FAIR DOMINATION NUMBER IN CACTUS GRAPHS

Majid Hajian
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
AND
Nader Jafari Rad
Department of Mathematics
Shahed University, Tehran, Iran
e-mail: n.jafarirad@gmail.com

Abstract

For $k \geq 1$, a k-fair dominating set (or just k FD-set) in a graph G is a dominating set S such that $|N(v) \cap S|=k$ for every vertex $v \in V \backslash S$. The k-fair domination number of G, denoted by $f d_{k}(G)$, is the minimum cardinality of a k FD-set. A fair dominating set, abbreviated FD-set, is a k FD-set for some integer $k \geq 1$. The fair domination number, denoted by $f d(G)$, of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, aiming to provide a particular answer to a problem posed in [Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905-2914], we present a new upper bound for the fair domination number of a cactus graph, and characterize all cactus graphs G achieving equality in the upper bound of $f d_{1}(G)$.

Keywords: fair domination, cactus graph, unicyclic graph.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology not given here, we follow [10]. Specifically, let G be a graph with vertex set $V(G)=V$ of order $|V|=n$ and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E(G)\}$ and
the closed neighborhood of v is $N_{G}[v]=\bigcup_{v \in S} N_{G}(v)$. If the graph G is clear from the context, we simply write $N(v)$ rather than $N_{G}(v)$. The degree of a vertex v, is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the set of leaves and support vertices of a graph G by $L(G)$ and $S(G)$, respectively. A strong support vertex is a support vertex adjacent to at least two leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. The corona graph $\operatorname{cor}(G)$ of a graph G is a graph obtained by adding a leaf to every vertex of G. We denote by P_{n} a path on n vertices. The distance $d(u, v)$ between two vertices u and v in a graph G is the minimum number of edges of a path from u to v. The diameter $\operatorname{diam}(G)$ of G, is $\max _{u, v \in V(G)} d(u, v)$. A path of length $\operatorname{diam}(G)$ is called a diameterical path. A cactus graph is a connected graph in which any two cycles have at most one vertex in common. For a subset S of vertices of G, we denote by $G[S]$ the subgraph of G induced by S.

A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A vertex v is said to be dominated by a set S if $N(v) \cap S \neq \emptyset$.

Caro et al. [1] studied the concept of fair domination in graphs. For $k \geq 1$, a k-fair dominating set, abbreviated k FD-set, in G is a dominating set S such that $|N(v) \cap D|=k$ for every vertex $v \in V \backslash D$. The k-fair domination number of G, denoted by $f d_{k}(G)$, is the minimum cardinality of a k FD-set. A k FD-set of G of cardinality $f d_{k}(G)$ is called a $f d_{k}(G)$-set. A fair dominating set, abbreviated FD-set, in G is a k FD-set for some integer $k \geq 1$. The fair domination number, denoted by $f d(G)$, of a graph G that is not the empty graph is the minimum cardinality of an FD-set in G. An FD-set of G of cardinality $f d(G)$ is called a $f d(G)$-set.

A perfect dominating set in a graph G is a dominating set S such that every vertex in $V(G) \backslash S$ is adjacent to exactly one vertex in S. Hence a 1FD-set is precisely a perfect dominating set. The concept of perfect domination was introduced by Cockayne et al. in [4], and Fellows et al. [7] with a different terminology which they called semiperfect domination. This concept was further studied, see for example, $[2,3,5,6,9]$.

Observation 1 (Caro et al. [1]). Every 1FD-set in a graph contains all its strong support vertices.

The following is easily verified.
Observation 2. Let S be a 1FD-set in a graph G, v a support vertex of G and v^{\prime} a leaf adjacent to v. If S contains a vertex $u \in N_{G}(v) \backslash\left\{v^{\prime}\right\}$, then $v \in S$.

Among other results, Caro et al. [1] proved that $f d(G) \leq n-2$ for any connected graph G of order $n \geq 3$ with no isolated vertex, and constructed an infinite family of connected graphs achieving equality in this bound. They showed that $f d(G)<17 n / 19$ for any maximal outerplanar graph G of order n, and $f d(T) \leq n / 2$ for any tree T of order $n \geq 2$. They then showed that equality for the bound $f d(T) \leq n / 2$ holds if and only if T is the corona of a tree. Among open problems posed by Caro et al. [1], one asks to find $f d(G)$ for other families of graphs.
Problem 3 (Caro et al. [1]). Find $f d(G)$ for other families of graphs.
In this paper, aiming to study Problem 3, we present a new upper bound for the 1 -fair domination number of cactus graphs and characterize all cactus graphs achieving equality for the upper bound. We show that if G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f d_{1}(G) \leq(n-1) / 2+k$. We also characterize all cactus graphs achieving equality for the upper bound.

2. Unicyclic Graphs

Fair domination in unicyclic graphs has been studied in [8]. A vertex v of a cactus graph G is a special vertex if $\operatorname{deg}_{G}(v)=2$ and v belongs to a cycle of G. Let \mathcal{H}_{1} be the class of all graphs G that can be obtained from the corona $\operatorname{cor}(C)$ of a cycle C by removing precisely one leaf of $\operatorname{cor}(C)$. Let \mathcal{G}_{1} be the class of all graphs G that can be obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$, where $G_{1} \in \mathcal{H}_{1}$, and if $s \geq 2$, then G_{j+1} is obtained from G_{j} by one of the following Operations \mathcal{O}_{1} or \mathcal{O}_{2}, for $j=1,2, \ldots, s-1$.
Operation \mathcal{O}_{1}. Let v be a vertex of G_{j} with $\operatorname{deg}(v) \geq 2$ such that v is not a special vertex of G_{j}. Then G_{j+1} is obtained from G_{j} by adding a path P_{2} and joining v to a leaf of P_{2}.
Operation \mathcal{O}_{2}. Let v be a leaf of G_{j}. Then G_{j+1} is obtained from G_{j} by adding two leaves to v.
Lemma 4 [8]. If $G \in \mathcal{G}_{1}$, then every $1 F D$-set in G contains every vertex of G of degree at least two.
Theorem 5 [8]. If G is a unicyclic graph of order n, then $f d_{1}(G) \leq(n+1) / 2$, with equality if and only if $G=C_{5}$ or $G \in \mathcal{G}_{1}$.

3. Main Result

Our aim in this paper is to give an upper bound for the fair domination number of a cactus graph G in terms of the number of cycles of G, and then characterize

Figure 1. Construction of the family \mathcal{G}_{k}.
all cactus graphs achieving equality for the proposed bound. For this purpose we first introduce some families of graphs. Let \mathcal{H}_{1} and \mathcal{G}_{1} be the families of unicyclic graphs described in Section 2. For $i=2,3, \ldots, k$, we construct a family \mathcal{H}_{i} from \mathcal{G}_{i-1}, and a family \mathcal{G}_{i} from \mathcal{H}_{i} as follows.

- Family \mathcal{H}_{i}. Let \mathcal{H}_{i} be the family of all graphs H_{i} such that H_{i} can be obtained from a graph $H_{1} \in \mathcal{H}_{1}$ and a graph $G \in \mathcal{G}_{i-1}$, by the following Procedure.
Procedure A. Let $w_{0} \in V\left(H_{1}\right)$ be a support vertex of H_{1}, and $w \in V\left(G_{i-1}\right)$ be a support vertex of G_{i-1}. We remove precisely one leaf adjacent to w_{0} and precisely one leaf adjacent to w, and then identify the vertices w_{0} and w.
- Family \mathcal{G}_{i}. Let \mathcal{G}_{i} be the family of all graphs G that can be obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$, where $G_{1} \in \mathcal{H}_{i}$, and if $s \geq 2$ then G_{j+1} is obtained from G_{j} by one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}, described in Section 2, for $j=1,2, \ldots, s-1$.

Note that $\mathcal{H}_{i} \subseteq \mathcal{G}_{i}$, for $i=1,2, \ldots, k$. Figure 1 demonstrates the construction of the family \mathcal{G}_{k}.

We will prove the following.
Theorem 6. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f d_{1}(G) \leq(n-1) / 2+k$, with equality if and only if $G=C_{5}$ or $G \in \mathcal{G}_{k}$.

Corollary 7. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f d(G) \leq(n-1) / 2+k$.

4. Preliminary Results and Observations

4.1. Notation

We call a vertex w in a cycle C of a cactus graph G a special cut-vertex if w belongs to a shortest path from C to a cycle $C^{\prime} \neq C$. We call a cycle C in a cactus graph G, a leaf-cycle if C contains exactly one special cut-vertex. In the

Figure 2. C_{i} is a leaf-cycle for $i=1,2,3$ and v_{j} is a special cut-vertex for $j=1,2, \ldots, 8$.
cactus graph presented in Figure 2, v_{i} is a special cut-vertex, for $i=1,2, \ldots, 8$. Moreover, C_{j} is a leaf-cycle for $j=1,2,3$.

Observation 8. Every cactus graph with at least two cycles contains at least two leaf-cycles.

4.2. Properties of the family \mathcal{G}_{k}

The following observation can be proved by a simple induction on k.
Observation 9. If $G \in \mathcal{G}_{k}$ is a cactus graph of order n, then the following conditions are satisfied.
(1) No cycle of G contains a strong support vertex. Furthermore, any cycle of G contains precisely one special vertex.
(2) n is odd.
(3) $|L(G)|=(n+1) / 2-k$.
(4) If a vertex v of G belongs to at least two cycles of G, then v is not a support vertex, and v belongs to precisely two cycles of G.

Observation 10. Let $G \in \mathcal{G}_{k}$. Let G be obtained from a sequence G_{1}, G_{2}, \ldots, $G_{s}=G(s \geq 2)$ such that $G_{1} \in \mathcal{H}_{1}$ and G_{j+1} is obtained from G_{j} by one of the Operations O_{1} or O_{2} or procedure A, for $j=1,2, \ldots, s-1$. If v is a vertex of G belonging to two cycles of G then there is an integer $i \in\{2,3, \ldots, s\}$ such that G_{i} is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in \mathcal{H}_{1}$, such that v belongs to a cycle of G_{i-1}.

Observation 11. Assume that $G \in \mathcal{G}_{k}$ and $v \in V(G)$ is a vertex of degree four belonging to two cycles. Let D_{1} and D_{2} be the components of $G-v, G_{1}^{*}$ be the
graph obtained from $G\left[D_{1} \cup\{v\}\right]$ by adding a leaf v_{1}^{*} to v, and G_{2}^{*} be the graph obtained from $G\left[D_{2} \cup\{v\}\right]$ by adding a leaf v_{2}^{*} to v. Then there exists an integer $k^{\prime}<k$ such that $G_{1}^{*} \in \mathcal{G}_{k^{\prime}}$ or $G_{2}^{*} \in \mathcal{G}_{k^{\prime}}$.
Proof. Let $G \in \mathcal{G}_{k}$. Thus G is obtained from a sequence $G_{1}, G_{2}, \ldots, G_{s}=G$ ($s \geq 2$) such that $G_{1} \in \mathcal{H}_{1}$ and G_{j+1} is obtained from G_{j} by one of the Operations O_{1} or O_{2} or procedure A, for $j=1,2, \ldots, s-1$. Note that $s \geq k$. We define the j-th Procedure-Operation or just $P O_{j}$ as one of the Operation O_{1}, Operation O_{2}, or Procedure A that can be applied to obtain G_{j+1} from G_{j}. Thus G is obtained from G_{1} by Procedure-Operations $P O_{1}, P O_{2}, \ldots, P O_{s-1}$.

Let v be a vertex of G of degree four belonging to two cycles of G, and D_{1} and D_{2} be the components of $G-v$. By Observation 10, there is an integer $i \in\{2,3, \ldots, s\}$ such that G_{i} is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in \mathcal{H}_{1}$. Note that v is a support vertex of G_{i-1}. Let v^{*} be the leaf of v in G_{i-1} that is removed in Procedure A. Clearly, either $V\left(G_{i-1}\right) \cap D_{1} \neq \emptyset$ or $V\left(G_{i-1}\right) \cap D_{2} \neq \emptyset$. Without loss of generality, assume that $V\left(G_{i-1}\right) \cap D_{1} \neq \emptyset$. Among $P O_{i}, P O_{i+1}, \ldots, P O_{s-1}$, let $P O_{r_{1}}, P O_{r_{2}}, \ldots, P O_{r_{t}}$, be the Procedure-Operations applied on a vertex of D_{1}, where $i \leq t \leq s-1$. Let $G_{r_{0}}=G_{i-1}$ and $G_{r_{l+1}}$ be obtained from $G_{r_{l}}$ by $P O_{r_{l+1}}$, for $l=0,1,2, \ldots, t-1$. Clearly by an induction on t, we can deduce that there is an integer $k^{*}<k$ such that $G_{r_{t}} \in \mathcal{G}_{k^{*}}$. Note that $G_{r_{t}}=G_{1}^{*}$.

Lemma 12. If $G \in \mathcal{G}_{k}$, then every $1 F D$-set in G contains every vertex of G of degree at least two.
Proof. Let $G \in \mathcal{G}_{k}$, and S be a 1FD-set in G. We prove by an induction on k, namely first-induction, to show that S contains every vertex of G of degree at least two. For the base step, if $k=1$ then $G \in \mathcal{G}_{1}$, and the result follows by Lemma 4. Assume the result holds for all graphs $G^{\prime} \in \mathcal{G}_{k^{\prime}}$ with $k^{\prime}<k$. Now consider the graph $G \in \mathcal{G}_{k}$, where $k>1$. Clearly, G is obtained from a sequence $G_{1}, G_{2}, \ldots, G_{l}=G$, of cactus graphs such that $G_{1} \in \mathcal{H}_{k}$, and if $l \geq 2$, then G_{i+1} is obtained from G_{i} by one of the operations \mathcal{O}_{1} or \mathcal{O}_{2} for $i=1,2, \ldots, l-1$.

We employ an induction on l, namely second-induction, to show that S contains every vertex of G of degree at least two.

For the base step of the second-induction, let $l=1$. Thus $G \in \mathcal{H}_{k}$. By the construction of graphs in the family \mathcal{H}_{k}, there are graphs $H \in \mathcal{H}_{1}$ and $G^{\prime} \in \mathcal{G}_{k-1}$ such that G is obtained from H and G^{\prime} by Procedure A. Clearly, H is obtained from the corona $\operatorname{cor}(C)$ of a cycle C, by removing precisely one leaf of $\operatorname{cor}(C)$. Let $C=c_{0} c_{1} \cdots c_{r} c_{0}$, where c_{0} is the support vertex of H that its leaf is removed according to Procedure A. Since H has precisely one special vertex, let c_{t} be the special vertex of H. Let $w \in V\left(G^{\prime}\right)$ be a support vertex of G^{\prime} that its leaf, say w^{\prime}, is removed to obtain G according to Procedure A. First we show that $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$. Clearly $S \cap\left\{c_{t-1}, c_{t}, c_{t+1}\right\} \neq \emptyset$, since $\operatorname{deg}_{G}\left(c_{t}\right)=2$. Assume that
$c_{t} \in S$. Since at least one of c_{t-1} or c_{t+1} is a support vertex, by Observation 2 , $\left\{c_{t-1}, c_{t+1}\right\} \cap S \neq \emptyset$. By applying Observation 2, we obtain that $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$, since any vertex of $\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{c_{t}\right\}$ is a support vertex of G. Thus assume that $c_{t} \notin S$. Then $\left\{c_{t-1}, c_{t+1}\right\} \cap S \neq \emptyset$, and so $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$, since any vertex of $\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{c_{t}\right\}$ is a support vertex of G. Hence, $\left\{c_{1}, c_{r}\right\} \cap S \neq \emptyset$. If $c_{0} \notin S$, then $\left(S \cap V\left(G^{\prime}\right)\right) \cup\left\{w^{\prime}\right\}$ is a 1 FD -set for G^{\prime}, and thus by the first-inductive hypothesis, S contains $w=c_{0}$, a contradiction. Thus $c_{0} \in S$. By Observation $2, V(C) \subseteq S$, since any vertex of $\left\{c_{1}, \ldots, c_{r}\right\} \backslash\left\{c_{t}\right\}$ is a support vertex of G. Thus $S \cap V\left(G^{\prime}\right)$ is a 1FD-set for G^{\prime}. By the first-inductive hypothesis, $\left(S \cap V\left(G^{\prime}\right)\right) \cup\{w\}$ contains every vertex of G^{\prime} of degree at least two. Consequently, S contains every vertex of G of degree at least two. We conclude that the base step of the second-induction holds.

Assume that the result (for the second-induction) holds for $2 \leq l^{\prime}<l$. Now let $G=G_{l}$. Clearly G is obtained from G_{l-1} by applying one of the Operations \mathcal{O}_{1} or \mathcal{O}_{2}.

Assume that G is obtained from G_{l-1} by applying Operation \mathcal{O}_{2}. Let x be a leaf of G_{l-1} and G be obtained from G_{l-1} by adding two leaves x_{1} and x_{2} to x. By Observation 1, $x \in S$. Thus S is a 1 FD -set for G_{l-1}. By the second-inductive hypothesis S contains all vertices of G_{l-1} of degree at least two. Consequently, S contains every vertex of G_{k} of degree at least two.

Next assume that G is obtained from G_{l-1} by applying Operation \mathcal{O}_{1}. Let $x_{1} x_{2}$ be a path and x_{1} is joined to $y \in V\left(G_{l-1}\right)$, where $\operatorname{deg}_{G_{l-1}}(y) \geq 2$ and y is not a special vertex of G_{l-1}. Observe that $\left\{x_{1}, x_{2}\right\} \cap S \neq \emptyset$. If $x_{1} \notin S$, then $x_{2} \in S$ and $y \notin S$. Then $S \backslash\left\{x_{2}\right\}$ is a 1FD-set for G_{l-1} that does not contain y, a contradiction by the second-inductive hypothesis. Thus assume that $x_{1} \in S$. Suppose that $y \notin S$. Clearly $N_{G_{l-1}}(y) \cap S=\emptyset$.

Assume that there exists a component G_{1}^{\prime} of $G_{l-1}-y$ such that $\mid V\left(G_{1}^{\prime}\right) \cap$ $N_{G_{l-1}}(y) \mid=1$. Then clearly $S^{\prime}=\left(S \cap V\left(G_{l-1}\right)\right) \cup V\left(G_{1}^{\prime}\right)$ is a 1 FD-set for G_{l-1}, and by the second-inductive hypothesis S^{\prime} contains every vertex of G_{l-1} of degree at least two. Thus $y \in S^{\prime}$, and so $y \in S$, a contradiction. Next assume that every component of $G_{l-1}-y$ has at least two vertices in $N_{G_{l-1}}(y)$. Since y is a non-special vertex of G_{l-1}, y belongs to at least two cycles of G_{l-1}. By Observation $9(4), y$ belongs to exactly two cycles of G_{l-1}. Thus $\operatorname{deg}_{G_{l-1}}(y)=4$. By Observation 11, $G_{l-1}-y$ has exactly two components D_{1} and D_{2}. Let G^{*} be a graph obtained from $D_{1} \cup\{v\}$ or $D_{2} \cup\{v\}$, by adding a leaf v^{*} to y. Then there exists $k^{\prime} \leq k$ such that $G^{*} \in \mathcal{G}_{k^{\prime}}$. Evidently, $S^{*}=\left(S \cap V\left(G^{*}\right)\right) \cup\left\{v^{*}\right\}$ is a 1 FD -set for G^{*}, and so by the first-inductive hypothesis, S^{*} contains every vertex of G^{*} of degree at least two (since $G^{*} \in \mathcal{G}_{k^{\prime}}$). Thus $y \in S^{*}$, and so $y \in S$, a contradiction. We conclude that $y \in S$. Observe that $S \cap V\left(G_{l-1}\right)$ is a 1FD-set for G_{l-1}, and so by the second-inductive hypothesis, $S \cap V\left(G_{l-1}\right)$ contains every vertex of G_{l-1} of degree at least two. Consequently S contains every vertex of G
of degree at least two.
As a consequence of Observation 9(3) and Lemma 12, we obtain the following.
Corollary 13. If $G \in \mathcal{G}_{k}$ is a cactus graph of order n, then $V(G) \backslash L(G)$ is the unique $f d_{1}(G)$-set.

5. Proof of Theorem 6

We first establish the upper bound by proving the following.
Theorem 14. If G is a cactus graph of order n with $k \geq 1$ cycles, then $f d_{1}(G) \leq$ $(n(G)-1) / 2+k$.

Proof. The result follows by Theorem 5 if $k=1$. Thus assume that $k \geq 2$. Suppose to the contrary that $f d_{1}(G)>(n(G)-1) / 2+k$. Assume that G has the minimum order, and among all such graphs, we may assume that the size of G is minimum. Let $C_{1}, C_{2}, \ldots, C_{k}$ be the k cycles of G. Let C_{i} be a leaf-cycle of G, where $i \in\{1,2, \ldots, k\}$. Let $C_{i}=u_{0} u_{1} \cdots u_{l} u_{0}$, where u_{0} is a special cut-vertex of G. Assume that $\operatorname{deg}_{G}\left(u_{j}\right)=2$ for each $j=1,2, \ldots, l$. Let $G^{\prime}=G-u_{1} u_{2}$. Then by the choice of $G, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1=(n(G)-1) / 2+k-1$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. Now if $\left|S^{\prime} \cap\left\{u_{1}, u_{2}\right\}\right| \in\{0,2\}$, then S^{\prime} is a 1 FD-set for G, a contradiction. Thus $\left|S^{\prime} \cap\left\{u_{1}, u_{2}\right\}\right|=1$. Assume that $u_{1} \in S^{\prime}$. Then $u_{3} \in S^{\prime}$, and so $\left\{u_{2}\right\} \cup S^{\prime}$ is a 1 FD-set in G of cardinality at most $(n(G)-1) / 2+k$, a contradiction. If $u_{2} \in S^{\prime}$, then $u_{0} \in S^{\prime}$, and $\left\{u_{1}\right\} \cup S^{\prime}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k$, a contradiction. We deduce that $\operatorname{deg}_{G}\left(u_{i}\right) \geq$ 3 for some $i \in\{1,2, \ldots, l\}$. Let v_{d} be a leaf of G such that $d\left(v_{d}, C_{i}-u_{0}\right)$ is as maximum as possible, and the shortest path from v_{d} to C_{i} does not contain u_{0}. Let $v_{0} v_{1} \cdots v_{d}$ be the shortest path from v_{d} to C_{i} with $v_{0} \in C_{i}$. Assume that $d \geq 2$. Assume that $\operatorname{deg}_{G}\left(v_{d-1}\right)=2$. Let $G^{\prime}=G-\left\{v_{d}, v_{d-1}\right\}$. By the choice of $G, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{d-2} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1FD-set in G, and if $v_{d-2} \notin S^{\prime}$, then $S^{\prime} \cup\left\{v_{d}\right\}$ is a 1FDset in G. Thus $f d_{1}(G) \leq(n-1) / 2+k$, a contradiction. Thus assume that $\operatorname{deg}_{G}\left(v_{d-1}\right) \geq 3$. Clearly any vertex of $N_{G}\left(v_{d-1}\right) \backslash\left\{v_{d-2}\right\}$ is a leaf. Let G^{\prime} be obtained from G by removing all leaves adjacent to v_{d-1}. By the choice of G, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k$, since G has the minimum order among all graphs H with 1-fair domination number more than $(n(H)-1) / 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{d-1} \in S^{\prime}$, then S^{\prime} is a 1 FD -set in G, a contradiction. Thus assume that $v_{d-1} \notin S^{\prime}$. Then $v_{d-2} \in S^{\prime}$. Then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1FD-set in G of cardinality at most $\left(n\left(G^{\prime}\right)-1\right) / 2+k+1 \leq(n(G)-1) / 2+k$, a contradiction.

We thus assume that $d=1$. Assume that u_{i} is a vertex of C_{i} such that $\operatorname{deg}_{G}\left(u_{i}\right)=2$. Assume that $\operatorname{deg}_{G}\left(u_{i+1}\right)=2$. Let $G^{\prime}=G-u_{i} u_{i+1}$. By the
choice of $G, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1=(n(G)-1) / 2+k-1$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $\left|S^{\prime} \cap\left\{u_{i}, u_{i+1}\right\}\right| \in\{0,2\}$, then S^{\prime} is a 1FD-set for G, a contradiction. Then $\left|S^{\prime} \cap\left\{u_{i}, u_{i+1}\right\}\right|=1$. Assume that $u_{i} \in S^{\prime}$. Then $u_{i+2} \in S^{\prime}$ and so $\left\{u_{i+1}\right\} \cup S^{\prime}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k$, a contradiction. Next assume that $u_{i+1} \in S^{\prime}$. Then $u_{i-1} \in S^{\prime}$ and so $\left\{u_{i}\right\} \cup S^{\prime}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k$, a contradiction. Thus $\operatorname{deg}_{G}\left(u_{i+1}\right) \geq 3$, and similarly $\operatorname{deg}_{G}\left(u_{i-1}\right) \geq 3$. Since C_{i} is a leaf-cycle, it has precisely one special cut-vertex. Thus we may assume, without loss of generality, that u_{i+1} is a support vertex of G. Let $G^{\prime}=G-u_{i-1} u_{i}$. By the choice of $G, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1 / 2+k-1\right.$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. By Observation 1 , $u_{i+1} \in S^{\prime}$. If $u_{i-1} \notin S^{\prime}$, then S^{\prime} is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1$, a contradiction. Thus $u_{i-1} \in S^{\prime}$. Then $S^{\prime} \cup\left\{u_{i}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k$, a contradiction.

We conclude that $\operatorname{deg}_{G}\left(u_{i}\right) \geq 3$ for $i=0,1, \ldots, l$. Furthermore, u_{i} is a support vertex for $i=1,2, \ldots, l$. Assume that u_{i} is a strong support vertex for some $i \in\{1,2, \ldots, l\}$. Let G^{\prime} be obtained from G by removal of all vertices in $\bigcup_{i=1}^{l}\left(N\left[u_{i}\right]\right) \backslash\left\{u_{0}, u_{1}, u_{l}\right\}$. Clearly u_{0} is a strong support vertex of G^{\prime}. By the choice of $G, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1 \leq(n(G)-(2 l+1)+2-1) / 2+k-1$, since u_{i} is a strong support vertex of G. By Observation $1, u_{0} \in S^{\prime}$, and so $S^{\prime} \cup\left\{u_{1}, \ldots, u_{l}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-(2 l+1)+2-$ 1) $/ 2+k-1+l=n(G) / 2+k-1$, a contradiction. Thus u_{i} is a weak support vertex, for each $i=1,2, \ldots, l$. Let G^{\prime} be obtained from G by removal of any vertex in $\bigcup_{i=1}^{l}\left(N\left[u_{i}\right]\right) \backslash\left\{u_{0}\right\}$. By the choice of $G, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $u_{0} \notin S^{\prime}$, then $S^{\prime} \cup\left\{w_{1}, \ldots, w_{l}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1$, where w_{i} is the leaf adjacent to u_{i}, for $i=1,2, \ldots, l$. This is a contradiction. Thus $u_{0} \in S^{\prime}$. Then $S^{\prime} \cup\left\{u_{1}, \ldots, u_{l}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1$, a contradiction.

If G is a cactus graph of order n with $k \geq 1$ cycles and $f d_{1}(G)=(n-1) / 2+k$, then clearly $n \geq 3$ is odd, and since $f d_{1}\left(C_{3}\right) \neq 2$, we have $n \geq 5$. It is obvious that $f d_{1}\left(C_{5}\right)=3=(5-1) / 2+1$.

Theorem 15. If $G \neq C_{5}$ is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f d_{1}(G)=(n-1) / 2+k$ if and only if $G \in \mathcal{G}_{k}$.

Proof. We prove by an induction on k to show that any cactus graph G of order $n \geq 5$ with $k \geq 1$ cycles and $f d_{1}(G)=(n-1) / 2+k$ belongs to \mathcal{G}_{k}. The base step of the induction follows by Theorem 5 . Assume the result holds for all cactus graphs G^{\prime} with $k^{\prime}<k$ cycles. Now let G be a cactus graph of order n with $k \geq 2$ cycles and $f d_{1}(G)=(n-1) / 2+k$. Clearly n is odd. Suppose to the contrary that $G \notin \mathcal{G}_{k}$. Assume that G has the minimum order, and among all such graphs, assume that the size of G is minimum. By Observation $8, G$ has at least two leaf-cycles. Let $C_{1}=c_{0} c_{1} \cdots c_{r} c_{0}$ and $C_{2}=c_{0}^{\prime} c_{1}^{\prime} \cdots c_{r^{\prime}}^{\prime} c_{0}^{\prime}$, be two leaf-cycles of
G, where c_{0} and c_{0}^{\prime} are two special cut-vertices of G. Let G_{1}^{\prime} be the component of $G-c_{0} c_{1}-c_{0} c_{r}$ containing c_{1}, and $G_{1}^{\prime \prime}$ be the component of $G-c_{0}^{\prime} c_{1}^{\prime}-c_{0}^{\prime} c_{r^{\prime}}^{\prime}$ containing c_{1}^{\prime}.
Claim 1. $V\left(G_{1}^{\prime}\right) \neq\left\{c_{1}, \ldots, c_{r}\right\}$, and $V\left(G_{1}^{\prime \prime}\right) \neq\left\{c_{1}^{\prime}, \ldots, c_{r^{\prime}}^{\prime}\right\}$.
Proof. Suppose that $V\left(G_{1}^{\prime}\right)=\left\{c_{1}, \ldots, c_{r}\right\}$. Then $\operatorname{deg}_{G}\left(c_{i}\right)=2$ for $i=1,2, \ldots, r$. Let $G^{*}=G-c_{1} c_{2}$, and S^{*} be a $f d_{1}\left(G^{*}\right)$-set. By Theorem $14, f d_{1}\left(G^{*}\right) \leq\left(n\left(G^{*}\right)-\right.$ $1) / 2+k-1=(n(G)-1) / 2+k-1$. Assume that $r=2$. Then c_{0} is a strong support vertex of G^{*}, and by Observation $1, c_{0} \in S^{*}$. Thus $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right|=0$, and so S^{*} is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1<(n(G)-1) / 2+k$, a contradiction. Assume that $r=3$. If $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right| \in\{0,2\}$, then S^{*} is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1<(n(G)-1) / 2+k$, a contradiction. Thus $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right|=1$. If $c_{1} \in S^{*}$, then $c_{3} \in S^{*}$, and so $c_{0} \in S^{*}$. Then $S^{*} \backslash\left\{c_{1}\right\}$ is a 1 FD -set in G^{*}, a contradiction. Thus $c_{1} \notin S^{*}$, and so $c_{2} \in S^{*}$. Since c_{1} is dominated by S^{*}, we obtain that $c_{0} \in S^{*}$, and so $c_{3} \in S^{*}$. Then $S^{*} \backslash\left\{c_{2}\right\}$ is a 1FD-set in G^{*}, a contradiction. Assume that $r=4$. Suppose that $f d_{1}\left(G^{*}\right)=\left(n\left(G^{*}\right)-1\right) / 2+k-1$. Let $G_{1}^{*}=G^{*}-\left\{c_{2}, c_{3}, c_{4}\right\}$. By Theorem 14, $f d_{1}\left(G_{1}^{*}\right) \leq\left(n\left(G_{1}^{*}\right)-1\right) / 2+k-1=n / 2+k-3$, and thus $f d_{1}\left(G_{1}^{*}\right) \leq(n-1) / 2+k-3$, since n is odd. Let S_{1}^{*} be a $f d_{1}\left(G_{1}^{*}\right)$-set. If $c_{0} \in S_{1}^{*}$, then $S_{1}^{*} \cup\left\{c_{2}\right\}$ is a 1 FD-set for G^{*} and if $c_{0} \notin S_{1}^{*}$, then $S_{1}^{*} \cup\left\{c_{3}\right\}$ is a 1 FD-set for G^{*}. Thus $f d_{1}\left(G^{*}\right) \leq\left|S_{2}^{*}\right|+1 \leq$ $(n-1) / 2+k-2$, a contradiction. Thus $f d_{1}\left(G^{*}\right)<\left(n\left(G^{*}\right)-1\right) / 2+k-1=$ $(n(G)-1) / 2+k-1$. If $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right| \in\{0,2\}$, then S^{*} is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1<(n(G)-1) / 2+k$, a contradiction. Thus $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right|=1$. Without loss of generality, assume that $c_{1} \in S^{*}$. Then $S^{*} \cup\left\{c_{2}\right\}$ is a 1FD-set in G, and so $f d_{1}(G) \leq\left|S^{*}\right|+1<(n(G)-1) / 2+k$, a contradiction. It remains to assume that $r \geq 5$. Suppose that $f d_{1}\left(G^{*}\right)=\left(n\left(G^{*}\right)-1\right) / 2+k-1$. Let $G_{2}^{*}=G^{*}-\left\{c_{2}, c_{3}, c_{4}\right\}$. By Theorem 14, $f d_{1}\left(G_{2}^{*}\right) \leq\left(n\left(G_{2}^{*}\right)-1\right) / 2+k-1=$ $n / 2+k-3$, and thus $f d_{1}\left(G_{2}^{*}\right) \leq(n-1) / 2+k-3$, since n is odd. Let S_{2}^{*} be a $f d_{1}\left(G_{2}^{*}\right)$-set. If $c_{5} \in S_{2}^{*}$, then $S_{2}^{*} \cup\left\{c_{2}\right\}$ is a 1 FD -set for G^{*} and if $c_{5} \notin S_{2}^{*}$, then $S_{2}^{*} \cup\left\{c_{3}\right\}$ is a 1 FD-set for G^{*}. Thus $f d_{1}\left(G^{*}\right) \leq\left|S_{2}^{*}\right|+1 \leq(n-1) / 2+k-2$, a contradiction. Thus $f d_{1}\left(G^{*}\right)<\left(n\left(G^{*}\right)-1\right) / 2+k-1=(n(G)-1) / 2+k-1$. If $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right| \in\{0,2\}$, then S^{*} is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1<(n(G)-1) / 2+k$, a contradiction. Thus $\left|S^{*} \cap\left\{c_{1}, c_{2}\right\}\right|=1$. Without loss of generality, assume that $c_{1} \in S^{*}$. Then $S^{*} \cup\left\{c_{2}\right\}$ is a 1 FD-set in G, and so $f d_{1}(G) \leq\left|S^{*}\right|+1<(n(G)-1) / 2+k$, a contradiction. We conclude that $V\left(G_{1}^{\prime}\right) \neq\left\{c_{1}, \ldots, c_{r}\right\}$. Similarly $V\left(G_{1}^{\prime \prime}\right) \neq\left\{c_{1}^{\prime}, \ldots, c_{r^{\prime}}^{\prime}\right\}$.

Let $v_{d} \in V\left(G_{1}^{\prime}\right) \backslash\left\{c_{1}, \ldots, c_{r}\right\}$ be a leaf of G_{1}^{\prime} at maximum distance from $\left\{c_{1}, \ldots, c_{r}\right\}$, and assume that $v_{0} v_{1} \cdots v_{d}$ is the shortest path from v_{d} to $\left\{c_{1}, \ldots, c_{r}\right\}$, where $v_{0} \in\left\{c_{1}, \ldots, c_{r}\right\}$. Likewise, let $v_{d^{\prime}}^{\prime} \in V\left(G_{1}^{\prime \prime}\right) \backslash\left\{c_{1}^{\prime}, \ldots, c_{r^{\prime}}^{\prime}\right\}$ be a leaf of $G_{1}^{\prime \prime}$ at maximum distance from $\left\{c_{1}^{\prime}, \ldots, c_{r^{\prime}}^{\prime}\right\}$, and assume that $v_{0}^{\prime} v_{1}^{\prime} \cdots v_{d^{\prime}}^{\prime}$ is the shortest
path from $v_{d^{\prime}}^{\prime}$ to $\left\{c_{1}^{\prime}, \ldots, c_{r^{\prime}}^{\prime}\right\}$, where $v_{0}^{\prime} \in\left\{c_{1}^{\prime}, \ldots, c_{r^{\prime}}^{\prime}\right\}$. Without loss of generality, assume that $d^{\prime} \leq d$.

Claim 2. Every support vertex of G is adjacent to at most two leaves.
Proof. Suppose that there is a support vertex $v \in S(G)$ such that v is adjacent to at least three leaves v_{1}, v_{2} and v_{3}. Let $G^{\prime}=G-\left\{v_{1}\right\}$, and let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$ set. By Observation $1, v \in S^{\prime}$, and thus we may assume that $S^{\prime} \cap\left\{v_{2}, v_{3}\right\}=\emptyset$. By Theorem 14, $\left|S^{\prime}\right| \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k=(n-2) / 2+k$. Clearly S^{\prime} is a 1 FD-set for G, a contradiction.

Claim 3. If $d \geq 2$, then $G \in \mathcal{G}_{k}$.
Proof. Let $d \geq 2$. By Claim 2, $2 \leq \operatorname{deg}_{G}\left(v_{d-1}\right) \leq 3$. Assume first that $\operatorname{deg}\left(v_{d-1}\right)=3$. Let $x \neq v_{d}$ be a leaf adjacent to v_{d-1}. Let $G^{\prime}=G-\left\{x, v_{d}\right\}$. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Suppose that $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-\right.$ 1) $/ 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{d-1} \in S^{\prime}$, then S^{\prime} is a 1 FD -set for G and if $v_{d-1} \notin S^{\prime}$, then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1 FD -set for G. Thus $f d_{1}(G) \leq f d_{1}\left(G^{\prime}\right)+1<$ $(n-1) / 2+k$, a contradiction. Hence, $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. Therefore G is obtained from G^{\prime} by Operation \mathcal{O}_{2}. Consequently, $G \in \mathcal{G}_{k}$. Next assume that $\operatorname{deg}_{G}\left(v_{d-1}\right)=2$. We consider the following cases.

Case 1. $d \geq 3$. Suppose that $\operatorname{deg}_{G}\left(v_{d-2}\right)=2$. Let $G^{\prime}=G-\left\{v_{d-2}, v_{d-1}, v_{d}\right\}$. By Theorem $14, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k=n / 2+k-2$, and thus $f d_{1}\left(G^{\prime}\right) \leq$ $(n-1) / 2+k-2$, since n is odd. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{d-3} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{d}\right\}$ is a 1 FD -set for G and if $v_{d-3} \notin S^{\prime}$, then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1 FD -set for G. Thus $f d_{1}(G) \leq\left|S^{\prime}\right|+1 \leq(n-1) / 2+k-1$, a contradiction. Thus $\operatorname{deg}_{G}\left(v_{d-2}\right) \geq 3$. Let $G^{\prime}=G-\left\{v_{d-1}, v_{d}\right\}$. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Suppose that $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{d-2} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{d-1}\right\}$ is a 1 FD -set for G and if $v_{d-2} \notin S^{\prime}$, then $S^{\prime} \cup\left\{v_{d}\right\}$ is a 1 FD -set for G. Thus $f d_{1}(G) \leq\left|S^{\prime}\right|+1 \leq f d_{1}\left(G^{\prime}\right)+1<(n-1) / 2+k$, a contradiction. We deduce that $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. Since $d \geq 3$, v_{d-2} is not a special vertex of G^{\prime}. Thus G is obtained from G^{\prime} by Operation \mathcal{O}_{1}, and so $G \in \mathcal{G}_{k}$.

Case 2. $d=2$. As noted, $\operatorname{deg}\left(v_{1}\right)=2$. Clearly $\operatorname{deg}\left(v_{0}\right) \geq 3$. Assume first that $\operatorname{deg}\left(v_{0}\right) \geq 4$. Let $G^{\prime}=G-\left\{v_{2}, v_{1}\right\}$. By Theorem $14, f d_{1}\left(G^{\prime}\right) \leq$ $\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Suppose that $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{0} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{1}\right\}$ is a 1 FD -set for G, and if $v_{0} \notin S^{\prime}$, then $S^{\prime} \cup\left\{v_{2}\right\}$ is a 1 FD-set for G. Thus $f d_{1}(G) \leq\left|S^{\prime}\right|+1<(n-1) / 2+k$, a contradiction. Thus, $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. Since $\operatorname{deg}_{G^{\prime}}\left(v_{0}\right) \geq 3, v_{0}$ is not a special vertex of G^{\prime}. Hence G is obtained from G^{\prime} by Operation \mathcal{O}_{1}. Consequently, $G \in \mathcal{G}_{k}$. Thus assume that $\operatorname{deg}\left(v_{0}\right)=3$. Let $G^{\prime}=G-\left\{v_{2}, v_{1}\right\}$. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Suppose
that $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-1\right) / 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $v_{0} \in S^{\prime}$, then $S^{\prime} \cup\left\{v_{1}\right\}$ is a 1 FD -set for G, and if $v_{0} \notin S^{\prime}$, then $S^{\prime} \cup\left\{v_{2}\right\}$ is a 1FD-set for G. Thus $f d_{1}(G) \leq\left|S^{\prime}\right|+1 \leq f d_{1}\left(G^{\prime}\right)+1<(n-1) / 2+k$, a contradiction. Thus we obtain that $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k$. By the choice of $G, G^{\prime} \in \mathcal{G}_{k}$. Then v_{0} is a special vertex of G^{\prime}. From Observation $9(1)$, we obtain that $\operatorname{deg}_{G}\left(c_{i}\right) \geq 3$ for each $i \in\{1, \ldots, r\}$.

Suppose that $N_{G}\left(c_{j}\right) \backslash V\left(C_{1}\right)$ contains no strong support vertex for each $j \in\{1, \ldots, r\}$. Observation $9(1)$ implies that c_{j} is not a strong support vertex of G, since $G^{\prime} \in \mathcal{G}_{k}$. Assume that there is a vertex $c_{j} \in\left\{c_{1}, \ldots, c_{r}\right\}$ such that c_{j} has a neighbor a which is a support vertex. By assumption, a is a weak support vertex. If a^{\prime} is the leaf adjacent to a, then a^{\prime} plays the role of v_{d}. Since $\operatorname{deg}\left(v_{0}\right)=3$, we may assume that $\operatorname{deg}\left(c_{j}\right)=3$. Thus by Observation $9(1)$, we may assume that $\operatorname{deg}_{G}\left(c_{i}\right)=3$ for each $c_{i} \in\left\{c_{1}, \ldots, c_{r}\right\}$. Let $F=\bigcup_{i=1}^{r}\left(N\left[c_{i}\right]\right) \backslash\left\{c_{0}, \ldots, c_{r}\right\}$. Clearly $|F|=r$, since $\operatorname{deg}_{G}\left(c_{i}\right)=3$ for each $c_{i} \in\left\{c_{1}, \ldots, c_{r}\right\}$. Let $F=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$, $F^{\prime}=\left\{u_{i} \in F \mid \operatorname{deg}_{G}\left(u_{i}\right)=1\right\}$, and $F^{\prime \prime}=F \backslash F^{\prime}$. Then every vertex of $F^{\prime \prime}$ is a weak support vertex. Since $v_{1} \in F^{\prime \prime},\left|F^{\prime \prime}\right| \geq 1$. Now let $G^{*}=G-c_{0} c_{1}-c_{0} c_{r}$, and G_{1}^{*} and G_{2}^{*} be the components of G^{*}, where $c_{1} \in V\left(G_{1}^{*}\right)$. By Theorem 14, $f d_{1}\left(G_{2}^{*}\right) \leq\left(n\left(G_{2}^{*}\right)-1\right) / 2+k-1$. Clearly $n\left(G_{2}^{*}\right)=n(G)-2 r-\left|F^{\prime \prime}\right|$. Let S_{2}^{*} be a $f d_{1}\left(G_{2}^{*}\right)$-set. If $c_{0} \notin S_{2}^{*}$, then $S_{2}^{*} \cup F$ is a 1FD-set for G, and so $f d_{1}(G) \leq$ $\left(n(G)-2 r-\left|F^{\prime \prime}\right|-1\right) / 2+k-1+r<(n-1) / 2+k$, a contradiction. Thus $c_{0} \in S_{2}^{*}$. If $\left|F^{\prime \prime}\right|=1$, then $S_{2}^{*} \cup C_{1} \cup\left\{v_{1}\right\}$ is a 1FD-set for G and thus $f d_{1}(G) \leq f d_{1}\left(G_{2}^{*}\right)+r+$ $1 \leq(n-2) / 2+k$, a contradiction. Thus assume that $\left|F^{\prime \prime}\right| \geq 2$. Let $\left\{u_{t}, u_{t^{\prime}}\right\} \subseteq F^{\prime \prime}$ (assume without loss of generality that $t<t^{\prime}$) such that $\operatorname{deg}_{G}\left(u_{i}\right)=1$ for $1 \leq i<t$ and $t^{\prime}<i \leq r$. Let u_{t}^{\prime} and $u_{t^{\prime}}^{\prime}$ be the leaves of u_{t} and $u_{t^{\prime}}$, respectively. Clearly $S_{2}^{*} \cup\left\{c_{1}, \ldots, c_{t-1}\right\} \cup\left\{c_{t^{\prime}+1}, \ldots, c_{r}\right\} \cup\left\{u_{t+1}, \ldots, u_{t^{\prime}-1}\right\} \cup\left\{u_{t}^{\prime}, u_{t^{\prime}}^{\prime}\right\}$ is a 1FD-set for G and thus $f d_{1}(G) \leq f d_{1}\left(G_{2}^{*}\right)+r<(n-1) / 2+k-1$, a contradiction.

Thus we may assume that $N\left(c_{j}\right) \backslash C_{1}$ contains at least one strong support vertex for some $c_{j} \in\left\{c_{1}, \ldots, c_{r}\right\}$. Let u_{j} be a strong support vertex in $N\left(c_{j}\right) \backslash C_{1}$. By Claim 2, there are precisely two leaves adjacent to u_{j}. Let u^{\prime} and $u^{\prime \prime}$ be the leaves adjacent to u_{j}, and $G^{*}=G-\left\{u^{\prime}, u^{\prime \prime}\right\}$. By Theorem 14, $f d_{1}\left(G^{*}\right) \leq$ $\left(n\left(G^{*}\right)-1\right) / 2+k$. Assume that $f d_{1}\left(G^{*}\right)<\left(n\left(G^{*}\right)-1\right) / 2+k$. Let S^{\prime} be a $f d_{1}\left(G^{*}\right)$-set. If $u_{j} \in S^{\prime}$, then S^{\prime} is a 1FD-set for G, and if $u_{j} \notin S^{\prime}$, then $S^{\prime} \cup\left\{u_{j}^{\prime}\right\}$ is a 1 FD-set for G. Thus $f d_{1}(G) \leq f d_{1}\left(G^{*}\right)+1<(n-1) / 2+k$, a contradiction. We deduce that $f d_{1}\left(G^{*}\right)=\left(n\left(G^{*}\right)-1\right) / 2+k$. By the choice of $G, G^{*} \in \mathcal{G}_{k}$. Thus G is obtained from G^{*} by Operation \mathcal{O}_{2}. Consequently, $G \in \mathcal{G}_{k}$.

By Claim 3, we assume that $d=d^{\prime}=1$.
Claim 4. C_{i} has precisely one special vertex, for $i=1,2$.
Proof. We first show that C_{i} has at least one special vertex, for $i=1,2$. Suppose that C_{1} has no special vertex. Thus $\operatorname{deg}_{G}\left(c_{i}\right) \geq 3$ for $i=1, \ldots, r$. Clearly, c_{i} is a
support vertex for $i=1,2, \ldots, r$. Suppose that c_{j} is a strong support vertex for some $j \in\{1,2, \ldots, r\}$. Let G^{\prime} be obtained from G by removal of all vertices in $\bigcup_{i=1}^{r}\left(N\left[c_{i}\right]\right) \backslash\left\{c_{0}, c_{1}, c_{r}\right\}$. Clearly, c_{0} is a strong support vertex of G^{\prime}. By Theorem $14, f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. Since c_{j} is a strong support vertex of G, we have $n\left(G^{\prime}\right) \leq n(G)-(2 r+1)+2$. Thus, $f d_{1}\left(G^{\prime}\right) \leq(n(G)-(2 r+1)+2-1) / 2+k-1$. By Observation $1, c_{0} \in S^{\prime}$, and so $S^{\prime} \cup\left\{c_{1}, \ldots, c_{r}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-(2 r+1)+2-1) / 2+k-1+r=n(G) / 2+k-1<(n(G)-1) / 2+k$, a contradiction. Thus c_{i} is a weak support vertex for each $i=1,2, \ldots, r$. Let G^{\prime} be obtained from G by removal of any vertex in $\bigcup_{i=1}^{r}\left(N\left[c_{i}\right]\right) \backslash\left\{c_{0}\right\}$. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. Let S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. If $c_{0} \notin S^{\prime}$, then $S^{\prime} \cup\left\{u_{1}, \ldots, u_{r}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1<$ $(n(G)-1) / 2+k$, where u_{i} is the leaf adjacent to c_{i} for $i=1,2, \ldots, r$. This is a contradiction. Thus $c_{0} \in S^{\prime}$. Then $S^{\prime} \cup\left\{c_{1}, \ldots, c_{r}\right\}$ is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1<(n(G)-1) / 2+k$, a contradiction. Thus C_{1} has at least one special vertex. Similarly, C_{2} has at least one special vertex. Let c_{t} be a special vertex of C_{1} and c_{h}^{\prime} be a special vertex of C_{2}.

We show that c_{t} is the unique special vertex of C_{1}. Suppose to the contrary that C_{1} has at least two special vertices. Assume that $\operatorname{deg}_{G}\left(c_{h+1}^{\prime}\right)=2$. Let $G^{\prime}=G-c_{h}^{\prime} c_{h+1}^{\prime}$, and S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-\right.$ $1) / 2+k-1$. If $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$, then by the inductive hypothesis, $G^{\prime} \in \mathcal{G}_{k-1}$. This is a contradiction by Observation $9(1)$, since C_{1} has at least two special vertices. Thus $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. If $\left|S^{\prime} \cap\left\{c_{h}^{\prime}, c_{h+1}^{\prime}\right\}\right| \in$ $\{0,2\}$, then S^{\prime} is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-1$, a contradiction. Thus $\left|S^{\prime} \cap\left\{c_{h}^{\prime}, c_{h+1}^{\prime}\right\}\right|=1$. Without loss of generality, assume that $c_{h}^{\prime} \in S^{\prime}$. Then $\left\{c_{h+1}^{\prime}\right\} \cup S^{\prime}$ is a 1 FD-set in G, and so $f d_{1}(G)<(n(G)-1) / 2+k$, a contradiction. We thus assume that $\operatorname{deg}_{G}\left(c_{h+1}^{\prime}\right) \geq 3$. Likewise, we may assume that $\operatorname{deg}_{G}\left(c_{h-1}^{\prime}\right) \geq 3$. Since C_{2} is a leaf-cycle, c_{0}^{\prime} is its unique special cut-vertex. Thus we may assume, without loss of generality, that $c_{h+1}^{\prime} \neq c_{0}^{\prime}$. Clearly, c_{h+1}^{\prime} is a support vertex of G. Let $G^{\prime}=G-c_{h}^{\prime} c_{h-1}^{\prime}$, and S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. Clearly c_{h+1}^{\prime} is a strong support vertex of G^{\prime}. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. If $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$, then by the inductive hypothesis $G^{\prime} \in \mathcal{G}_{k-1}$. This is a contradiction by Observation $9(1)$, since C_{1} has at least two special vertices. Thus $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. By Observation $1, c_{h+1}^{\prime} \in S^{\prime}$. If $c_{h-1}^{\prime} \notin S^{\prime}$, then S^{\prime} is a 1 FD -set in G of cardinality at most $(n(G)-1) / 2+k-1$, a contradiction. Thus $c_{h-1}^{\prime} \in S^{\prime}$. Now, $S^{\prime} \cup\left\{c_{h}^{\prime}\right\}$ is a 1FD-set in G, and thus $f d_{1}(G) \leq\left|S^{\prime}\right|+1<(n(G)-1) / 2+k$, a contradiction. Thus c_{t} is the unique special vertex of C_{1}. Similarly, c_{h}^{\prime} is the unique special vertex of C_{2}.

Let c_{t} be the unique special vertex of C_{1}, and c_{h}^{\prime} be the unique special vertex of C_{2}, and note that Claim 4 guarantees the existence of c_{t} and c_{h}^{\prime}.
Claim 5. No vertex of C_{i} is a strong support vertex, for $i=1,2$.

Proof. Suppose that $c_{j} \in C_{1}$ is a strong support vertex. Since C_{2} is a leafcycle, c_{0}^{\prime} is its unique special cut-vertex. Thus, we may assume, without loss of generality, that c_{h+1}^{\prime} is a support vertex of G. Let $G^{\prime}=G-c_{h}^{\prime} c_{h-1}^{\prime}$, and S^{\prime} be a $f d_{1}\left(G^{\prime}\right)$-set. Clearly c_{h+1}^{\prime} is a strong support vertex of G^{\prime}. By Theorem 14, $f d_{1}\left(G^{\prime}\right) \leq\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. If $f d_{1}\left(G^{\prime}\right)=\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$, then by the inductive hypothesis $G^{\prime} \in \mathcal{G}_{k-1}$. This is a contradiction by Observation 9(1), since C_{1} has a strong support vertex. Thus $f d_{1}\left(G^{\prime}\right)<\left(n\left(G^{\prime}\right)-1\right) / 2+k-1$. By Observation 1, $c_{h+1}^{\prime} \in S^{\prime}$. If $c_{h-1}^{\prime} \notin S^{\prime}$, then S^{\prime} is a 1 FD-set in G of cardinality at most $(n(G)-1) / 2+k-1$, a contradiction. Thus $c_{h-1}^{\prime} \in S^{\prime}$. Then $S^{\prime} \cup\left\{c_{h}^{\prime}\right\}$ is a 1 FD-set in G, and so $f d_{1}(G) \leq\left|S^{\prime}\right|+1<(n(G)-1) / 2+k$, a contradiction. We deduce that C_{1} has no strong support vertex. Similarly, C_{2} has no strong support vertex.

We deduce that c_{i} is a weak support vertex for each $i \in\{1,2, \ldots, r\} \backslash\{t\}$, and similarly c_{i}^{\prime} is a weak support vertex for each $i \in\left\{1,2, \ldots, r^{\prime}\right\} \backslash\{h\}$. For each $i \in\{1,2, \ldots, r\} \backslash\{t\}$, let u_{i} be the leaf adjacent to c_{i}.

Let G_{2}^{\prime} be the component of $G-c_{0} c_{1}-c_{0} c_{r}$ that contains c_{0}, and G^{*} be a graph obtained from G_{2}^{\prime} by adding a leaf v^{*} to c_{0}. Clearly $n\left(G^{*}\right)=n(G)-2 r+2$. By Theorem 14, $f d_{1}\left(G^{*}\right) \leq\left(n\left(G^{*}\right)-1\right) / 2+k-1$. Suppose that $f d_{1}\left(G^{*}\right)<$ $\left(n\left(G^{*}\right)-1\right) / 2+k-1$. Let S^{*} be a $f d_{1}\left(G^{*}\right)$-set. If $c_{0} \in S^{*}$, then $S^{*} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is a 1 FD-set in G, so we obtain that $f d_{1}(G)<(n-1) / 2+k$, a contradiction. Thus $c_{0} \notin S^{*}$. Then $v^{*} \in S^{*}$. If $t>1$, then $S^{*} \cup\left\{c_{1}, \ldots, c_{t-1}\right\} \cup\left\{u_{t+1}, \ldots, u_{r}\right\} \backslash\left\{v^{*}\right\}$ is a 1 FD-set in G of cardinality at most $\left(n\left(G^{*}\right)-1\right) / 2+k-1-1+r-1=$ $(n(G)-2 r+2-1) / 2+k-1-1+r-1=(n(G)-1) / 2+k-2$, a contradiction. Thus assume that $t=1$. Then $S^{*} \cup\left\{c_{2}, \ldots, c_{r}\right\} \backslash\left\{v^{*}\right\}$, is a 1FD-set in G of cardinality at most $(n(G)-1) / 2+k-2$, a contradiction. Thus $f d_{1}\left(G^{*}\right)=$ $\left(n\left(G^{*}\right)-1\right) / 2+k-1$. By the inductive hypothesis, $G^{*} \in \mathcal{G}_{k-1}$. Let H^{*} be the graph obtained from $G\left[\left\{c_{0}, c_{1}, \ldots, c_{r}, u_{1}, \ldots, u_{t-1}, u_{t+1}, \ldots, u_{r}\right\}\right]$ by adding a leaf to c_{0}. Clearly $H^{*} \in \mathcal{H}_{1}$. Thus G is obtained from $G^{*} \in \mathcal{G}_{k-1}$ and $H^{*} \in \mathcal{H}_{1}$ by Procedure A. Consequently, $G \in \mathcal{H}_{k} \subseteq \mathcal{G}_{k}$.

For the converse, by Corollary $13, V(G) \backslash L(G)$ is the unique $f d_{1}(G)$-set. Now Observation 9 implies that $f d_{1}(G)=(n-1) / 2+k$.

Acknowledgments

We would like to thank both referees for their careful review and useful comments.

References

[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905-2914.
doi:10.1016/j.disc.2012.05.006
[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175-184.
[3] B. Chaluvaraju and K.A. Vidya, Perfect dominating set graph of a graph G, Adv. Appl. Discrete Math. 2 (2008) 49-57.
[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Comb. Inf. Syst. Sci. 18 (1993) 136-148.
[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99-114.
[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177-196.
[7] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141-150.
[8] M. Hajian and N. Jafari Rad, Trees and unicyclic graphs with large fair domination number, Util. Math. accepted.
[9] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) \#N8.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).

Received 4 May 2017
Revised 5 September 2017
Accepted 19 September 2017

