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1. Introduction

1.1. Error-correcting codes

Error-correcting codes are applied to the accurate transmission and storage of
data. When information is received by a target, or read from a storage medium,
errors may be introduced—for example, due to signal noise, or the medium being
damaged—so to alleviate this problem, redundancy is introduced in order that
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the intended message can still be understood. For an introduction to coding
theory, see [20].

Formally, an error-correcting code (or simply a code) is a collection C of
vectors, called codewords, of given length ℓ over a fixed alphabet. The Hamming

distance between two codewords x = (x1, . . . , xℓ), y = (y1, . . . , yℓ) is the number
of positions where they differ, i.e.,

∣

∣{i : xi 6= yi}
∣

∣. The minimum distance of
C is the least Hamming distance between any two distinct codewords; if the
minimum distance is D, then the correction capability of C is r = ⌊(D − 1)/2⌋.
Suppose that a codeword x is transmitted via a noisy channel which causes errors
to appear, i.e., some symbols are replaced with others. If there are r errors or
fewer, the received word has a unique nearest neighbour in C, which is necessarily
the transmitted word x. For this to be useful in practice, an efficient decoding
algorithm is needed to determine the nearest neighbour.

Traditionally, the most familiar error-correcting codes are linear codes (i.e.,
subspaces of vector spaces over finite fields) [20], where the alphabet size is small
(such as binary codes, which have an alphabet of size 2). Other classes of codes
include permutation codes [7], where each codeword is a permutation of n sym-
bols, so the length and alphabet size are both equal to n; codes with larger
alphabet sizes have been the subject of more recent attention, in part because of
applications such as powerline communications [9] and flash memory devices [24].

1.2. k-resolving sets

We consider finite, simple, connected, undirected graphs. The distance between
two vertices u and v of a graph G is the length of a shortest path between u
and v, and we denote this by dG(u, v). In recent years, much attention has been
paid to the metric dimension of graphs: this is the smallest size of a subset of
vertices (called a resolving set) with the property that the list of distances from
any vertex to those in the set uniquely identifies that vertex, and is denoted by
dim(G).

These concepts were introduced to graph theory in the 1970s by Harary and
Melter [16] and, independently, Slater [23]; however, in the context of arbitrary
metric spaces, the concept dates back at least as far as the 1950s [6]. Various ap-
plications have been suggested for resolving sets and metric dimension of graphs,
including combinatorial optimization [22], pharmaceutical chemistry [8], robot
navigation [17] and sonar [23]. For more information, see [3, 8].

The following definition is a natural generalization of the notion of resolving
sets.

Definition 1. Let G = (V,E) be a graph. An ordered set of vertices (v1, . . . , vℓ)
is a k-resolving set for G if, for any distinct vertices u,w ∈ V , the lists of dis-
tances (dG(u, v1), . . . , dG(u, vℓ)) and (dG(w, v1), . . . , dG(w, vℓ)) differ in at least k
positions.
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In the case k = 1, we have the usual notion of a resolving set for G. For
k > 2 it is not necessarily the case that an arbitrary graph G has a k-resolving
set; for example, a complete graph Kn with n ≥ 3 has a 2-resolving set but not a
3-resolving set. If G has a k-resolving set, we denote the least size of a k-resolving
set by dimk(G), the k-metric dimension of G. A k-resolving set of size dimk(G)
is called a k-metric basis for G. If k is the largest integer for which G has a
k-resolving set, then we say that G is a k-metric dimensional graph.

The notion of k-resolving sets in graphs was introduced in [12] and further
studied in [13, 14, 25]; it was then extended to more general metric spaces in [5].

2. Codes from k-Resolving Sets

The two themes of this paper are tied together by the following definition.

Definition 2. Let G be a graph with n vertices and diameter d, and let S =
{v1, v2, . . . , vℓ} be a k-resolving set for G of size ℓ. Then the set C(G,S) =
{(dG(u, v1), dG(u, v2), . . . , dG(u, vℓ)) : u ∈ V } is called a (G, k)-code.

It follows from the definition that C(G,S) is an error-correcting code of length
ℓ, size n and minimum Hamming distance at least k, over the alphabet {0, . . . , d},
which can correct r = ⌊(k − 1)/2⌋ errors. In order for r to be non-zero, we require
that k ≥ 3 (otherwise the code has no practical purpose).

For C(G,S) to be used for error correction, we need a decoding algorithm.
Let Gj(u) denote the subset of vertices of G at distance j from u. Now suppose
that u ∈ V and u =

(

dG(u, v1), dG(u, v2), . . . , dG(u, vℓ)
)

∈ C(G,S); suppose that
we transmit u and receive the word x = (x1, x2, . . . , xℓ), which is assumed to
have at most r errors.

Lemma 3. Let u, u and x be as above, and suppose that I is an (ℓ − r)-subset
of {1, . . . , ℓ}.
(i) If the received word x contains no errors in the positions indexed by I, then

⋂

i∈I

Gxi
(vi) = {u}.

(ii) If the received word x does contain an error in a position in I, then
⋂

i∈I

Gxi
(vi) = ∅.

Proof. If there are no errors in the positions indexed by I, then both x and u

contain the same entries in those positions, and thus u is the unique vertex at
those distances from the corresponding entries in the k-resolving set. If, however,
there are errors in those positions, then no such vertex can exist, and thus the
intersection is empty.
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The goal, therefore, when decoding a (G, k)-code is to find (as quickly as
possible) an (ℓ− r)-subset of positions for which the intersection

⋂

i∈I Gxi
(vi) is

non-empty. Successively enumerating the (ℓ−r)-subsets of {1, . . . , ℓ} will achieve
this, but will be slow in practice. However, if we assume that there are at most
r′ < r errors (say r′ = 2 or r′ = 3), we can make use of the following idea.

Definition 4. Let ν, κ, τ be integers such that ν ≥ κ ≥ τ ≥ 0. A (ν, ν − κ, τ)-
uncovering is a collection U of (ν − κ)-subsets of {1, . . . , ν} with the property
that any τ -subset of {1, . . . , ν} is disjoint from at least one member of U .

If we take the complements of each (ν−κ)-subset in U , we obtain a (ν, κ, τ)-
covering design, which are much more widespread in the literature, see the survey
by Mills and Mullin [19] for details of these. Uncoverings were introduced by the
first author in [1, 2] where they were applied to decoding permutation codes; the
same concept was also devised under the name antiblocking system by Kroll and
Vincenti [18] for a decoding algorithm for linear codes. A further application to
network reliability was given in [4].

The best known bound on the minimum size of coverings (and thus uncov-
erings also) is known as the Schönheim bound, proved in [21]. It states that for
given ν, κ and τ , the least size of a (ν, κ, τ)-covering design is

L(ν, κ, τ) =

⌈

ν

κ

⌈

ν − 1

κ− 1

⌈

· · ·

⌈

ν − τ + 1

κ− τ + 1

⌉

· · ·

⌉⌉⌉

.

Covering designs meeting this bound are known (or known asymptotically) in
many cases, see [10, 19] for tables of results. The database of best-known covering
designs [15] is useful for finding uncoverings with small parameters.

Example 5. The following is an (8, 5, 2)-covering design:

4 5 6 7 8
1 2 3 7 8
1 4 5 6 8
2 3 4 5 6

.

By taking the complements of each block, we obtain an (8, 3, 2)-uncovering:

1 2 3
4 5 6
2 3 7
1 7 8

.

It can easily be seen that any pair chosen from {1, . . . , 8} is disjoint from at least
one row.
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2.1. A decoding algorithm

Suppose we have a (G, k)-code of length ℓ, and we wish to correct r′ errors. If
U is an (ℓ, ℓ− r, r′)-uncovering, we proceed as follows: for a received word x, we
consider each I ∈ U and obtain

⋂

i∈I Gxi
(vi). By Lemma 3, this intersection will

either be empty or contain the vertex u corresponding to the transmitted word u.
If u contains at most r′ errors, by the definition of uncovering we know that there
exists an I ∈ U disjoint from the error positions; consequently, we are guaranteed
to be able to find the transmitted word. To compute

⋂

i∈I Gxi
(vi), consider the

matrix M whose rows are indexed by V and whose columns are indexed by S,
and where the entries are Muv = dG(u, v) (so the rows of M are precisely the
codewords). For a given I ⊆ S, examine the rows of the submatrix to find a row
which agrees with x in those positions; if such a row exists, by Lemma 3 it must
be unique and correspond to the vertex u.

2.2. Complexity

The matrix M is a submatrix of the distance matrix of G, which can be computed
in O(|V |3) time (for instance, by the Floyd–Warshall algorithm, see [11, §25.2]);
however, this need only be done once, prior to the implementation of the code.
For a given instance of the decoding problem, where the input is a received word
x and the output the transmitted word u, the matrix M must be examined at
most |U| times, and at most |I| · |V | steps are required each time. Thus the overall
complexity of the decoding algorithm is O(|U| · |I| · |V |).

3. Some Covering Designs

Consider a (ν, κ, τ)-covering design where ν is given by a linear function in κ.
Then for fixed τ there exists a threshold value κ0 such that, beyond this threshold,
the Schönheim bound L(ν, κ, τ) remains constant. For example, if ν = 2κ+3 we
see that for all κ ≥ 9, we have L(2κ + 3, κ, 2) = 7, while for all κ ≥ 21, we have
L(2κ+ 3, κ, 3) = 15. Unfortunately, examples of covering designs which actually
achieve this lower bound are rare. However, while it would be desirable to have
optimal coverings, from the perspective of complexity a family of coverings of
constant size (for a given value of τ) is an acceptable solution. So the following
construction (suggested by F. Petrov1) is very useful.

Proposition 6. Let ν = aκ+ b (where a 6= 0 and b are fixed constants), and let

τ be a fixed constant. Then, provided κ is sufficiently large, there is a (ν, κ, τ)-
covering design of size bounded by a constant dependent only on a and τ .

1Personal communication via mathoverflow.net, February 2016.
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Proof. Letm = ⌊κ/τ⌋ and s = ⌈ν/m⌉. Form a partition Π of the set of ν = aκ+b
points into s subsets, including as many as possible of sizem and (unless κ divides
τ) one of smaller size. By the division algorithm, κ = mτ+ρ, where 0 ≤ ρ ≤ τ−1.
Then we have

s =
⌈ ν

m

⌉

=

⌈

aκ+ b

m

⌉

=

⌈

a(mτ + ρ) + b

m

⌉

= aτ +

⌈

aρ+ b

m

⌉

= aτ +

⌈

τ(aρ+ b)

κ− ρ

⌉

.

The quantity τ(aρ+b)
κ−ρ

is zero if and only if both b = 0 and ρ = 0; furthermore,

since a, b and τ are constants and ρ < τ , we have that limk→∞

τ(aρ+b)
κ−ρ

= 0.

Thus, by the definition of a limit, there exists some κ1 such that for all
κ ≥ κ1,

τ(aρ+b)
κ−ρ

≤ 1, and therefore s ∈ {aτ, aτ + 1}.

We form a covering design as follows. For any combination of τ of the sets in
Π, take any κ-subset of points which contains their union. Then this collection
of κ-subsets forms the blocks of an (aκ+ b, κ, τ)-covering design. The number of
blocks is at most

(

aτ+1
τ

)

; this depends only on the constants a and τ .

Example 7. We will use Proposition 6 to construct a (23, 10, 2)-covering design.
The Schönheim bound gives L(23, 10, 2) = 7, while the best-known covering has
size 8 (see [15]); we can obtain a covering of size 10 as follows. First, we partition
the set {1, . . . , 23} into ⌈23/(10/2)⌉ = 5 subsets, four of which have size 10/2 = 5
and the remaining set has size 3:

1 2 3 4 5 | 6 7 8 9 10 | 11 12 13 14 15 | 16 17 18 19 20 | 21 22 23.

Then we form the blocks of our covering by taking the unions of any pair of these
subsets, adding extra points arbitrarily if required. The blocks are the rows of
the array below (where ∗ indicates symbols which can be replaced arbitrarily).

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 11 12 13 14 15
1 2 3 4 5 16 17 18 19 20
1 2 3 4 5 21 22 23 ∗ ∗
6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 16 17 18 19 20
6 7 8 9 10 21 22 23 ∗ ∗
11 12 13 14 15 16 17 18 19 20
11 12 13 14 15 21 22 23 ∗ ∗
16 17 18 19 20 21 22 23 ∗ ∗

.

In fact, for any sufficiently large value of κ, Proposition 6 will yield a (2κ+3, κ, 2)-
covering with

(

5
2

)

= 10 blocks.
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4. Codes from Paths and Cycles

In this section, we show how two straightforward classes of graphs—namely paths
and cycles—may be used to obtain families of (G, k)-codes to which our decoding
algorithm can be applied. While the parameters for codes obtained from paths
and cycles are very similar, the key distinction is that the alphabet size is smaller
for codes from cycles than for codes from paths, on account of the diameter of a
cycle Cn being (approximately) half that of a path Pn.

4.1. Paths

Let Pn denote a path on n vertices, which has a k-resolving set for k ≤ n−1, and
for k ≥ 3 has dimk(Pn) = k+1, see [12] for details. (We remark that dimk(Pn) = k
for k = 1 and k = 2, but this is of no interest from the perspective of error-
correction.) A (Pn, k)-code will therefore have n codewords over an alphabet of
size diam(Pn) = n − 1, of length ℓ = dimk(Pn) = k + 1, and with minimum
distance at least k, so can correct r = ⌊(k − 1)/2⌋ errors.

We note that in the extreme case where k = n − 1, the k-metric dimension
is k + 1 = n, and thus every vertex is required in a k-resolving set. This also
means that the alphabet size, length of the codewords and number of codewords
are all equal, making these codes comparable to Latin squares as permutation
codes (but with minimum distance one less).

Example 8. Consider a path P5 on 5 vertices, and let k = 4. All 5 vertices are
needed in a 4-resolving set, and the code obtained is as follows

Vertex Codeword

1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 0 1 2
4 3 2 1 0 1
5 4 3 2 1 0

.

This code has 5 codewords over the alphabet {0, 1, 2, 3, 4}, and has minimum
distance 4, so can correct ⌊(4− 1)/2⌋ = 1 error.

In order to decode a (Pn, k)-code, we will require an uncovering with param-
eters (k+1, ℓ−⌊(k − 1)/2⌋ , r′), or equivalently a (k+1, ⌊(k − 1)/2⌋ , r′)-covering
design. By letting m = ⌊(k − 1)/2⌋, this is either a (2m+2,m, r′)-covering when
k is odd, or a (2m+ 3,m, r′)-covering when k is even. In either case, for a given
value of r′, we can obtain appropriate covering designs from Proposition 6. For
example, for any path Pn with n ≥ 23 we may use the uncovering arising from
Example 7 to correct two errors.
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4.2. Cycles

For a cycle Cn on n vertices, we must consider the cases where n is odd or even
separately; details of k-resolvability of cycles were given in [5].

4.2.1. Odd cycles

When n is odd, Cn has a k-resolving set for k ≤ n−1 with dimk(Cn) = k+1 for all
k. A (Cn, k)-code will therefore have n codewords of length ℓ = dimk(Cn) = k+1,
and with minimum distance k, so can correct r = ⌊(k − 1)/2⌋ errors; all of these
parameters are identical to those for a path Pn, but this time the codewords are
over an alphabet of size diam(Cn) = (n − 1)/2. As the alphabet size does not
affect the uncovering needed for decoding, any uncovering for a (Pn, k)-code may
also be used for a (Cn, k)-code when n is odd.

Example 9. Consider a cycle C5 on 5 vertices (labelled 0, . . . , 4), and let k = 4.
All 5 vertices are needed in a 4-resolving set, and the code obtained is as follows

Vertex Codeword

0 0 1 2 2 1
1 1 0 1 2 2
2 2 1 0 1 2
3 2 2 1 0 1
4 1 2 2 1 0

.

This has 5 codewords over the alphabet {0, 1, 2}, and has minimum distance 4,
so can therefore correct ⌊(4− 1)/2⌋ = 1 error.

We note that, because the underlying graph is a cycle, any codeword may be
obtained from another by a cyclic permutation.

4.2.2. Even cycles

When n is even, a little more care is required. Letting n = 2q, we have that
Cn has a k-resolving set for k ≤ n − 2 = 2q − 2, and dimk(Cn) = k + 1 for
k ≤ q − 1, or dimk(Cn) = k + 2 for q ≤ k ≤ 2q − 2 = n − 2. Thus for
k ≤ q − 1, the parameters of a (Cn, k)-code when n is even (as well as those of
the uncovering needed for decoding) are the same as those from an odd cycle
(although with an alphabet of size q = n/2). For q ≤ k ≤ 2q−2, they are slightly
different: we have n codewords of length k + 2 and minimum distance k. For
decoding, we will need a (k+2, k+2−⌊(k − 1)/2⌋ , r′)-uncovering, or equivalently
a (k + 2, ⌊(k − 1)/2⌋ , r′)-covering design. Letting m = ⌊(k − 1)/2⌋, we require
either a (2m+ 3,m, r′)-covering or a (2m+ 4,m, r′)-covering if k is odd or even,
respectively; Proposition 6 is applicable in either case.
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Example 10. Consider a cycle C6 on 6 vertices (labelled 0, . . . , 5), and let k = 4.
All 6 vertices are needed in a 4-resolving set, and the code obtained is as follows

Vertex Codeword

0 0 1 2 3 2 1
1 1 0 1 2 3 2
2 2 1 0 1 2 3
3 3 2 1 0 1 2
4 2 3 2 1 0 1
5 1 2 3 2 1 0

.

This code has 6 codewords over the alphabet {0, 1, 2, 3}, and has minimum dis-
tance 4, so can correct ⌊(4− 1)/2⌋ = 1 error.

5. Codes from Grid Graphs

In this section, we will use the family of grid graphs Ps�Pt, i.e., the Cartesian
product of the paths Ps and Pt, to obtain (Ps�Pt, k)-codes. As we will show,
for any grid graph Ps�Pt of order st and any k ∈ {1, . . . , s + t − 2}, we have
that dimk(Ps�Pt) = 2k. This goes on to provide an interesting infinite family
of examples.

5.1. The k-metric dimension of grid graphs

Suppose that G is the grid graph Ps�Pt, that s ≥ t, and U = {u1, u2, . . . , us}
and V = {v1, v2, . . . , vt} are the vertex sets of Ps and Pt, respectively.

It is clear that, if G is a k-metric dimensional graph, then for every positive
integer k′ ≤ k, G also has a k′-metric basis. Next we present a characterization of
k-metric dimensional graphs, obtained in [12], which will be useful in our work.
To do so, we need some additional terminology. Given two vertices x, y ∈ V (G),
we say that the set of distinctive vertices of x, y is

D(x, y) = {z ∈ V (G) : dG(x, z) 6= dG(y, z)} .

Theorem 11 (Estrada-Moreno et al. [12]). A connected graph G is k-metric

dimensional if and only if k = minx,y∈V (G) |D(x, y)|.

To compute the k-metric dimension of a grid graph, we need first to determine
for which values of k there exists a k-metric basis. This is answered by our next
result.

Theorem 12. For any s, t ≥ 2, the graph G = Ps�Pt is (s + t − 2)-metric

dimensional.
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Proof. First, we consider the vertices (u2, v1) and (u1, v2). Notice that

DG

(

(u2, v1), (u1, v2)
)

=
(

U × {v1}
)

∪
(

{u1} × V
)

\ {(u1, v1)} .

Thus,
∣

∣DG

(

(u2, v1), (u1, v2)
)∣

∣ = s+ t− 2 and G is k-metric dimensional for some
k ≤ s+ t− 2.

On the other hand, let (ui, vj) and (ug, vh) be two distinct vertices of G. We
consider the following cases.

Case 1. i = g. Hence j 6= h and it follows that

U × {vj , vh} ⊆ DG

(

(ui, vj), (ug, vh)
)

.

Also,
∣

∣

(

{ui} × V
)

∩ DG

(

(ui, vj), (ug, vh)
)
∣

∣ ≥ t− 1. Thus we have

∣

∣DG

(

(ui, vj) , (ug, vh)
)
∣

∣≥
∣

∣U × {vj , vh}
∣

∣+
∣

∣ ({ui}×V ) ∩ DG

(

(ui, vj), (ug, vh)
)
∣

∣− 2

≥ 2s+ t− 3 ≥ s+ t− 1.

Case 2. j = h. Analogously to Case 1 above, we obtain that
∣

∣DG

(

(ui, vj) , (ug, vh)
)∣

∣ ≥ s+ t− 1.

Case 3. i 6= g and j 6= h. We may assume that i < g. Hence we have one of
the following situations.

• If j < h, then we notice that at most two vertices of the set
(

{u1, . . . , ug}×
{vj}

)

∪
(

{ui, . . . , us}×{vh}
)

∪
(

{ui}×{v1, . . . , vh}
)

∪
(

{ug}×{vj , . . . , vt}
)

do not
belong to the set DG

(

(ui, vj), (ug, vh)
)

(see Figure 1 for an example with i = 3,
j = 2, g = 9 and h = 6).

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1

v2

v3

v4

v5

v6

v7

v8

Figure 1. A sketch of the graph P12 �P8 (edges have not been drawn). Square bolded
vertices have the same distance to the square grey vertices, but different distances to the
circular bolded vertices.
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Consequently,
∣

∣DG

(

(ui, vj) , (ug, vh)
)∣

∣ ≥
∣

∣{u1, . . . , ug} × {vj}|+ |{ui, . . . , us} × {vh}
∣

∣

+
∣

∣{ui} × {v1, . . . , vh}
∣

∣+
∣

∣{ug} × {vj , . . . , vt}
∣

∣− 6

≥ g + s− i+ 1 + h+ t− j + 1− 6

= s+ t+ g + h− i− j − 4

≥ s+ t+ i+ j − i− j − 2 (since i < g and j < h)

= s+ t− 2.

• If j > h, then a similar procedure yields
∣

∣DG

(

(ui, vj), (ug, vh)
)
∣

∣ ≥ s+ t− 2.
As a consequence, we obtain that G is (s+ t− 2)-metric dimensional.

Having established that G = Ps�Pt is (s+t−2)-metric dimensional, next we
obtain its k-metric dimension for every k ∈ {1, . . . , s+ t− 2}. As an observation
regarding the set of distinctive vertices of a pair of vertices x, y, we notice that
if S is a k-resolving set for a graph G, then

∣

∣D(x, y) ∩ S
∣

∣ ≥ k. This simple fact
will be used frequently in our next proof.

Theorem 13. For any grid graph G = Ps�Pt and every k ∈ {1, . . . , s+ t− 2},
dimk(G) = 2k.

Proof. If k = 1, then it is already known (see [8]) that dim1(G) = dim(G) = 2,
so from now on we consider only k ≥ 2. Without loss of generality, we suppose
that s ≥ t. Let (ui, vj) and (ug, vh) be two distinct vertices of G. Next we
consider the following three cases according to the value of k.

Case 1 k ≤ s. Let S = {u1, . . . , uk} × {v1, vt}. We consider the following
subcases.

Subcase 1.1. i = g. Hence j 6= h, and for any vertex (up, vq) ∈ S it fol-
lows dG

(

(ui, vj), (up, vq)
)

6= dG
(

(ug, vh), (up, vq)
)

. Thus, (ui, vj) and (ug, vh) are
distinguished by 2k vertices of S.

Subcase 1.2. i 6= g. Without loss of generality we assume that i < g. More-
over, we consider j ≤ h. First notice that DG

(

(ui, vj) , (ug, vh)
)

⊇ {u1, . . . , ui}×
{v1}. If i ≥ k, then clearly

∣

∣DG

(

(ui, vj) , (ug, vh)
)

∩ S
∣

∣ ≥ k. Hence, we may as-
sume i < k. If g ≥ k, then there is at most one vertex (uf , v1) ∈ {ui+1, . . . , uk}×
{v1} such that dG

(

(ui, vj) , (uf , v1)
)

= dG
(

(ug, vh) , (uf , v1)
)

, which leads to
∣

∣DG

(

(ui, vj) , (ug, vh)
)

∩ ({u1, . . . , uk} × {v1})
∣

∣ ≥ k − 1.

On the other hand, since i < k, there is at least one vertex (ud, vt) ∈ {u1, . . . , uk}×
{vt} such that dG

(

(ui, vj) , (ud, vt)
)

6= dG
(

(ug, vh) , (ud, vt)
)

. As a consequence,
∣

∣DG

(

(ui, vj) , (ug, vh)
)

∩ S
∣

∣ =
∣

∣DG

(

(ui, vj) , (ug, vh)
)

∩ ({u1, . . . , uk} × {v1})
∣

∣

+
∣

∣DG

(

(ui, vj), (ug, vh)
)

∩ ({u1, . . . , uk} × {vt})
∣

∣≥k.
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We now consider g < k. Thus, DG((ui, vj), (ug, vh)) ⊇ {ug, . . . , uk}× {vt} and at
most one vertex in {u1, . . . , ug} × {v1} does not belong to DG((ui, vj), (ug, vh)).
Moreover, DG((ui, vj), (ug, vh)) contains at least one vertex in {ui, . . . , ug}×{vt}.
As a consequence,

∣

∣DG

(

(ui, vj), (ug, vh)
)

∩ S
∣

∣ ≥
∣

∣DG

(

(ui, vj), (ug, vh)
)

∩ ({u1, . . . , ug} × {v1})
∣

∣

+
∣

∣DG

(

(ui, vj), (ug, vh)
)

∩ ({ui, . . . , ug} × {vt})
∣

∣

+
∣

∣{ug, . . . , uk} × {vt}
∣

∣

≥ g − 1 + 1 + k − g + 1 > k.

See Figure 2 for examples of the situations above considering k = 7.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1

v2

v3

v4

v5

v6

v7

v8

Figure 2. A sketch of the graph P12�P8 (edges have not been drawn). Each pair of square
vertices with identically filled shapes is recognized by vertices in the rounded rectangles
with identically filled areas, respectively.

Finally, if j > h, then a similar procedure gives an analogous result and we
observe that S is a k-resolving set for G.

Case 2. s < k ≤ s + t − 2. Note that s ≥ 3, since the case s = 2 would
lead to the graph C4, which is 2-metric dimensional. Assume that k = s + α
for some integer α ≥ 1. Let S =

(

U × {v1, vt}
)

∪
(

{u1, us} × {v2, . . . , vα+1}
)

.
According to Case 1, the set S1 = U × {v1, vt} ⊂ S is an s-resolving set of G,
which means that any pair of vertices of G is recognized by at least s vertices
of S1. On the other hand, also by Case 1 (in a similar version), the set S2 =
{u1, us} × {v2, . . . , vα+1} ⊂ S is an (α + 1)-resolving set of G, which similarly
means any pair of vertices of G is recognized by at least α + 1 vertices of S2.
Since only two vertices, i.e., (u1, v1) and (us, v1), belong to both sets S1 and S2,
it must happen that at least s + α + 1 − 2 vertices of S recognize each pair of
vertices of G. Suppose that there is a pair of vertices (ui, vj) and (ug, vh) such
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that they are distinguished by exactly s + α − 1 vertices of S. Thus, they are
distinguished by (u1, v1) and (us, v1), by s − 2 vertices in S1\ {(u1, v1), (us, v1)}
and by α− 1 vertices in S2\{(u1, v1), (us, v1)}. However, we can now notice that
if (ui, vj) and (ug, vh) are distinguished by (u1, v1) and (us, v1), then (ui, vj) and
(ug, vh) are not distinguished by at most one vertex in U × {v1} and by at most
one vertex in U × {vt}, that is, 2s − 2 > s (since s ≥ 3) vertices of S, which
is a contradiction. Thus, each pair of vertices of G is distinguished by at least
s+ α = k vertices of S. Therefore, S is a k-resolving set of G. As a consequence
of both cases, we obtain that dimk(G) ≤ 2k.

We now want to show that no smaller k-resolving set can exist. Let S′ be
a k-metric basis for G. We consider the vertices (u1, v2), (u2, v1), (us, vt−1) and
(us−1, vt). Since
|A| =

∣

∣DG

(

(u1, v2), (u2, v1)
)

∩S′
∣

∣ =
∣

∣

(

U×{v1}
)

∪
(

{u1}×V
)

\ {(u1, v1)}∩S′
∣

∣ ≥ k
and

|B| =
∣

∣DG

(

(us, vt−1), (us−1, vt)
)

∩S′
∣

∣ =
∣

∣

(

U×{vt}
)

∪
(

{us}×V
)

\ {(us, vt)}∩S
′
∣

∣ ≥
k we have that |S′| ≥ |A|+ |B| − 2 ≥ 2k − 2.

Now suppose |S′| = 2k−2. Thus, it follows |A| = k, |B| = k, (us, v1), (u1, vt) ∈
S and S = A∪B. So

∣

∣

(

{us}×{v2, . . . , vt−1}
)

∪
(

{u2, . . . , us−1}×{vt}
)

∩S′
∣

∣ = k−1
and

∣

∣

(

{u1} × {v2, . . . , vt−1}
)

∪
(

{u2, . . . , us−1} × {v1}
)

∩ S′
∣

∣ = k − 1. We now
consider the vertices (u1, v1), (u2, v2),. . . , (us−1, vt−1) and (us, vt). Hence, if we
denote Q = DG

(

(u1, v1), (u2, v2)
)

, then
∣

∣Q ∩ S′
∣

∣ ≤
∣

∣

(

({us} × {v2, . . . , vt−1}) ∪ ({u2, . . . , us−1} × {vt})
)

∩ S′
∣

∣ = k − 1

and
∣

∣Q ∩ S′
∣

∣ ≤
∣

∣

(

{u1} × {v2, . . . , vt−1}
)

∪
(

{u2, . . . , us−1} × {v1}
)

∩ S′
∣

∣ = k − 1,

which is a contradiction. So |S′| ≥ 2k− 1. If we suppose that |S′| = 2k− 1, then
an analogous procedure to the one above gives a contradiction again. Therefore,
we have that |S′| ≥ 2k and the proof is complete.

5.2. Decoding

For the grid graphs G = Ps�Pt described above, and for any k ≤ s+t−2, we ob-
tain (G, k)-codes with n = st codewords of length ℓ = 2k over an alphabet of size
s+ t+1. Such a (G, k)-code has correction capability r = ⌊(k − 1)/2⌋. To decode
r′ < r errors using the algorithm described above will require a (2k, 2k − r, r′)-
uncovering, or equivalently a (2k, r, r′)-covering design. Depending on the parity
of k, we therefore require either (i) if k = 2m is even, a (4m,m − 1, r′)-covering
design, or (ii) if k = 2m + 1 is odd, a (4m + 2,m, r′)-covering design. Proposi-
tion 6 provides the coverings (and thus uncoverings) we require. Given that these
uncoverings have constant size, the complexity of the decoding algorithm in this
case is O(kn).
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6. Conclusion

The main achievement of this paper was to obtain a new application of k-resolving
sets in graphs to coding theory, by obtaining a new method of constructing error-
correcting codes. We considered three families of graphs, namely paths, cycles
and grid graphs; naturally, there are many more graph families which could be
investigated with this application in mind.

We conclude by mentioning that, while 1-resolving sets have many applica-
tions, for the application of k-resolving sets to error-correcting codes we require
that k ≥ 3; however, 2-resolving sets could potentially be applied to the detection
of errors.
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