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Abstract

An L(2, 1)-labeling of a graph Γ is an assignment of non-negative integers
to the vertices such that adjacent vertices receive labels that differ by at least
2, and those at a distance of two receive labels that differ by at least one.
Let λ1

2
(Γ) denote the least λ such that Γ admits an L(2, 1)-labeling using

labels from {0, 1, . . . , λ}. A Cayley graph of group G is called a circulant
graph of order n, if G = Zn. In this paper initially we investigate the upper
bound for the span of the L(2, 1)-labeling for Cayley graphs on cyclic groups
with “large” connection sets. Then we extend our observation and find the
span of L(2, 1)-labeling for any circulants of order n.
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1. Introduction

The Frequency Assignment Problem (FAP) deals with assigning radio frequencies
to the transmitters at different locations in a territory in such a manner that
closely located transmitters receive frequencies that are sufficiently apart, so that
these channels would not interfere with each other. This practical scenario can
be realized as a graph theoretic problem by viewing each transmitter as a vertex
of the graph. Consequently the associated vertex label corresponds to the radio
frequency of the transmitter. Roberts [15] identified the difference between the
terms “close” and “very close” in terms of edge-distance as follows. An edge
is assumed to exist between two vertices if the corresponding transmitters are
located “very close” physically; and two transmitters are said to be close if their
corresponding vertices are at a distance of two. Motivated by this concept, Griggs
and Yeh formulated L(2, 1)-labeling of a graph [9].
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Formally, an L(2, 1)-labeling of a graph Γ is an assignment f : V (Γ) →
Z+ ∪ {0} such that

|f(x)− f(y)| ≥

{

2, if xy ∈ E(G),

1, if d(x, y) = 2,

where d(x, y) is the distance between the vertices x and y. Let λ1
2(Γ) denote the

least λ such that Γ admits an L(2, 1)-labeling using labels from {0, 1, . . . , λ}. As
bandwidth is a limited resource, the main target is in FAP is to come up with
a frequency assignment using minimum number of frequencies, i.e. one needs
to minimize the span of the labeling proposed. For convenience, without loss of
generality, we consider the smallest label to be zero, so that the span is the highest
label assigned. Many results have been published related to this problem and its
variations [17, 11, 1, 5, 10, 12] over the past few decades. Extensive surveys on
this topic could be found in [18, 7]. The determination of the exact value of λ1

2(Γ)
for a given graph Γ is a very difficult task, it is an NP-hard problem to be precise
[9, 7]. For this reason, researchers are trying to determine the bounds on λ1

2(Γ)
instead, for different classes of graphs. An obvious lower bound is ∆+1 where ∆
is the maximum degree of the graph. In 1992 Griggs and Yeh [9] conjectured that
for any graph Γ, λ1

2(Γ) ≤ ∆2, where ∆ ≥ 2. However, in the same paper [9] they
showed that for any graph Γ, λ1

2(Γ) ≤ ∆2 + 2∆. Later this result was refined by
Chang and Kuo [8] as λ1

2(Γ) ≤ ∆2+∆. This result was proved asymptotically by
Havet et al. in 2008 [11]. Even though the conjecture is proven to be true for a
selected families of graphs, viz. paths, cycles, wheels [9], trees [8], [10], Cartesian
product and the composition of graphs [17], generalized Petersen graphs [12],
chordal graphs [16], etc., it is yet to be proved in general. There are very few
graph classes for which λ1

2(Γ) can be calculated efficiently. These are paths,
cycles, wheels, trees, generalized petersen graphs, etc. There exist large families
of graphs for which it is still unknown whether the computation of λ1

2(G) is NP-
complete or polynomially solvable (see [5, 14, 16, 3, 1]). Hence finding good upper
bounds on λ1

2(Γ) have always been a very interesting problem in graph labeling.
L(2, 1) labeling of Cayley graphs were investigated by Zhao [19] on abelian

groups and by Bahls [2] on more general groups. Recently, Li et al. [13] in-
vestigated the L(2, 1) labeling of cubic Cayley graphs on dihedral groups. We
observed that compared to other families of graphs, L(h, 1)-labeling of Cayley
graphs has not been explored much. The circulant graphs, a particular class of
Cayley graphs, always attracted mathematicians for their symmetry. To the best
of our knowledge, for the first time we investigate the L(2, 1)-labeling of circulants
in this paper.

Definition. Let Zn be a cyclic group and S ⊂ Zn such that 0 /∈ S. Define a
graph Γ = Γ(Zn, S) by V (Γ) = Zn and E(Γ) = {(u, v) : v−u ∈ S}. Such a graph



L(2, 1)-Labeling of Circulant Graphs 145

is a circulant graph of order n with connection set S. Note that S = S−1 = {−s :
s ∈ S} for circulant graphs.

We focus our work primarily on “large” connection sets. Note that |S| ≤ n−1,
since 0 /∈ S (no loops). Also when |S| = n−1, then Γ becomes a complete graph,
and one can easily observe that λ1

2(Kn) = 2n − 2. It is clear that for the entire
family of circulant graphs λ1

2(Γ) does not only follow the conjecture (λ1
2(Γ) ≤ ∆2),

but also λ1
2(Γ) ≤ 2n− 2 where |S| ≤ n− 2.

The rest of this paper is structured as follows. Section 2 consists of the main
results in the form of theorems and supporting lemmas describing the upper
bounds of the span for the circulants with the connection sets of cardinalities
n − 2, n − 3, and n − 4, respectively. In Section 3 we provide the algorithms
for assignment of vertex labels to generalized cases for circulants with “large”
connection sets followed by concluding remarks in Section 4.

2. Main Results

First we define the notations that will be used throughout this paper. For the
vertices i ∈ V (Γ) and a ∈ V (Γ) \ S, let d = gcd(n, a). Also i ≡ ℓi (mod d),
and ℓi = qi

d
2 + ri, qi, ri ∈ Z. It can be observed that qi ∈ {0, 1}, and ri ∈

{0, 1, . . . , d2 −1}. For any a ∈ V (Γ)\S, let pi and p
′

be the smallest non-negative

integers for which a
∣

∣(npi + (i− ℓi)) and a
∣

∣

(

np
′

+ n
2 − a− d

2

)

, respectively. Note

that p
′

is constant for fixed a. For convenience, we will use the notations pij =
pi − pj , ℓij = ℓi − ℓj , qij = qi − qj and rij = ri − rj whenever required.

Theorem 1. If |S| = n− 2, then λ1
2(Γ) ≤

3n
2 − 2.

Proof. We begin this proof with the observation that n must be even, since
0 /∈ S, and |S| = n−2, n

2 /∈ S. Now we introduce the function f : V (G)→ Z 3n
2
−1.

f(i) =

{

3i, if i ∈ {0, 1, . . . , n2 − 1},

3
(

i− n
2

)

+ 1, if i ∈
{

n
2 ,

n
2 + 1, . . . , n− 1

}

.

Our claim is f ∼= L(2, 1), i.e., | f(i)−f(j) |≥ 2 if j− i ∈ S and | f(i)−f(j) |≥ 1 if
dist(i, j) = 2, where dist(i, j) is defined as the length of the shortest path between
the vertices i, j ∈ V (Γ). Let us first consider that i, j ∈ {0, 1, . . . , n2 − 1}, then
|f(i) − f(j)| = |3(i − j)| > 2, for i 6= j which clearly satisfies the requirement.
Similarly the assumption i, j ∈ {n2 ,

n
2 + 1, . . . , n− 1} also meets the requirement.

Now it remains to consider the case when i ∈ {0, 1, . . . , n2 − 1}, and j ∈
{n2 ,

n
2 + 1, . . . , n − 1} or vice-versa. Without loss of generality we can assume

the former one. In that case |f(i) − f(j)| =
∣

∣3
(

n
2 + i− j

)

− 1
∣

∣. It can be easily
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verified that f is injective and n
2 /∈ S,

∣

∣3
(

n
2 + i− j

)

− 1
∣

∣ 6= 1, for any choice
of i, j. In particular | f(i) − f(j) |≥ 2 if j − i ∈ S and | f(i) − f(j) |≥ 1 if
dist(i, j) = 2. Moreover, it can be easily observed that maxi∈Zn

f(i) = 3n
2 −2, we

find that λ1
2(Γ) ≤

3n
2 − 2.

Next we will consider |S| = n− 3, which is possible only if {0, a, n− a} /∈ S,
where a is any non-negative integer. For this specified connection set, we define
the vertex labeling function f below, and prove that f provides an L(2, 1)-labeling
in Theorem 3, and Lemma 2.

f(i) =
npi + (i− ℓi)

a
+ ℓi

(n

d
+ 1

)

.

Lemma 2. For any i ∈ Zn, there exists a non-negative integer p ≤ a
d
such that

a
∣

∣ (np+ (i− ℓi)).

Proof. First note that i − ℓi = rd, for some non-negative integer r ≤ n
d
− 1.

Hence (np+(i−ℓi))
a

= (sp+r)
t

, where s = n
d
, and t = a

d
. Assume (sp+r)

t
= q which

gives

(1) −sp+ tq = r.

Now for the choice r = 1, equation (1) reduces to −sp + tq = 1. But as d =
gcd(n, a), we know gcd(s, t) = 1. Thus by Euclidean Algorithm, there exists at
least one integer solution (in terms of (p, q)) to the equation −sp + tq = 1. In
addition we can view equation (1) as −sp+ tq = 1 · r, which also guarantees the
existence of at least one integer solution to equation (1). Now it remains to show
that there exist a non-negative integer p that satisfies equation (1).

As the existence is guaranteed for such integers p and q, we can also obtain
infinitely many other integer solutions in the form of

(

p+ k
t

r
, q + k

s

r

)

,

where k is any integer. Starting with any integer solution (p, q), using the Eu-
clidean Algorithm (or any other method), with the appropriate choice of k, we can
obtain the smallest non-negative integer p such that p < t = a

d
. This completes

the proof.

Theorem 3. If |S| = n−3 (i.e., {0, a, n−a} /∈ S for any a ∈ Z∗
n
2
), then f defines

an L(2, 1) labeling on Γ. Moreover, λ1
2(Γ) ≤ n+ d− 2.

Proof. To prove that the function f described above, defines an L(2, 1) labeling
on Γ with connection set S, we first need to show that f labels the vertices of Γ
uniquely, and later we show that |f(i)− f(j)| ≥ 2 when (ij) ∈ E(G).
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Claim 4. f is injective.

Proof. Let us start with the assumption that f(i) = f(j) for some i, j ∈ Zn,
where i 6= j. Without loss of generality we can assume that j > i. Now,
f(i) = f(j) implies

(2)
npi + (i− ℓi)

a
+ ℓi

(

n

d
+ 1

)

=
npj + (j − ℓj)

a
+ ℓj

(

n

d
+ 1

)

.

Equation (2), upon simplification, provides

(3) (a(k + 1)− 1)ℓij = npij + (j − i),

where n
d
= k. Clearly, if ℓij = 0 then j − i = npij , which is only possible when

i = j. Otherwise, (i.e., if ℓij 6= 0) in case of pij = 0, then from equation (3)
we get j − i ≥ a(k + 1) − 1 ≥ an

d
≥ n, which is impossible. If pij 6= 0, then on

simplifying equation (3) we get j − i+ npij = (a(k + 1)− 1)ℓij . As a(k + 1) > 1
and 0 < (j − i) < n, we can easily conclude that ℓij and pij share the same sign
(note that none of them is zero in this case). Without loss of generality we can
assume that they are both positive. Upon simplifying equation (3) we get,

(4) j − i = n

(

a
ℓij
d
− pij

)

+ ℓij(a− 1).

Therefore, ℓij(a − 1) ≥ 0. Now we consider the three different possibilities for
aℓij
d
−pij . If

aℓij
d
−pij > 0 then we get j− i ≥ n, which is absurd. If

aℓij
d
−pij < 0,

then

j − i = −

(

pij −
aℓij
d

)

n+ ℓij(a− 1) ≤ −

(

pij −
aℓij
d

)

n+ (d− 1)(a− 1)

≤

(

1−

(

pij −
aℓij
d

))

n− a < 0

which leads us to a contradiction as 1 −
(

pij −
aℓij
d

)

≤ 0. The last possibility

that we need to consider is ℓij(a − 1) = 0. In this case equation (4) simplifies

to j − i = ℓij(a − 1) =
pijd

a
(a − 1) = pijd − pij

d
a
= pij

(

d− 1
x

)

, where x = a
d
.

Obviously it leads to a contradiction since pij(d −
1
x
) is not an integer, as pij is

a positive integer less than x = a
d
(Lemma 2).

Claim 5. |f(i)− f(j)| ≥ 2 when (ij) ∈ E(G).

Proof. As we have already shown in the previous claim that f assigns distinct
values to all the vertices of the graph Γ, it remains to be shown that |f(i) −
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f(j)| 6= 1 for all (ij) ∈ E(Γ). If possible we assume that |f(i) − f(j)| = 1 for
some i, j ∈ Zn, where j − i ∈ S. This leads to

∣

∣

∣

∣

npi + (i− ℓi)

a
+ ℓi

(n

d
+ 1

)

−
npj + (i− ℓj)

a
− ℓj

(n

d
+ 1

)

∣

∣

∣

∣

= 1,

which simplifies to the following equation,

(5)

∣

∣

∣

∣

npij − (j − i)− ℓij

(

a
(n

d
+ 1

)

− 1
)

∣

∣

∣

∣

= a.

If pij = 0, then equation (5) becomes

(6)

∣

∣

∣

∣

(j − i) + ℓij

(

a
(n

d
+ 1

)

− 1
)

∣

∣

∣

∣

= a.

If ℓij = 0, then j − i = a, which is a contradiction since a /∈ S. Otherwise
j − i = ±a+ ℓij

(

a
(

n
d
+ 1

)

− 1
)

. Hence either j − i ≥ n or j − i ≤ −n (based on
the sign of ℓij) is a contradiction.

If pij 6= 0, then without loss of generality we assume that pij is positive.
Once again if ℓij = 0, then equation (6) implies that j − i = npij ± a, which is
only possible if j − i = n− a, again this is absurd as n− a /∈ S. We assume that
ℓij 6= 0, which simplifies equation (6) to j − i = np + ℓij

(

a
(

n
d
+ 1

)

− 1
)

± a. If
ℓij is positive, then j− i > n, a contradiction. Hence considering ℓij = −t, where
t > 0, we have

(7) j − i = −n

(

a
t

d
− p

)

− ta+ t± a.

Note that if t ≥ 2, then from equation (7) j− i ≤ −n
(

2a
d
− p

)

− 2a+2±a ≤
−2n, which is impossible. Hence the only option is to assume that t = 1, which
simplifies equation (7) to j− i = −n

(

a
d
− p

)

− a+1± a, which is possible only if
p = a

d
− 1. Thus we get j − i = −n− a+ 1± a, which means the value of j − i is

either −n − 2a + 1, or −n + 1. The former one is absurd, we can only consider
the latter one, i.e., i − j = n − 1, which is equivalent to j − i = 1 in Γ. But in
that case equation (7) implies n = 0, a contradiction.

Now it remains to show that λ1
2(Γ) ≤ n + d − 2. Note that f attains its

maximum when both pi and ℓi attain maximum, i.e., pi =
a
d
−1, whereas ℓi = d−1.

So we have
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max
i∈Zn

{f(i)} = max
i∈Zn

{

npi + (i− ℓi)

a
+ ℓi

(n

d
+ 1

)

}

≤ max
i∈Zn

{

n
(

a
d
− 1

)

+ (i− (d− 1))

a
+ (d− 1)

(n

d
+ 1

)

}

= max
i∈Zn

{

n

d
+
−n+ i− d+ 1

a
+ n+ d−

n

d
− 1

}

= n+ d− 1− min
i∈Zn

{

n+ d− 1− i

a

}

Now in order to get the λ, we must find the smallest integer value of n+d−1−i
a

for all i ∈ Zn. As i ≤ n−1, we know that n+d−1−i
a

is always positive. Thus we can

conclude that min
i∈Zn

{

n+ d− 1− i

a

}

≥ 1. Finally we get max
i∈Zn

{

f(i)
}

≤ n+ d− 2.

Next we consider the case when |S| = n−4. First note that in this case nmust
be even, and the connection set S should be such that Zn \ S = {0, a, n2 , n − a}
for some a ∈ Z∗

n. Without loss of generality, we assume a is the smallest integer
in the set Z∗

n \ S. Let us first prove two lemmas before we propose the function
that assign the labeling to Γ. The first one is easy to verify, so we skip the proof.

Lemma 6. If a is coprime to n, then λ1
2(Γ) = n− 1.

Lemma 7. If d ∤ n
2 , then d must be even.

Proof. Let us consider the prime power decomposition of n = 2a0pa11 · · · p
ak
n ,

where a0 ≥ 1. Let us also consider d = 2b0pb11 · · · p
bk
n , where bi ≤ ai for all

i ∈ {0, 1, . . . , k}. But as d ∤
(

n
2

)

, then it is clear that b has at least a prime
factor that does not divide n

2 = 2a0−1pa11 · · · p
ak
n , which is only possible when

b0 > a0 − 1 ≥ 0. Hence d is even integer.

For the sake of simplicity, for any i ∈ V (Γ) we consider Ci =
npi+(i−ℓi)

a
, and

Fa =
np

′

−a+
(n−d)

2
a

. We can easily figure out the bounds for Ci, and Fa, such that

0 ≤ Ci ≤
n
d
− 1 for any i ∈ V (Γ), and 0 ≤ Fa ≤

n
d
− 2, as pi, p

′

≤ a
d
− 1. Now

the following function will assign L(2, 1)-labeling to the graph G, which we will
show in the following theorem.

f(i) = Ci + qi(1 + ti)
n

d
+ ri

(

2
n

d
+ 1

)

− qiFa,

where ti =

{

0, Ci ≥ Fa,
1, Ci < Fa.
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We claim that this function assigns the L(2, 1)-labeling to the circulants Γ
with |S| = n− 4, as well as the value of the λ1

2(Γ) is at most n+ d
2 − 2. We prove

the second claim first and the former one in Theorem 10.

Theorem 8. λ(G) ≤ n+ d
2 − 2.

Proof. First it is obvious that f attains its maximum when qi, ri attain their
maximum values, i.e., qi = 1, and ri =

d
2−1, which immediately implies ℓi = d−1.

Also note that as Fa ∈ Z+ ∪{0}, np
′

+ n
2 ≥ a+ d

2 . On the other hand, pi =
a
d
− 1

gives us max{Ci} ≥ Fa, which implies that ti = 0.

max
i∈Zn

{f(i)} = max
i∈Zn

{

npi + (i− ℓi)

a
+ qi(1 + ti)

n

d
+ ri

(

2
n

d
+ 1

)

− qi
np

′

+ n−d
2 − a

a

}

≤ max
i∈Zn

{

n
(

a
d
− 1

)

+ (i− d+ 1)

a
+

n

d
+

(

d

2
− 1

)

(

2
n

d
+ 1

)

−
np

′

+ n−d
2 − a

a

}

= n+
d

2
−

1

a
min
i∈Zn

{

n

(

p
′

+
3

2

)

+
d

2
− i− 1

}

= n+
d

2
− 1−

1

a
min
i∈Zn

{

n+ d− i− 1)
}

≤ n+
d

2
− 2

as min
i∈Zn

{

n+ d− 1− i

a

}

≥ 1, as we have shown in Theorem 3.

Now it remains to show that f assigns a L(2, 1)-labeling to Γ.

Theorem 9. If |S| = n− 4, d > 1, and d ∤ n
2 , where d = min{gcd(n, a)}, then f

defines an L(2, 1) labeling on Γ = Cir(n, S).

Proof. Lemma 7 suggests that d cannot be odd, as d ∤ n
2 . Also it is not difficult

to verify that f is injective. It suffices to show that |f(i) − f(j)| ≥ 2 when
(ij) ∈ E(G), i.e., j − i ∈ S. If possible let us assume that |f(i) − f(j)| = 1.
Further, without loss of any generality, let us assume that j > i. Now f(j)−f(i) =
Cji +

n
d
(qj(tj + 1)− qi(ti + 1)) + (rj − ri)

(

2n
d
+ 1

)

− (qj − qi)Fa, where we have
set Cji = Cj − Ci. Note that either one, or both of qji (i.e., qj − qi) and rji
(i.e., rj − ri) is zero, or they share same signs. Without loss of generality we also
assume that f(j)− f(i) = −1, which gives us

(8) Cji +
n

d

(

qj(tj + 1)− qi(ti + 1)
)

+ rji

(

2
n

d
+ 1

)

− qjiFa = −1.
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Now if ti = tj = t, then it can be observed that for both the assumptions r ≥ 1
and r ≤ 1 we arrive at contradiction. The only remaining choice is r = 0.
Further, qji = 0 implies ℓji = 0 and as a consequence we obtain j− i = −npji±a
which is absurd. Therefore, we must have qji ∈ {−1, 1} and hence we reach
Cji + qji

(

(1 + t) n
d
− Fa

)

= −1. If t = 1, then Cji = Cj − Ci < Fa, which
implies Cji + qji

(

2n
d
− Fa

)

≥ 1 if qji = 1, and Cji + qji
(

2n
d
− Fa

)

≤ −2 if
qji = −1, as Fa ≤

n
d
− 2. On the other hand, if t = 0, and qji = 1, then

Cji +
(

n
d
− Fa

)

≥ Cj − Ci +
n
d
− Cj = n

d
− Ci ≥ 1. If qji = −1 then equation

(8) simplifies to
n(pji+p

′

+ 1
2
)+(j−i)

a
= n

d
, which is only possible when j − i = n

2 , a
contradiction.

Next we consider ti 6= tj . Without loss of generality we assume that tj = 1
and ti = 0 which simplifies equation (8) to

Cji +
(

qji + qj
)n

d
− qjiFa + rji

(

2
n

d
+ 1

)

= −1.

Since qji and rji share same signs, we can easily observe that both rji > 0,
and rji < 0 lead us to contradictions. Hence the only case we are going to consider
is rji = 0. But in this case when qji = 1, we have qj = 1 and qi = 0, which gives
us Fa−C = 2n

d
, a contradiction. On the other hand if we consider qji = −1, i.e.,

qj = 0 and qi = 1, we arrive at j − i = n
(

a
d
−
(

pji + p
′

+ 1
2

))

, which is again

absurd.
Therefore, all the possibilities lead us to the conclusion that |f(i)−f(j)| 6= 1

and this confirms that f defines an L(2, 1)-labeling on Γ.

3. Generalization

In this section we will generalize the result for any circulant, i.e., we provide a
way to assign the vertex labeling that satisfies the L(2, 1) criteria (Algorithm (1)
and (2)). Later in Theorem 10, we investigate the condition on the connection
set S in order to have the exact value of λ1

2(Γ).
Algorithm (1) and Algorithm (2) together provide us the L(2, 1)-labeling for

circulants with any connection set S, such that Sc = Zn \S = {a1, a2, . . . , ak, n−
ak, n−ak−1, . . . , n−a2, n−a1}. Immediately we can determine the upper bound
for λ1

2(Γ) for those circulants. Here we denote da1a2···ak = gcd(a1, a2, . . . , ak).
First Algorithm (1) takes the connection set S as input, immediately calculate
the non-connection set Sc = {b1, b2, . . . , bm′}, and then finds the minimal non-

connection set S
′

= {a1, a2, . . . , am} ⊆ Sc; where m ≤ n−|S|
2 , and {a1, a2, . . . , am}

is the smallest set such that gcd(a1, a2, . . . , am) = gcd(b1, b2, . . . , bm′ ). Next Al-
gorithm (2) assigns the L(2, 1)-labeling to the circulant graph of order n. First of
all, note that for any a ∈ Zn, the circulant graph Γ = Γ(Zn, {a}) is d = gcd(n, a)
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many disconnected cycles of order n
2d. Also observe that the groups of integers

modulo n; 〈a1〉 is a cyclic subgroup of Zn with order n
da1

, and 〈a1, a2〉 is a sub-

group of Zn with order n
da1a2

. It is easy to verify that 〈a1〉 ⊳ 〈a1, a2〉, and hence

〈a1,a2〉
〈a1〉

=
da1

da1a2
. Similarly for any t ≤ m, 〈a1,a2,...,at〉

〈a1,a2,...,at−1〉
=

da1a2···at
da1a2···at−1

. According

to Algorithm (2), we first label all vertices of
{

i1a1|i1 ∈ Z n
da1

}

(mod n) with

i1. After labeling all the vertices of 〈a1〉 with labels {0, 1, . . . , n
d1
− 1}, we label

the vertex a2 − a1, as
n
d 1
, and follow the pattern of labeling vertices a2 + i1a1 as

n
d 1

+ i1+1. It can be easily observed that this pattern of labeling can be repeated
d1

da1a2
many times. Hence after labeling n

da1a2
in this fashion, we then iterate this

method for {a3, a4, . . . , am}. Since according to Algorithm (2), consecutive labels
are only being used in difference of a1, a2, . . . , am−1 or am, any two adjacent ver-
tices have the difference of labeling of at least 2. Hence Algorithm (2) provides
an L(2, 1)-labeling to the graph Γ.

Algorithm 1

1: Input: The number n, and the connection set S.
2: Output: a set {a1, a2, . . . , am}
3: procedure Minimal Non-Connection Set

4: Set Z+
n
2
\ S := {b1, b2, . . . , bm′}

5: Compute dbi = gcd(n, bi)
6: Set a1 := bi such that da1 = min

bj∈Z
+
n
2
\S

gcd(n, bj), d := da1 , k := 1

7: if d = 1 then

8: go to 13

9: while d > db1b2···b
m

′
do

10: Find bt such that da1a2···akbt = min
s∈{1,2,...,m

′
}
gcd(a1, a2, . . . , ak, bs)

11: Set ak+1 ← bt
12: Set d← gcd(a1, a2, . . . , ak+1)

13: print {a1, a2, . . . , am}

Theorem 10. Let d = min{gcd(n, a)}, and Sc = Zn \ S. Then if for all a ∈ Sc,

there exist s1, s2 ∈ S such that a ≡ s1 − s2 (mod n), then

λ1
2(Γ) =

{

n+ d− 2, if |Sc|is odd,

n+ d
2 − 2, if |Sc| is even.

Proof. First we consider that |Sc| is odd. From Theorem 3 it is obvious that
λ1
2(Γ) ≤ n+ d− 2. We just need to show that λ1

2(Γ) > n+ d− 3. If possible let
us assume that λ1

2(Γ) ≤ n+ d− 3.
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Assume d = 1 which gives us λ1
2(Γ) ≤ n − 2. But this value of λ1

2(Γ)
clearly implies that at least two vertices v1, v2 ∈ V (G) use the same label
m ∈ {0, 1, . . . , n − 2}. Note that as they share same label, v2 − v1 /∈ S, im-
plies v2 − v1 = a, for some a ∈ Sc. But as a ≡ s1 − s2 (mod n), for some
s1, s2 ∈ S, distance between v1 and v2 is exactly 2, which is a contradiction.
Next we assume that d ≥ 2. It is easy to observe from Algorithm (2) that there
will be exactly d − 1 jumps in vertex labeling, hence there will be exactly n− 1
labels available for n many vertices, which leads to the same contradiction. The
case |Sc| is similar to the other one.

Algorithm 2

1: Input: The number n, and a1, a2, . . . , am.
2: Output: L(2,1)-labeling of the graph Γ
3: procedure Vertex Labeling

4: Set i := 0, k := 0, d := da1a2···am
5: while d > 0 do

6: for im := 0 to
da1a2···am−1

da1a2···am
− 1 do

7: for im−1 := 0 to
da1a2···am−2

da1a2···am−1
− 1 do

8: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
9: for i2 := 0 to

da1
da1a2

− 1 do

10: i← (i+ i2a2 + i3a3 + · · ·+ imam)(mod n)
11: for i1 := 0 to n

da1
− 1 do

12: i← (i+ i1a1)|1|1 (mod n)
13: f(i)← k
14: k ← k + 1

15: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
16: d← d− 1
17: k ← k + 1

4. Conclusion

In this paper we have worked on the L(2, 1)-labeling of a new family of graphs,
i.e., circulant graphs for large connection sets. We have provided the upper bound
of the span for three specific cases, viz. |S| = n − 2, n − 3, and n − 4. We have
generalized the results for any large connection set in the form of algorithms.
Moreover, we provided the condition for the exact span in these cases.

This was the first attempt to compute the span for L(2, 1)-labeling of cir-
culant graphs. Our present work could be extended in various directions in the
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future. For example one can find, L(h, 1), L(h, k) or any other type of distance
labeling for circulants, or even for generalized Cayley graphs. On the other hand,
one can extend the similar technique to the other families of graphs, that are yet
to be considered for L(2, 1)-labeling.
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