph

obtained from G[D2 ∪ {v}] by adding a leaf v∗2 to v. Then there exists an integer

k′ < k such that G∗

1 ∈ Gk′ or G∗

2 ∈ Gk′.

Proof. Let G ∈ Gk. Thus G is obtained from a sequence G1, G2, . . . , Gs = G
(s ≥ 2) such that G1 ∈ H1 and Gj+1 is obtained from Gj by one of the Operations
O1 or O2 or procedure A, for j = 1, 2, . . . , s− 1. Note that s ≥ k. We define the
j-th Procedure-Operation or just POj as one of the Operation O1, Operation O2,
or Procedure A that can be applied to obtain Gj+1 from Gj . Thus G is obtained
from G1 by Procedure-Operations PO1, PO2,. . . ,POs−1.

Let v be a vertex of G of degree four belonging to two cycles of G, and D1

and D2 be the components of G − v. By Observation 10, there is an integer
i ∈ {2, 3, . . . , s} such that Gi is obtained from Gi−1 by applying Procedure A on
the vertex v using a graph H ∈ H1. Note that v is a support vertex of Gi−1.
Let v∗ be the leaf of v in Gi−1 that is removed in Procedure A. Clearly, either
V (Gi−1) ∩D1 6= ∅ or V (Gi−1) ∩D2 6= ∅. Without loss of generality, assume that
V (Gi−1) ∩D1 6= ∅. Among POi, POi+1, . . . , POs−1, let POr1 , POr2 , . . . , POrt ,
be the Procedure-Operations applied on a vertex of D1, where i ≤ t ≤ s− 1. Let
Gr0 = Gi−1 and Grl+1

be obtained from Grl by POrl+1
, for l = 0, 1, 2, . . . , t − 1.

Clearly by an induction on t, we can deduce that there is an integer k∗ < k such
that Grt ∈ Gk∗ . Note that Grt = G∗

1.

Lemma 12. If G ∈ Gk, then every 1FD-set in G contains every vertex of G of

degree at least two.

Proof. Let G ∈ Gk, and S be a 1FD-set in G. We prove by an induction on k,
namely first-induction , to show that S contains every vertex of G of degree at
least two. For the base step, if k = 1 then G ∈ G1, and the result follows by
Lemma 4. Assume the result holds for all graphs G′ ∈ Gk′ with k′ < k. Now
consider the graph G ∈ Gk, where k > 1. Clearly, G is obtained from a sequence
G1, G2, . . . , Gl = G, of cactus graphs such that G1 ∈ Hk, and if l ≥ 2, then Gi+1

is obtained from Gi by one of the operations O1 or O2 for i = 1, 2, . . . , l − 1.
We employ an induction on l, namely second-induction , to show that S

contains every vertex of G of degree at least two.
For the base step of the second-induction, let l = 1. Thus G ∈ Hk. By the

construction of graphs in the family Hk, there are graphs H ∈ H1 and G′ ∈ Gk−1

such that G is obtained from H and G′ by Procedure A. Clearly, H is obtained
from the corona cor(C) of a cycle C, by removing precisely one leaf of cor(C).
Let C = c0c1 · · · crc0, where c0 is the support vertex of H that its leaf is removed
according to Procedure A. Since H has precisely one special vertex, let ct be
the special vertex of H. Let w ∈ V (G′) be a support vertex of G′ that its leaf,
say w′, is removed to obtain G according to Procedure A. First we show that
{c1, cr}∩S 6= ∅. Clearly S∩{ct−1, ct, ct+1} 6= ∅, since degG(ct) = 2. Assume that
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ct ∈ S. Since at least one of ct−1 or ct+1 is a support vertex, by Observation 2,
{ct−1, ct+1}∩S 6= ∅. By applying Observation 2, we obtain that {c1, cr}∩S 6= ∅,
since any vertex of {c1, . . . , cr} \ {ct} is a support vertex of G. Thus assume that
ct /∈ S. Then {ct−1, ct+1} ∩ S 6= ∅, and so {c1, cr} ∩ S 6= ∅, since any vertex of
{c1, . . . , cr}\{ct} is a support vertex of G. Hence, {c1, cr}∩S 6= ∅. If c0 /∈ S, then
(

S∩V (G′)
)

∪{w′} is a 1FD-set for G′, and thus by the first-inductive hypothesis,
S contains w = c0, a contradiction. Thus c0 ∈ S. By Observation 2, V (C) ⊆ S,
since any vertex of {c1, . . . , cr} \ {ct} is a support vertex of G. Thus S ∩V (G′) is
a 1FD-set for G′. By the first-inductive hypothesis,

(

S ∩ V (G′)
)

∪ {w} contains
every vertex of G′ of degree at least two. Consequently, S contains every vertex of
G of degree at least two. We conclude that the base step of the second-induction
holds.

Assume that the result (for the second-induction) holds for 2 ≤ l′ < l. Now
let G = Gl. Clearly G is obtained from Gl−1 by applying one of the Operations
O1 or O2.

Assume that G is obtained from Gl−1 by applying Operation O2. Let x be a
leaf of Gl−1 and G be obtained from Gl−1 by adding two leaves x1 and x2 to x.
By Observation 1, x ∈ S. Thus S is a 1FD-set for Gl−1. By the second-inductive
hypothesis S contains all vertices of Gl−1 of degree at least two. Consequently,
S contains every vertex of Gk of degree at least two.

Next assume that G is obtained from Gl−1 by applying Operation O1. Let
x1x2 be a path and x1 is joined to y ∈ V (Gl−1), where degGl−1

(y) ≥ 2 and y
is not a special vertex of Gl−1. Observe that {x1, x2} ∩ S 6= ∅. If x1 6∈ S, then
x2 ∈ S and y 6∈ S. Then S \ {x2} is a 1FD-set for Gl−1 that does not contain y,
a contradiction by the second-inductive hypothesis. Thus assume that x1 ∈ S.
Suppose that y 6∈ S. Clearly NGl−1

(y) ∩ S = ∅.

Assume that there exists a component G′

1 of Gl−1 − y such that
∣

∣V (G′

1) ∩
NGl−1

(y)
∣

∣ = 1. Then clearly S′ =
(

S ∩ V (Gl−1)
)

∪ V (G′

1) is a 1FD-set for
Gl−1, and by the second-inductive hypothesis S′ contains every vertex of Gl−1 of
degree at least two. Thus y ∈ S′, and so y ∈ S, a contradiction. Next assume
that every component of Gl−1 − y has at least two vertices in NGl−1

(y). Since
y is a non-special vertex of Gl−1, y belongs to at least two cycles of Gl−1. By
Observation 9(4), y belongs to exactly two cycles of Gl−1. Thus degGl−1

(y) = 4.
By Observation 11, Gl−1 − y has exactly two components D1 and D2. Let G∗

be a graph obtained from D1 ∪ {v} or D2 ∪ {v}, by adding a leaf v∗ to y. Then
there exists k′ ≤ k such that G∗ ∈ Gk′ . Evidently, S∗ =

(

S ∩ V (G∗)
)

∪ {v∗}
is a 1FD-set for G∗, and so by the first-inductive hypothesis, S∗ contains every
vertex of G∗ of degree at least two (since G∗ ∈ Gk′). Thus y ∈ S∗, and so y ∈ S,
a contradiction. We conclude that y ∈ S. Observe that S ∩V (Gl−1) is a 1FD-set
for Gl−1, and so by the second-inductive hypothesis, S ∩ V (Gl−1) contains every
vertex of Gl−1 of degree at least two. Consequently S contains every vertex of G
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of degree at least two.

As a consequence of Observation 9(3) and Lemma 12, we obtain the following.

Corollary 13. If G ∈ Gk is a cactus graph of order n, then V (G) \ L(G) is the

unique fd1(G)-set.

5. Proof of Theorem 6

We first establish the upper bound by proving the following.

Theorem 14. If G is a cactus graph of order n with k ≥ 1 cycles, then fd1(G) ≤
(

n(G)− 1
)

/2 + k.

Proof. The result follows by Theorem 5 if k = 1. Thus assume that k ≥ 2.
Suppose to the contrary that fd1(G) >

(

n(G)−1
)

/2+k. Assume that G has the
minimum order, and among all such graphs, we may assume that the size of G is
minimum. Let C1, C2, . . . , Ck be the k cycles of G. Let Ci be a leaf-cycle of G,
where i ∈ {1, 2, . . . , k}. Let Ci = u0u1 · · ·ulu0, where u0 is a special cut-vertex of
G. Assume that degG(uj) = 2 for each j = 1, 2, . . . , l. Let G′ = G− u1u2. Then
by the choice of G, fd1(G

′) ≤
(

n(G′)− 1
)

/2+ k− 1 =
(

n(G)− 1
)

/2+ k− 1. Let
S′ be a fd1(G

′)-set. Now if
∣

∣S′ ∩ {u1, u2}
∣

∣ ∈ {0, 2}, then S′ is a 1FD-set for G,
a contradiction. Thus

∣

∣S′ ∩ {u1, u2}
∣

∣ = 1. Assume that u1 ∈ S′. Then u3 ∈ S′,
and so {u2} ∪ S′ is a 1FD-set in G of cardinality at most

(

n(G) − 1
)

/2 + k,
a contradiction. If u2 ∈ S′, then u0 ∈ S′, and {u1} ∪ S′ is a 1FD-set in G of
cardinality at most

(

n(G)−1
)

/2+k, a contradiction. We deduce that degG(ui) ≥
3 for some i ∈ {1, 2, . . . , l}. Let vd be a leaf of G such that d(vd, Ci − u0) is as
maximum as possible, and the shortest path from vd to Ci does not contain u0.
Let v0v1 · · · vd be the shortest path from vd to Ci with v0 ∈ Ci . Assume that
d ≥ 2. Assume that degG(vd−1) = 2. Let G′ = G − {vd, vd−1}. By the choice
of G, fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k. Let S′ be a fd1(G
′)-set. If vd−2 ∈ S′,

then S′ ∪ {vd−1} is a 1FD-set in G, and if vd−2 /∈ S′, then S′ ∪ {vd} is a 1FD-
set in G. Thus fd1(G) ≤ (n − 1)/2 + k, a contradiction. Thus assume that
degG(vd−1) ≥ 3. Clearly any vertex of NG(vd−1) \ {vd−2} is a leaf. Let G′ be
obtained from G by removing all leaves adjacent to vd−1. By the choice of G,
fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k, since G has the minimum order among all graphs
H with 1-fair domination number more than

(

n(H) − 1
)

/2 + k . Let S′ be a
fd1(G

′)-set. If vd−1 ∈ S′, then S′ is a 1FD-set in G, a contradiction. Thus
assume that vd−1 6∈ S′. Then vd−2 ∈ S′. Then S′ ∪ {vd−1} is a 1FD-set in G of
cardinality at most

(

n(G′)− 1
)

/2 + k + 1 ≤
(

n(G)− 1
)

/2 + k, a contradiction.
We thus assume that d = 1. Assume that ui is a vertex of Ci such that

degG(ui) = 2. Assume that degG(ui+1) = 2. Let G′ = G − uiui+1. By the
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choice of G, fd1(G
′) ≤

(

n(G′) − 1
)

/2 + k − 1 =
(

n(G) − 1
)

/2 + k − 1. Let
S′ be a fd1(G

′)-set. If
∣

∣S′ ∩ {ui, ui+1}
∣

∣ ∈ {0, 2}, then S′ is a 1FD-set for G, a
contradiction. Then

∣

∣S′ ∩ {ui, ui+1}
∣

∣ = 1. Assume that ui ∈ S′. Then ui+2 ∈ S′

and so {ui+1} ∪ S′ is a 1FD-set in G of cardinality at most
(

n(G)− 1
)

/2 + k, a
contradiction. Next assume that ui+1 ∈ S′. Then ui−1 ∈ S′ and so {ui} ∪ S′ is
a 1FD-set in G of cardinality at most

(

n(G) − 1
)

/2 + k, a contradiction. Thus
degG(ui+1) ≥ 3, and similarly degG(ui−1) ≥ 3. Since Ci is a leaf-cycle, it has
precisely one special cut-vertex. Thus we may assume, without loss of generality,
that ui+1 is a support vertex of G. Let G′ = G − ui−1ui. By the choice of
G, fd1(G

′) ≤
(

n(G′) − 1
/

2 + k − 1. Let S′ be a fd1(G
′)-set. By Observation

1, ui+1 ∈ S′. If ui−1 /∈ S′, then S′ is a 1FD-set in G of cardinality at most
(

n(G) − 1
)

/2 + k − 1, a contradiction. Thus ui−1 ∈ S′. Then S′ ∪ {ui} is a
1FD-set in G of cardinality at most

(

n(G)− 1
)

/2 + k, a contradiction.
We conclude that degG(ui) ≥ 3 for i = 0, 1, . . . , l. Furthermore, ui is a

support vertex for i = 1, 2, . . . , l. Assume that ui is a strong support vertex for
some i ∈ {1, 2, . . . , l}. Let G′ be obtained from G by removal of all vertices in
⋃l

i=1(N [ui]) \ {u0, u1, ul}. Clearly u0 is a strong support vertex of G′. By the
choice of G, fd1(G

′) ≤
(

n(G′)−1
)

/2+k−1 ≤
(

n(G)− (2l+1)+2−1
)

/2+k−1,
since ui is a strong support vertex of G. By Observation 1, u0 ∈ S′, and so
S′ ∪ {u1, . . . , ul} is a 1FD-set in G of cardinality at most

(

n(G)− (2l + 1) + 2−
1
)

/2+k−1+l = n(G)/2+k−1, a contradiction. Thus ui is a weak support vertex,
for each i = 1, 2, . . . , l. Let G′ be obtained from G by removal of any vertex in
⋃l

i=1(N [ui])\{u0}. By the choice of G, fd1(G
′) ≤

(

n(G′)−1
)

/2+k−1. Let S′ be
a fd1(G

′)-set. If u0 /∈ S′, then S′ ∪ {w1, . . . , wl} is a 1FD-set in G of cardinality
at most

(

n(G)−1
)

/2+k−1, where wi is the leaf adjacent to ui, for i = 1, 2, . . . , l.
This is a contradiction. Thus u0 ∈ S′. Then S′ ∪ {u1, . . . , ul} is a 1FD-set in G
of cardinality at most

(

n(G)− 1
)

/2 + k − 1, a contradiction.

If G is a cactus graph of order n with k ≥ 1 cycles and fd1(G) = (n−1)/2+k,
then clearly n ≥ 3 is odd, and since fd1(C3) 6= 2, we have n ≥ 5. It is obvious
that fd1(C5) = 3 = (5− 1)/2 + 1.

Theorem 15. If G 6= C5 is a cactus graph of order n ≥ 5 with k ≥ 1 cycles,

then fd1(G) = (n− 1)/2 + k if and only if G ∈ Gk.

Proof. We prove by an induction on k to show that any cactus graph G of order
n ≥ 5 with k ≥ 1 cycles and fd1(G) = (n−1)/2+k belongs to Gk. The base step
of the induction follows by Theorem 5. Assume the result holds for all cactus
graphs G′ with k′ < k cycles. Now let G be a cactus graph of order n with k ≥ 2
cycles and fd1(G) = (n − 1)/2 + k. Clearly n is odd. Suppose to the contrary
that G /∈ Gk. Assume that G has the minimum order, and among all such graphs,
assume that the size of G is minimum. By Observation 8, G has at least two
leaf-cycles. Let C1 = c0c1 · · · crc0 and C2 = c′0c

′

1 · · · c
′

r′c
′

0, be two leaf-cycles of
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G, where c0 and c′0 are two special cut-vertices of G. Let G′

1 be the component
of G − c0c1 − c0cr containing c1, and G′′

1 be the component of G − c′0c
′

1 − c′0c
′

r′

containing c′1.

Claim 1. V (G′

1) 6= {c1, . . . , cr}, and V (G′′

1) 6= {c′1, . . . , c
′

r′}.

Proof. Suppose that V (G′

1) = {c1, . . . , cr}. Then degG(ci) = 2 for i = 1, 2, . . . , r.

Let G∗ = G−c1c2, and S∗ be a fd1(G
∗)-set. By Theorem 14, fd1(G

∗) ≤
(

n(G∗)−
1
)

/2+k−1 =
(

n(G)−1
)

/2+k−1. Assume that r = 2. Then c0 is a strong support
vertex of G∗, and by Observation 1, c0 ∈ S∗. Thus

∣

∣S∗ ∩ {c1, c2}
∣

∣ = 0, and so S∗

is a 1FD-set in G of cardinality at most
(

n(G)−1
)

/2+k−1 <
(

n(G)−1
)

/2+k,
a contradiction. Assume that r = 3. If

∣

∣S∗ ∩ {c1, c2}
∣

∣ ∈ {0, 2}, then S∗ is a
1FD-set in G of cardinality at most

(

n(G)− 1
)

/2 + k − 1 <
(

n(G)− 1
)

/2 + k, a
contradiction. Thus

∣

∣S∗ ∩ {c1, c2}
∣

∣ = 1. If c1 ∈ S∗, then c3 ∈ S∗, and so c0 ∈ S∗.
Then S∗ \{c1} is a 1FD-set in G∗, a contradiction. Thus c1 6∈ S∗, and so c2 ∈ S∗.
Since c1 is dominated by S∗, we obtain that c0 ∈ S∗, and so c3 ∈ S∗. Then
S∗ \ {c2} is a 1FD-set in G∗, a contradiction. Assume that r = 4. Suppose that
fd1(G

∗) =
(

n(G∗) − 1
)

/2 + k − 1. Let G∗

1 = G∗ − {c2, c3, c4}. By Theorem 14,
fd1(G

∗

1) ≤
(

n(G∗

1)−1
)

/2+k−1 = n/2+k−3 , and thus fd1(G
∗

1) ≤ (n−1)/2+k−3,
since n is odd. Let S∗

1 be a fd1(G
∗

1)-set. If c0 ∈ S∗

1 , then S∗

1∪{c2} is a 1FD-set for
G∗ and if c0 /∈ S∗

1 , then S∗

1 ∪{c3} is a 1FD-set for G∗. Thus fd1(G
∗) ≤ |S∗

2 |+1 ≤
(n − 1)/2 + k − 2, a contradiction. Thus fd1(G

∗) <
(

n(G∗) − 1
)

/2 + k − 1 =
(

n(G) − 1
)

/2 + k − 1. If
∣

∣S∗ ∩ {c1, c2}
∣

∣ ∈ {0, 2}, then S∗ is a 1FD-set in G of
cardinality at most

(

n(G)−1
)

/2+k−1 <
(

n(G)−1
)

/2+k, a contradiction. Thus
|S∗∩{c1, c2}| = 1. Without loss of generality, assume that c1 ∈ S∗. Then S∗∪{c2}
is a 1FD-set in G, and so fd1(G) ≤ |S∗|+1 <

(

n(G)− 1
)

/2+ k, a contradiction.
It remains to assume that r ≥ 5. Suppose that fd1(G

∗) =
(

n(G∗)− 1
)

/2+ k− 1.
Let G∗

2 = G∗ − {c2, c3, c4}. By Theorem 14, fd1(G
∗

2) ≤
(

n(G∗

2)− 1
)

/2 + k − 1 =
n/2 + k − 3 , and thus fd1(G

∗

2) ≤ (n− 1)/2 + k − 3, since n is odd. Let S∗

2 be a
fd1(G

∗

2)-set. If c5 ∈ S∗

2 , then S∗

2 ∪ {c2} is a 1FD-set for G∗ and if c5 /∈ S∗

2 , then
S∗

2 ∪ {c3} is a 1FD-set for G∗. Thus fd1(G
∗) ≤ |S∗

2 | + 1 ≤ (n − 1)/2 + k − 2, a
contradiction. Thus fd1(G

∗) <
(

n(G∗) − 1
)

/2 + k − 1 =
(

n(G) − 1
)

/2 + k − 1.
If

∣

∣S∗ ∩ {c1, c2}
∣

∣ ∈ {0, 2}, then S∗ is a 1FD-set in G of cardinality at most
(

n(G)−1
)

/2+k−1 <
(

n(G)−1
)

/2+k, a contradiction. Thus
∣

∣S∗∩{c1, c2}
∣

∣ = 1.
Without loss of generality, assume that c1 ∈ S∗. Then S∗ ∪ {c2} is a 1FD-set in
G, and so fd1(G) ≤ |S∗| + 1 <

(

n(G) − 1
)

/2 + k, a contradiction. We conclude
that V (G′

1) 6= {c1, . . . , cr}. Similarly V (G′′

1) 6= {c′1, . . . , c
′

r′}.

Let vd ∈ V (G′

1) \ {c1, . . . , cr} be a leaf of G′

1 at maximum distance from
{c1, . . . , cr}, and assume that v0v1 · · · vd is the shortest path from vd to {c1, . . . , cr},
where v0 ∈ {c1, . . . , cr}. Likewise, let v

′

d′ ∈ V (G′′

1)\{c
′

1, . . . , c
′

r′} be a leaf of G′′

1 at
maximum distance from {c′1, . . . , c

′

r′}, and assume that v′0v
′

1 · · · v
′

d′ is the shortest
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path from v′d′ to {c′1, . . . , c
′

r′}, where v
′

0 ∈ {c′1, . . . , c
′

r′}. Without loss of generality,
assume that d′ ≤ d.

Claim 2. Every support vertex of G is adjacent to at most two leaves.

Proof. Suppose that there is a support vertex v ∈ S(G) such that v is adjacent
to at least three leaves v1, v2 and v3. Let G

′ = G−{v1}, and let S′ be a fd1(G
′)-

set. By Observation 1, v ∈ S′, and thus we may assume that S′ ∩ {v2, v3} = ∅.
By Theorem 14, |S′| ≤

(

n(G′)−1
)

/2+k = (n−2)/2+k. Clearly S′ is a 1FD-set
for G, a contradiction.

Claim 3. If d ≥ 2, then G ∈ Gk.

Proof. Let d ≥ 2. By Claim 2 , 2 ≤ degG(vd−1) ≤ 3. Assume first that
deg(vd−1) = 3. Let x 6= vd be a leaf adjacent to vd−1. Let G′ = G− {x, vd}. By
Theorem 14, fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k. Suppose that fd1(G
′) <

(

n(G′) −
1
)

/2 + k. Let S′ be a fd1(G
′)-set. If vd−1 ∈ S′, then S′ is a 1FD-set for G and

if vd−1 /∈ S′, then S′ ∪ {vd−1} is a 1FD-set for G. Thus fd1(G) ≤ fd1(G
′) + 1 <

(n−1)/2+k, a contradiction. Hence, fd1(G
′) =

(

n(G′)−1
)

/2+k. By the choice
of G, G′ ∈ Gk. Therefore G is obtained from G′ by Operation O2. Consequently,
G ∈ Gk. Next assume that degG(vd−1) = 2. We consider the following cases.

Case 1. d ≥ 3. Suppose that degG(vd−2) = 2. Let G′ = G− {vd−2, vd−1, vd}.
By Theorem 14, fd1(G

′) ≤
(

n(G′)− 1
)

/2+k = n/2+k− 2 , and thus fd1(G
′) ≤

(n − 1)/2 + k − 2, since n is odd. Let S′ be a fd1(G
′)-set. If vd−3 ∈ S′, then

S′∪{vd} is a 1FD-set for G and if vd−3 /∈ S′, then S′∪{vd−1} is a 1FD-set for G.
Thus fd1(G) ≤ |S′|+1 ≤ (n−1)/2+k−1, a contradiction. Thus degG(vd−2) ≥ 3.
Let G′ = G−{vd−1, vd}. By Theorem 14, fd1(G

′) ≤
(

n(G′)− 1
)

/2+ k. Suppose
that fd1(G

′) <
(

n(G′) − 1
)

/2 + k. Let S′ be a fd1(G
′)-set. If vd−2 ∈ S′, then

S′∪{vd−1} is a 1FD-set for G and if vd−2 /∈ S′, then S′∪{vd} is a 1FD-set for G.
Thus fd1(G) ≤ |S′|+1 ≤ fd1(G

′)+1 < (n−1)/2+k, a contradiction. We deduce
that fd1(G

′) =
(

n(G′) − 1
)

/2 + k. By the choice of G, G′ ∈ Gk. Since d ≥ 3,
vd−2 is not a special vertex of G′. Thus G is obtained from G′ by Operation O1,
and so G ∈ Gk.

Case 2. d = 2. As noted, deg(v1) = 2. Clearly deg(v0) ≥ 3. Assume
first that deg(v0) ≥ 4. Let G′ = G − {v2, v1}. By Theorem 14 , fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k. Suppose that fd1(G
′) <

(

n(G′) − 1
)

/2 + k. Let S′ be a
fd1(G

′)-set. If v0 ∈ S′, then S′ ∪ {v1} is a 1FD-set for G, and if v0 /∈ S′,
then S′ ∪ {v2} is a 1FD-set for G. Thus fd1(G) ≤ |S′| + 1 < (n − 1)/2 + k, a
contradiction. Thus, fd1(G

′) =
(

n(G′)− 1
)

/2 + k. By the choice of G, G′ ∈ Gk.
Since degG′(v0) ≥ 3, v0 is not a special vertex of G′. Hence G is obtained from
G′ by Operation O1. Consequently, G ∈ Gk. Thus assume that deg(v0) = 3.
Let G′ = G − {v2, v1}. By Theorem 14, fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k. Suppose
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that fd1(G
′) <

(

n(G′) − 1
)

/2 + k. Let S′ be a fd1(G
′)-set. If v0 ∈ S′, then

S′ ∪ {v1} is a 1FD-set for G, and if v0 /∈ S′, then S′ ∪ {v2} is a 1FD-set for G.
Thus fd1(G) ≤ |S′|+1 ≤ fd1(G

′) + 1 < (n− 1)/2+ k, a contradiction. Thus we
obtain that fd1(G

′) =
(

n(G′)− 1
)

/2 + k. By the choice of G, G′ ∈ Gk. Then v0
is a special vertex of G′. From Observation 9(1), we obtain that degG(ci) ≥ 3 for
each i ∈ {1, . . . , r}.

Suppose that NG(cj) \ V (C1) contains no strong support vertex for each
j ∈ {1, . . . , r}. Observation 9(1) implies that cj is not a strong support vertex of
G, sinceG′ ∈ Gk. Assume that there is a vertex cj ∈ {c1, . . . , cr} such that cj has a
neighbor a which is a support vertex. By assumption, a is a weak support vertex.
If a′ is the leaf adjacent to a, then a′ plays the role of vd. Since deg(v0) = 3, we
may assume that deg(cj) = 3. Thus by Observation 9(1), we may assume that
degG(ci) = 3 for each ci ∈ {c1, . . . , cr}. Let F =

⋃r
i=1(N [ci])\{c0, . . . , cr}. Clearly

|F | = r, since degG(ci) = 3 for each ci ∈ {c1, . . . , cr}. Let F = {u1, u2, . . . , ur},
F ′ = {ui ∈ F | degG(ui) = 1}, and F ′′ = F \ F ′. Then every vertex of F ′′ is a
weak support vertex. Since v1 ∈ F ′′, |F ′′| ≥ 1. Now let G∗ = G − c0c1 − c0cr,
and G∗

1 and G∗

2 be the components of G∗, where c1 ∈ V (G∗

1). By Theorem 14,
fd1(G

∗

2) ≤
(

n(G∗

2) − 1
)

/2 + k − 1. Clearly n(G∗

2) = n(G) − 2r − |F ′′|. Let S∗

2

be a fd1(G
∗

2)-set. If c0 /∈ S∗

2 , then S∗

2 ∪ F is a 1FD-set for G, and so fd1(G) ≤
(

n(G)−2r−|F ′′|−1
)

/2+k−1+r < (n−1)/2+k, a contradiction. Thus c0 ∈ S∗

2 .
If |F ′′| = 1, then S∗

2∪C1∪{v1} is a 1FD-set for G and thus fd1(G) ≤ fd1(G
∗

2)+r+
1 ≤ (n−2)/2+k, a contradiction. Thus assume that |F ′′| ≥ 2. Let {ut, ut′} ⊆ F ′′

(assume without loss of generality that t < t′) such that degG(ui) = 1 for 1 ≤ i < t
and t′ < i ≤ r. Let u′t and u′t′ be the leaves of ut and ut′ , respectively. Clearly
S∗

2 ∪ {c1, . . . , ct−1} ∪ {ct′+1, . . . , cr} ∪ {ut+1, . . . , ut′−1} ∪ {u′t, u
′

t′} is a 1FD-set for
G and thus fd1(G) ≤ fd1(G

∗

2) + r < (n− 1)/2 + k − 1, a contradiction.

Thus we may assume that N(cj) \ C1 contains at least one strong support
vertex for some cj ∈ {c1, . . . , cr}. Let uj be a strong support vertex in N(cj)\C1.
By Claim 2, there are precisely two leaves adjacent to uj . Let u′ and u′′ be the
leaves adjacent to uj , and G∗ = G − {u′, u′′}. By Theorem 14, fd1(G

∗) ≤
(

n(G∗) − 1
)

/2 + k. Assume that fd1(G
∗) <

(

n(G∗) − 1
)

/2 + k . Let S′ be a
fd1(G

∗)-set. If uj ∈ S′, then S′ is a 1FD-set for G, and if uj /∈ S′, then S′ ∪{u′j}
is a 1FD-set for G. Thus fd1(G) ≤ fd1(G

∗)+ 1 < (n− 1)/2+ k, a contradiction.
We deduce that fd1(G

∗) =
(

n(G∗) − 1
)

/2 + k. By the choice of G, G∗ ∈ Gk.
Thus G is obtained from G∗ by Operation O2. Consequently, G ∈ Gk.

By Claim 3, we assume that d = d′ = 1.

Claim 4. Ci has precisely one special vertex, for i = 1, 2.

Proof. We first show that Ci has at least one special vertex, for i = 1, 2. Suppose
that C1 has no special vertex. Thus degG(ci) ≥ 3 for i = 1, . . . , r. Clearly, ci is a
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support vertex for i = 1, 2, . . . , r. Suppose that cj is a strong support vertex for
some j ∈ {1, 2, . . . , r}. Let G′ be obtained from G by removal of all vertices in
⋃r

i=1

(

N [ci]
)

\{c0, c1, cr}. Clearly, c0 is a strong support vertex ofG′. By Theorem
14, fd1(G

′) ≤
(

n(G′)− 1
)

/2+ k− 1. Since cj is a strong support vertex of G, we
have n(G′) ≤ n(G)−(2r+1)+2. Thus, fd1(G

′) ≤
(

n(G)−(2r+1)+2−1
)

/2+k−1.
By Observation 1, c0 ∈ S′, and so S′∪{c1, . . . , cr} is a 1FD-set in G of cardinality
at most

(

n(G)−(2r+1)+2−1
)

/2+k−1+r = n(G)/2+k−1 <
(

n(G)−1
)

/2+k,
a contradiction. Thus ci is a weak support vertex for each i = 1, 2, . . . , r. Let G′

be obtained from G by removal of any vertex in
⋃r

i=1

(

N [ci]
)

\{c0}. By Theorem
14, fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k − 1. Let S′ be a fd1(G
′)-set. If c0 /∈ S′, then

S′ ∪ {u1, . . . , ur} is a 1FD-set in G of cardinality at most
(

n(G)− 1
)

/2+ k− 1 <
(

n(G) − 1
)

/2 + k, where ui is the leaf adjacent to ci for i = 1, 2, . . . , r. This
is a contradiction. Thus c0 ∈ S′. Then S′ ∪ {c1, . . . , cr} is a 1FD-set in G of
cardinality at most

(

n(G) − 1
)

/2 + k − 1 <
(

n(G) − 1
)

/2 + k, a contradiction.
Thus C1 has at least one special vertex. Similarly, C2 has at least one special
vertex. Let ct be a special vertex of C1 and c′h be a special vertex of C2.

We show that ct is the unique special vertex of C1. Suppose to the contrary
that C1 has at least two special vertices. Assume that degG(c

′

h+1) = 2. Let
G′ = G− c′hc

′

h+1, and S′ be a fd1(G
′)-set. By Theorem 14, fd1(G

′) ≤
(

n(G′)−
1
)

/2+k−1. If fd1(G
′) =

(

n(G′)−1
)

/2+k−1, then by the inductive hypothesis,
G′ ∈ Gk−1. This is a contradiction by Observation 9(1), since C1 has at least two
special vertices. Thus fd1(G

′) <
(

n(G′) − 1
)

/2 + k − 1. If
∣

∣S′ ∩ {c′h, c
′

h+1}
∣

∣ ∈
{0, 2}, then S′ is a 1FD-set in G of cardinality at most

(

n(G) − 1
)

/2 + k − 1, a
contradiction. Thus

∣

∣S′∩{c′h, c
′

h+1}
∣

∣ = 1. Without loss of generality, assume that
c′h ∈ S′. Then {c′h+1} ∪ S′ is a 1FD-set in G, and so fd1(G) <

(

n(G)− 1
)

/2 + k,
a contradiction. We thus assume that degG(c

′

h+1) ≥ 3. Likewise, we may assume
that degG(c

′

h−1) ≥ 3. Since C2 is a leaf-cycle, c′0 is its unique special cut-vertex.
Thus we may assume, without loss of generality, that c′h+1 6= c′0. Clearly, c

′

h+1 is a
support vertex of G. Let G′ = G− c′hc

′

h−1, and S′ be a fd1(G
′)-set. Clearly c′h+1

is a strong support vertex of G′. By Theorem 14, fd1(G
′) ≤

(

n(G′)−1
)

/2+k−1.
If fd1(G

′) =
(

n(G′)− 1
)

/2 + k − 1, then by the inductive hypothesis G′ ∈ Gk−1.
This is a contradiction by Observation 9(1), since C1 has at least two special
vertices. Thus fd1(G

′) <
(

n(G′)− 1
)

/2 + k − 1. By Observation 1, c′h+1 ∈ S′. If
c′h−1 /∈ S′, then S′ is a 1FD-set in G of cardinality at most

(

n(G)− 1
)

/2+ k− 1,
a contradiction. Thus c′h−1 ∈ S′. Now, S′ ∪ {c′h} is a 1FD-set in G, and thus
fd1(G) ≤ |S′| + 1 <

(

n(G) − 1
)

/2 + k, a contradiction. Thus ct is the unique
special vertex of C1. Similarly, c′h is the unique special vertex of C2.

Let ct be the unique special vertex of C1, and c′h be the unique special vertex
of C2, and note that Claim 4 guarantees the existence of ct and c′h.

Claim 5. No vertex of Ci is a strong support vertex, for i = 1, 2.
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Proof. Suppose that cj ∈ C1 is a strong support vertex. Since C2 is a leaf-
cycle, c′0 is its unique special cut-vertex. Thus, we may assume, without loss of
generality, that c′h+1 is a support vertex of G. Let G′ = G − c′hc

′

h−1, and S′ be
a fd1(G

′)-set. Clearly c′h+1 is a strong support vertex of G′. By Theorem 14,
fd1(G

′) ≤
(

n(G′) − 1
)

/2 + k − 1. If fd1(G
′) =

(

n(G′) − 1
)

/2 + k − 1, then by
the inductive hypothesis G′ ∈ Gk−1. This is a contradiction by Observation 9(1),
since C1 has a strong support vertex. Thus fd1(G

′) <
(

n(G′)− 1
)

/2+ k− 1. By
Observation 1, c′h+1 ∈ S′. If c′h−1 /∈ S′, then S′ is a 1FD-set in G of cardinality
at most

(

n(G)− 1
)

/2 + k − 1, a contradiction. Thus c′h−1 ∈ S′. Then S′ ∪ {c′h}
is a 1FD-set in G, and so fd1(G) ≤ |S′|+1 <

(

n(G)− 1
)

/2+ k, a contradiction.
We deduce that C1 has no strong support vertex. Similarly, C2 has no strong
support vertex.

We deduce that ci is a weak support vertex for each i ∈ {1, 2, . . . , r} \ {t},
and similarly c′i is a weak support vertex for each i ∈ {1, 2, . . . , r′}\{h}. For each
i ∈ {1, 2, . . . , r} \ {t}, let ui be the leaf adjacent to ci.

Let G′

2 be the component of G − c0c1 − c0cr that contains c0, and G∗ be a
graph obtained from G′

2 by adding a leaf v∗ to c0. Clearly n(G∗) = n(G)−2r+2.
By Theorem 14, fd1(G

∗) ≤
(

n(G∗) − 1
)

/2 + k − 1. Suppose that fd1(G
∗) <

(

n(G∗)−1
)

/2+k−1. Let S∗ be a fd1(G
∗)-set. If c0 ∈ S∗, then S∗∪{c1, c2, . . . , cr}

is a 1FD-set in G, so we obtain that fd1(G) < (n−1)/2+k , a contradiction. Thus
c0 /∈ S∗. Then v∗ ∈ S∗. If t > 1, then S∗ ∪ {c1, . . . , ct−1} ∪ {ut+1, . . . , ur} \ {v

∗}
is a 1FD-set in G of cardinality at most

(

n(G∗) − 1
)

/2 + k − 1 − 1 + r − 1 =
(

n(G)− 2r+2− 1
)

/2+ k− 1− 1+ r− 1 =
(

n(G)− 1
)

/2+ k− 2, a contradiction.
Thus assume that t = 1. Then S∗ ∪ {c2, . . . , cr} \ {v∗} , is a 1FD-set in G of
cardinality at most

(

n(G) − 1
)

/2 + k − 2, a contradiction. Thus fd1(G
∗) =

(

n(G∗) − 1
)

/2 + k − 1. By the inductive hypothesis, G∗ ∈ Gk−1. Let H∗ be the
graph obtained from G[{c0, c1, . . . , cr, u1, . . . , ut−1, ut+1, . . . , ur}] by adding a leaf
to c0. Clearly H∗ ∈ H1. Thus G is obtained from G∗ ∈ Gk−1 and H∗ ∈ H1 by
Procedure A. Consequently, G ∈ Hk ⊆ Gk.

For the converse, by Corollary 13, V (G) \ L(G) is the unique fd1(G)-set.
Now Observation 9 implies that fd1(G) = (n− 1)/2 + k.
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