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Abstract

The k-independence number of a graph G, denoted as αk(G), is the
order of a largest induced k-colorable subgraph of G. In [S. Špacapan, The
k-independence number of direct products of graphs, European J. Combin.
32 (2011) 1377–1383] the author conjectured that the direct product G×H
of graphs G and H obeys the following bound

αk(G×H) ≤ αk(G)|V (H)|+ αk(H)|V (G)| − αk(G)αk(H),

and proved the conjecture for k = 1 and k = 2. If true for k = 3 the
conjecture strenghtens the result of El-Zahar and Sauer who proved that
any direct product of 4-chromatic graphs is 4-chromatic [M. El-Zahar and
N. Sauer, The chromatic number of the product of two 4-chromatic graphs

is 4, Combinatorica 5 (1985) 121–126]. In this paper we prove that the
above bound is true for k = 3 provided that G and H are graphs that have
complete tripartite subgraphs of orders α3(G) and α3(H), respectively.

Keywords: independence number, direct product, Hedetniemi’s conjec-
ture.
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1. Introduction

The Hedetniemi’s conjecture was raised in [6] where the author conjectured that

χ(G×H) = min {χ(G), χ(H)} .

Since the upper bound is achived by canonical colorings (colorings of factors lifted
to the product) the conjecture is equivalent to the following statement.
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Conjecture 1 (Hedetniemi’s conjecture). If G and H are not k-colorable, then
G×H is not k-colorable.

This is easy to prove for k = 1, 2, and in [2] the authors proved it for k = 3.
A number of related conjectures, some stronger and some weaker, have been
proposed by many authors (see [16] and [10]), in particular recently we have
proposed in [9] a conjecture that bounds the maximum size of a subset of V (G×H)
that induces a k-colorable subgraph. The k-independence number ofG, denoted as
αk(G), is the order (number of vertices) of a largest induced k-colorable subgraph
of G. The following conjecture is given in [9].

Conjecture 2. For any graphs G and H,

αk(G×H) ≤ αk(G)|V (H)|+ αk(H)|V (G)| − αk(G)αk(H).

The above conjecture is true for k = 1 and k = 2, the case k = 1 gives an
upper bound for the independence number of G × H, and the case k = 2 gives
an upper bound for the order of a largest induced bipartite subgraph of G ×H
(see [9]).

H

G
αk(G)

αk(G)|V (H)|

αk(H) αk(H)|V (G)|

The conjecture suggests that the order of a maximum induced k-colorable
subgraph of G × H is at most the size of the set colored by one canonical k-
coloring αk(G)|V (H)|, plus the size of the set colored by another canonical k-
coloring αk(H)|V (G)|, reduced by the size of the intersection of these two sets,
see Figure 1. Observe that Conjecture 2 is stronger than Conjecture 1. To see
this assume that G and H are not k-colorable, that is αk(G) < |V (G)| and
αk(H) < |V (H)|, as this is the case in Figure 1. Then according to Conjecture 2
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we have αk(G × H) < |V (G × H)|, and hence G × H is not k-colorable. In
particular note that proving Conjecture 2 for k = 3 improves the result by El-
Zahar and Sauer who proved that if G and H are not 3-colorable, then G×H is
not 3-colorable. In this paper we consider 3-colorings of G ×H and prove that
the bound from Conjecture 2 holds for k = 3 provided that G and H are graphs
that have complete tripartite subgraphs of orders α3(G) and α3(H), respectively.

Several related results on independence number and the structure of maxi-
mum independent sets in direct products of graphs are given in articles [1, 3, 4, 7,
8, 13, 12, 15] and [14]. We also mention that the fractional version of Hedetniemi’s
conjecture was recently proved in [17].

We start by giving definitions and by setting the notation which we use in
this and following sections. Let G = (V (G), E(G)) be a graph and

N(x) = {x′ ∈ V (G) |xx′ ∈ E(G)}

be the neighborhood of x in G. A coloring of a graph G is a function f : V (G) → C.
We use the set of colors C = {p, q, r} for every 3-coloring of a graph. A coloring
f is a proper coloring if f(x) 6= f(y) whenever x is adjacent to y. We say that a
coloring f is a totally proper coloring on a set Y ⊆ V (G) if for every y ∈ Y we
have f(y) /∈ f(N(y)) (note that a totally proper coloring on Y is not necessarily
a proper coloring of G).

Let G = (V (G), E(G)) andH = (V (H), E(H)) be graphs. The direct product
G×H of graphs G and H is the graph with vertex set V (G×H) = V (G)×V (H)
where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and
y1y2 ∈ E(H). For a y ∈ V (H) the G-layer Gy is the set of vertices in V (G×H)
defined as follows

Gy = {(x, y) ∈ V (G×H) |x ∈ V (G)}.

Analogously we define an H-layer

Hx = {(x, y) ∈ V (G×H) | y ∈ V (H)}.

We use pG : V (G × H) → V (G) and pH : V (G × H) → V (H) to denote the
projections from V (G×H) to V (G) and V (H), respectively. For a vertex (x, y) ∈
V (G×H) the G-neighborhood of (x, y) is defined as follows

NG(x, y) = N(x)× {y},

and similarly, the H-neighborhood of (x, y) is

NH(x, y) = {x} ×N(y).

Note that we have reserved the notation N(x) to denote the neighborhood of x
in G (or H), whereas NG(x, y) and NH(x, y) denote two subsets of the product.
If a ∈ V (G), b ∈ V (H) and X ⊆ V (G ×H) then we denote X ∩Ha by Xa and
X ∩Gb by Xb.
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Figure 1. The partition of Jy. The graph G is on the x-axis and H is on the y-axis.

2. On 3-Colorable Subgraphs of G×H

Let I ⊆ V (G×H) be a set that induces a 3-colorable subgraph of G×H and let
f be a proper 3-coloring of I. Let J ⊆ I be the set of vertices (x, y) that have
an H-neighbor (x, y′) ∈ I such that f(x, y) = f(x, y′), and let K ⊆ I be the set
of vertices (x, y) that have a G-neighbor (x′, y) ∈ I such that f(x, y) = f(x′, y).
That is

J =
{

(x, y) ∈ I | ∃ (x, y′) ∈ I such that yy′ ∈ E(H) and f(x, y) = f(x, y′)
}

,

K =
{

(x, y) ∈ I | ∃ (x′, y) ∈ I such that xx′ ∈ E(G) and f(x, y) = f(x′, y)
}

.

Additionally, let M = I \ (J ∪ K). Note that, by the definition of J and K,
we have J ∩ K = ∅ (since (x, y) ∈ J ∩ K would imply that (x, y) has a G-
neighbor and an H-neighbor colored by f(x, y), which is a contradiction since
these two neighbors are adjacent in G × H). It also follows from the definition
that for every x ∈ V (G) and y ∈ V (H) the projections of Kx ∪ Mx to H and
Jy ∪ My to G induce 3-colorable subgraphs. Moreover the projection of f/Gy

(here f/Gy denotes the restriction of f to Gy) to G, is a totally proper coloring on
pG(J

y ∪My). This means that for every x ∈ pG(J
y ∪My) and every x′ ∈ N(x)

we have f(x, y) 6= f(x′, y). Similarly, the projection of f/Hx to H is a totally
proper coloring on pH(Kx ∪Mx). It follows from this discussion that

|I|+ |M | =
∑

y∈V (H)

|Jy ∪My|+
∑

x∈V (G)

|Kx ∪Mx| ≤ α3(G)|V (H)|+ α3(H)|V (G)|

and hence

|I| ≤ α3(G)|V (H)|+ α3(H)|V (G)| − |M | ≤ α3(G)|V (H)|+ α3(H)|V (G)|.
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The aim of this paper is to improve the above bound to

|I| ≤ α3(G)|V (H)|+ α3(H)|V (G)| − α3(G)α3(H).

This is done by making use of the fact that the projections of f/Gy and f/Hx are
totally proper colorings on pG(J

y ∪My) and pH(Kx ∪Mx), and so we may add
some vertices to pG(J

y ∪My) and pH(Kx∪Mx) and obtain proper 3-colorings of
some subgraphs that properly contain the sets pG(J

y ∪My) and pH(Kx ∪Mx).
By doing this we get α3(H) = |Kx ∪Mx|+ ǫx and α3(G) = |Jy ∪My|+ ǫy where
the sum of integers ǫx and ǫy is at least α3(G)α3(H).

To realize the rough idea of the proof described in the previous paragraph
we need to define and analyze vertices of different types as this is done in the
sequel. For any S ⊆ C we define JS and KS as follows

JS = {(x, y) ∈ J | f(NH(x, y)) = S} and KS = {(x, y) ∈ K | f(NG(x, y)) = S} .

We say that a vertex (x, y) ∈ J is an S-type vertex if (x, y) ∈ JS or (x, y) ∈ KS .
(See Figure 1 where all possible types of vertices are shown, and where vertices in
the product are marked by their colors p, q and r. Black vertices in the figure do
not belong to I, and so they have not been assigned a color.) So if, for example,
(x, y) ∈ J is such that f(NH(x, y)) = {p, q} we say that (x, y) is a pq-type vertex
and we denote the set of all such vertices by Jpq. If additionally f(x, y) = p we
say that (x, y) is a pq-type vertex, where we underline the color of the vertex
(x, y) (if f(x, y) = q we say that (x, y) is a pq-type vertex), and the set of all
such vertices is denoted by Jpq. So we have Jpq = Jpq ∪Jpq. Similar notation and
terminology we use for the set K, where the G-neighborhood of a vertex defines
its type.

Let y ∈ V (H) and Jy = J∩Gy. There is a partition of Jy into three sets such
that the projection of each set to G is an independent set in G. The partition is
(see Figure 1)

Jy =
(

Jy
p ∪ Jy

pq ∪ Jy
pr ∪ Jy

pqr

)

∪
(

Jy
q ∪ Jy

pq ∪ Jy
qr ∪ Jy

pqr

)

∪
(

Jy
r ∪ Jy

pr ∪ Jy
qr ∪ Jy

pqr

)

.

Suppose that A ⊆ V (G) and B ⊆ V (H) are sets that induce maximal 3-
colorable subgraphs of G and H, and let A =

⋃3
i=1A

i and B =
⋃3

i=1B
i be

partitions of A and B. If A and B induce complete tripartite graphs and f : I → C
is a proper 3-coloring of I ⊆ V (G × H), then for every color c ∈ C there is
an index i ∈ [3] such that f−1(c) ∩ (A × B) ⊆ Ai × B, or an index j ∈ [3]
such that f−1(c) ∩ (A × B) ⊆ A × Bj (note that both cases cannot appear
simultaneously if f−1(c) ∩ (Ai × Bj) 6= ∅ for at least two indices i ∈ [3] or two
indices j ∈ [3]). Therefore all possible colorings (up to a permutation of color
classes and permutation of sets A1, A2 and A3, and B1, B2 and B3) of (A×B)∩I
are those given in Figure 2, where sets Ai×Bj are depicted by squares and colors
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Figure 2. All possible colorings of A×B.

used on Ai×Bj are written within the squares. In this paper we study colorings of
the product shown in Figure 2 and prove that for every such coloring of (A×B)∩I
we have |I| ≤ α3(G)|V (H)| + α3(H)|V (G)| − α3(G)α3(H) (regardless of how f
colors the vertices in the complement of A × B). The motivation behind this
study is that these are all possible colorings of the product of complete tripartite
graphs A and B. However we drop the assumption that A and B induce complete
tripartite graphs in the main theorem below.

Theorem 3. Let G and H be graphs, A ⊆ V (G) and B ⊆ V (H) be sets that

induce maximal 3-colorable subgraphs of G and H, and let Ai and Bi for i ∈ [3]
be their color classes, respectively. Let I ⊆ V (G ×H) be a set that induces a 3-
colorable subgraph of G×H, and f : I → C a proper 3-coloring of I. If f restricted

to A × B is as in one of the cases from Figure 2, then |I| ≤ α3(G)|V (H)| +
α3(H)|V (G)| − α3(G)α3(H).

The following corollary follows straightforward from Theorem 3 and the fact
that colorings from Figure 2 are the only colorings of products of complete tri-
partite graphs. Note however that a graph may have more than one maximal
3-colorable subgraph (which explains the formulation of the corollary).

Corollary 4. Let G and H be graphs. If there exist maximal 3-colorable subgraphs
of G and H that are complete tripartite graphs, then

α3(G×H) ≤ α3(G)|V (H)|+ α3(H)|V (G)| − α3(G)α3(H).
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3. Preliminary Results

Before we prove our main theorem we shall prove few preparatory results and set
the notation that we use in following claims. Let G be a graph and D ⊆ V (G) a
set that induces a maximal 3-colorable subgraph of G with parts (color classes)
Di, i ∈ [3]. Let L ⊆ V (G) and g : L → C be a coloring of L (note that we do
not assume that g is a proper coloring). Additionaly let Y ⊆ L be the maximum
set such that g is a totally proper coloring on Y . Let X = (L \ Y ) ∩ D, and
Xi = X ∩Di for i ∈ [3] (see Figure 3). Let S be a subset of colors. We define

XS = {x ∈ X | g(N(x)) = S}.

For example, if g is a 3-coloring and p, q, r are the colors, then Xpq denotes the
set of x ∈ X such that g(N(x)) = {p, q}, and we say that x ∈ Xpq is a pq-type
vertex. If also g(x, y) = p then we say that (x, y) is a pq-type vertex, and we
denote the set of such vertices by Xpq. Additionally let

Ri = {x ∈ X : |g(N(x))| = i}.

So R1 contains p-type, q-type and r-type vertices, R2 contains pq-type, pr-type
and qr-type vertices, and finally R3 contains pqr-type vertices, or equivalently
R1 = Xp ∪ Xq ∪ Xr, R2 = Xpq ∪ Xpr ∪ Xqr and R3 = Xpqr. This notations are
used in Claims 0, 1, 2 and 3.

YX1 YX2 Y YX3

D1 D2 D3 G \D

L L L L

Figure 3. The definitions of D,L,X and Y .

The definitions from the above paragraph are applicaple to colorings of the
product in the following sense. Suppose I is a 3-colorable subset of V (G × H),
f : I → C is a proper 3-coloring of I, and A,B induce maximum 3-colorable
subgraphs of G and H, respectively. For y ∈ V (H) we observe the Gy layer and
the set of vertices Iy colored by f . Then we have the following (see the definitions
in the previous section).

• A is a maximal 3-colorable subgraph of G, and, D is a maximal 3-colorable
subgraph of G (as defined above).

• The projection of Iy to G is a subset of V (G), and, L is a subset of V (G) (as
defined above).
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• The projection of f/Gy to G is a totally proper coloring of pG(J
y ∪My), and

pG(J
y ∪ My) is a maximal such subset of pG(I

y), and, g is a totally proper
coloring of Y , and Y is a maximal such subset of L (as defined above).

• pG(K
y ∩ (A×{y})) is the complement of pG(J

y ∪My) in pG(I
y ∩ (A×{y})),

and, X is the complement of Y in L ∩D (as defined above).

Thus we see that sets A, Iy, Jy ∪ My and Ky ∩ (A × {y}) take the role of
D,L, Y and X, respectively. The coloring f/Gy takes the role of g from the
previous paragraph. Alternatively, for an x ∈ V (G), the sets B, Ix,Kx∪Mx and
Jx ∩ ({x} × B) take the role of D,L, Y and X, respectively (and here note that
the projection of f/Hx to H is a totally proper coloring of pH(Kx ∪Mx)).

Claim 0. For every graph G we have α3(G) ≥ |Y |+ |R3|/3 + 2|R2|/3 + |R1|.

Proof. It follows from maximality of Y that every vertex x ∈ X has a neighbor
x′ such that g(x) = g(x′). For every vertex x ∈ X we define the list L(x) of
admissible colors as follows

L(x) = {c ∈ C | c = g(x) or c /∈ g(N(x))}.

For example if x ∈ Xp ∪ Xq ∪ Xr then L(x) = {p, q, r}, and if x ∈ Xpq then
L(x) = {p, r}. Note that for every color c ∈ L(x) we have c /∈ g(N(x) ∩ Y )
because g is a totally proper coloring on Y . Therefore any proper coloring g′′

of vertices in F ⊆ X from their lists yields a proper coloring g′ of F ∪ Y , this
coloring is defined by g′(u) = g(u) for u ∈ Y and g′(u) = g′′(u) for u ∈ F
(note that lists for vertices in X are defined in such a way that they do not
interfere with vertices in Y ). Every vertex x ∈ R1 has a list of size 3 because
g(N(x)) = {g(x)}. Similarly vertices in R2 and R3 have lists of size 2 and 1,
respectively. We define three proper 3-colorings of three subsets F1, F2 and F3 of
X as follows: color vertices in X1, X2 and X3 from lists by p, q, and r respectively
(if a vertex does not have the designated color in the list it remains uncolored).
This coloring is depicted in Figure 4, where all types of vertices in X1, X2 and
X3 are listed and written in the middle of the squares, and the color used for a
specific type of vertex is given in the upper right corner of the square. Call the
set of vertices colored this way F1. Then color X1, X2 and X3 from lists by q, r,
and p respectively, and call the set of colored vertices F2 (see Figure 5). Finally
color X1, X2 and X3 from lists by r, p, and q respectively, and call the set of
colored vertices F3 (see Figure 6). Then we have

|F1|+ |F2|+ |F3| ≥ |R3|+ 2|R2|+ 3|R1|,

so the size of at least one set, say F1, is at least |R3|/3 + 2|R2|/3 + |R1|. We
conclude by α3(G) ≥ |Y |+ |F1| ≥ |Y |+ |R3|/3+2|R2|/3+ |R1|, which proves the
claim.
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Figure 4. The set of colored vertices F1.
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Figure 5. The set of colored vertices F2.

q q q q q q q q
X3 p q r pq pq pr pr qr qr pqr pqr pqr

p p p p p p p p
X2 p q r pq pq pr pr qr qr pqr pqr pqr

r r r r r r r r
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Figure 6. The set of colored vertices F3.

We may apply the above claim to any 3-coloring of the Gy layer of G × H
where sets A, Iy, Jy ∪ My and Ky ∩ (A × {y}) take the role of D,L, Y and X.
Using the notation from the introduction gives us the following.

Corollary 5. For every y ∈ B̄ we have

α3(G) ≥ |Jy ∪My|+
∣

∣Ky
p ∩ (A× B̄)

∣

∣+
∣

∣Ky
q ∩ (A× B̄)

∣

∣+
∣

∣Ky
r ∩ (A× B̄)

∣

∣

+
2

3

(
∣

∣Ky
pq ∩ (A× B̄)

∣

∣+
∣

∣Ky
pr ∩ (A× B̄)

∣

∣+
∣

∣Ky
qr ∩ (A× B̄)

∣

∣

)

+
1

3

∣

∣Ky
pqr ∩ (A× B̄)

∣

∣ .

Claim 1. For every graph G we have
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(i) α3(G) ≥ |Y |+ |R1|+
∣

∣R2 ∩X1
∣

∣+
∣

∣Xpq ∩X2
∣

∣−
∣

∣Xr ∩X3
∣

∣.

(ii) α3(G) ≥ |Y |+ |R1| −
1
3

∣

∣R1 ∩X3
∣

∣+
∣

∣R2 ∩X1
∣

∣+ 1
3

∣

∣R2 ∩
(

X2 ∪X3
)∣

∣.

Proof. We assume that
∣

∣R2 ∩X2
∣

∣ ≥
∣

∣R2 ∩X3
∣

∣ (otherwise exchange the role of
X2 and X3 below). To prove (i) consider the coloring g1 given in Figure 7. In
this figure rows 1, 2 and 3 correspond to vertices in X1, X2 and X3, respectively.
Each square represents a vertex type which is written in the center of the square,
and the color that we assign to a particular type of vertices is given in the upper
right corner of each square (if there is no color in the upper right corner, this
means that we don’t color this type of vertices). For every y ∈ Y we define
g1(y) = g(y), and note that to each vertex x ∈ X the color g1(x) /∈ g(N(x)) or
g1(x) = g(x) is assigned (we use the same lists L(x) to color x as in the previous
claim). Hence if y ∈ Y is adjacent to x ∈ X we have g1(x) 6= g1(y) (follows
from the fact that g is a totally proper coloring on Y ). It remains to prove that
g1 is a proper coloring when restricted to X. Since Xi is an independent set for
i ∈ [3] we have to check the p-type and q-type vertices in X3 (since the restriction
of g1 to X1 ∪ X2 is a proper coloring). The p-type vertices in X3 can only be
adjacent to p, pq, pr and pqr-type vertices in X1. The color of the first is q and
the color of the latter is p, so they are assigned different colors by g1. Similarly
we argue for q-type vertices in X3, they can only be adjacent to q, pq, qr and
pqr-type vertices in X1, which receive the color q by g1. We conclude that g1
is a proper coloring and hence the bound (i) follows. In the sequel we use the
notation Xi

p = Xp∩X
i (and similarly for other types of vertices). If

∣

∣X3
p

∣

∣+
∣

∣X3
q

∣

∣+
∣

∣

∣
X2

pq

∣

∣

∣
+

∣

∣

∣
X2

pq

∣

∣

∣
+

∣

∣X2
pr

∣

∣ +
∣

∣X2
qr

∣

∣ ≥ 2
3

(
∣

∣R1 ∩X3
∣

∣+
∣

∣R2 ∩X2
∣

∣

)

then the coloring g1

in Figure 7, together with 2
3

∣

∣R2 ∩X2
∣

∣ ≥ 1
3

∣

∣R2 ∩
(

X2 ∪X3
)∣

∣ which is obtained

from the initial assumption, proves (ii). If
∣

∣X3
q

∣

∣+
∣

∣X3
r

∣

∣+
∣

∣

∣
X2

pq

∣

∣

∣
+
∣

∣

∣
X2

pr

∣

∣

∣
+
∣

∣

∣
X2

qr

∣

∣

∣
+

∣

∣X2
qr

∣

∣ ≥ 2
3

(∣

∣R1 ∩X3
∣

∣+
∣

∣R2 ∩X2
∣

∣

)

then the coloring g2 in Figure 8 together with
2
3

∣

∣R2 ∩X2
∣

∣ ≥ 1
3

∣

∣R2 ∩
(

X2 ∪X3
)∣

∣ proves (ii). If both the above inequalities fail

to hold, then we obtain that
∣

∣X3
q

∣

∣ +
∣

∣

∣
X2

pq

∣

∣

∣
+

∣

∣X2
qr

∣

∣ < 1
3

(
∣

∣R1 ∩X3
∣

∣+
∣

∣R2 ∩X2
∣

∣

)

which together with 2
3

∣

∣R2 ∩X2
∣

∣ ≥ 1
3

∣

∣R2 ∩
(

X2 ∪X3
)∣

∣ and the coloring g3 in
Figure 9 imply (ii).

We apply the above claim to the colorings of the product G ×H, where H
takes the role of G in the above claim.

Corollary 6. For every x ∈ Ā we have

α3(H) ≥ |Kx ∪Mx|+
∣

∣Jx
p ∩ (Ā×B)

∣

∣+
∣

∣Jx
q ∩ (Ā×B)

∣

∣

+
∣

∣Jx
r ∩

(

Ā×
(

B1 ∪B2
))∣

∣+
∣

∣Jx
pq ∩

(

Ā×B1
)∣

∣+
∣

∣Jx
pr ∩

(

Ā×B1
)∣

∣

+
∣

∣Jx
qr ∩

(

Ā×B1
)
∣

∣+
∣

∣Jx
pq ∩

(

Ā×B2
)
∣

∣ .
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q p
X3 p q r pq pq pr pr qr qr pqr pqr pqr

r r r r r r r
X2 p q r pq pq pr pr qr qr pqr pqr pqr

p q p p q p q q p p q
X1 p q r pq pq pr pr qr qr pqr pqr pqr

Figure 7. The coloring g1 of X.

r q
X3 p q r pq pq pr pr qr qr pqr pqr pqr

p p p p p p p
X2 p q r pq pq pr pr qr qr pqr pqr pqr

q q r r q q r q r q r
X1 p q r pq pq pr pr qr qr pqr pqr pqr

Figure 8. The coloring g2 of X.

r p
X3 p q r pq pq pr pr qr qr pqr pqr pqr

q q q q q q q
X2 p q r pq pq pr pr qr qr pqr pqr pqr

p p r p r p r p r p r
X1 p q r pq pq pr pr qr qr pqr pqr pqr

Figure 9. The coloring g3 of X.

When we apply (ii) of Claim 1 to the coloring of the product we get the
following corollary.

Corollary 7. For every x ∈ Ā we have

α3(H) ≥ |Kx ∪Mx|+
∣

∣Jx
p ∩

(

Ā×
(

B1 ∪B2
))∣

∣+
∣

∣Jx
q ∩

(

Ā×
(

B1 ∪B2
))∣

∣

+
∣

∣Jx
r ∩

(

Ā×
(

B1 ∪B2
))
∣

∣+
2

3

(
∣

∣Jx
p ∩

(

Ā×B3
)
∣

∣+
∣

∣Jx
q ∩

(

Ā×B3
)
∣

∣

+
∣

∣Jx
r ∩

(

Ā×B3
)∣

∣

)

+
∣

∣Jx
pq ∩

(

Ā×B1
)∣

∣+
∣

∣Jx
pr ∩

(

Ā×B1
)∣

∣

+
∣

∣Jx
qr ∩

(

Ā×B1
)
∣

∣+
1

3

(
∣

∣Jx
pq ∩

(

Ā×
(

B2 ∪B3
))
∣

∣

+
∣

∣Jx
pr ∩

(

Ā×
(

B2 ∪B3
))∣

∣+
∣

∣Jx
qr ∩

(

Ā×
(

B2 ∪B3
))∣

∣

)

.
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Claim 2. For every graph G we have

(i) α3(G) ≥ |Y |+ |R1|+
∣

∣Xqr ∩X1
∣

∣+
∣

∣Xpr ∩X2
∣

∣+
∣

∣Xpq ∩X3
∣

∣ .

(ii) α3(G) ≥ |Y |+ |R1|+
∣

∣Xpq ∩X1
∣

∣+
∣

∣Xqr ∩X2
∣

∣+
∣

∣Xpr ∩X3
∣

∣ .

Proof. The coloring that proves the bound (i) is given in Figure 4, and the
coloring in Figure 6 proves (ii).

When we apply (i) to the coloring f of the product G×H we get the following
corollary.

Corollary 8. For every x ∈ Ā we have

α3(H) ≥ |Kx ∪Mx|+
∣

∣Jx
p ∩ (Ā×B)

∣

∣+
∣

∣Jx
q ∩ (Ā×B)

∣

∣+
∣

∣Jx
r ∩ (Ā×B)

∣

∣

+
∣

∣Jx
qr ∩

(

Ā×B1
)
∣

∣+
∣

∣Jx
pr ∩

(

Ā×B2
)
∣

∣+
∣

∣Jx
pq ∩

(

Ā×B3
)
∣

∣ .

When (ii) is applied we get the following.

Corollary 9. For every y ∈ B̄ we have

α3(G) ≥ |Jy ∪My|+
∣

∣Ky
p ∩ (A× B̄)

∣

∣+
∣

∣Ky
q ∩ (A× B̄)

∣

∣+
∣

∣Ky
r ∩ (A× B̄)

∣

∣

+
∣

∣Ky
pq ∩

(

A1 × B̄
)∣

∣+
∣

∣Ky
qr ∩

(

A2 × B̄
)∣

∣+
∣

∣Ky
pr ∩

(

A3 × B̄
)∣

∣ .

Claim 3. For every graph G, any colors c, d ∈ C and any i ∈ [3] we have

α3(G) ≥ |Y |+ |R1|+
1

2
|R2|+

1

2

∣

∣Xi
cd

∣

∣ .

Proof. Without loss of generality assume i = 1, c = p and d = q. We shall prove
that α3(G) ≥ |Y |+ |R1|+

1
2 |R2|+

1
2

∣

∣X1
pq

∣

∣ . We distinguish two cases.

Case 1.
∣

∣X1
pr

∣

∣ +
∣

∣

∣
X1

qr

∣

∣

∣
≥

∣

∣X1
qr

∣

∣ +
∣

∣X1
pr

∣

∣ +
∣

∣

∣
X2

pr

∣

∣

∣
+

∣

∣

∣
X2

qr

∣

∣

∣
+

∣

∣

∣
X3

pr

∣

∣

∣
+

∣

∣

∣
X3

qr

∣

∣

∣
. In

this case consider the coloring g1 given in Figure 10 (here only the colors of
vertices in X are given, for vertices y ∈ Y we define g1(y) = g(y)). Assume

without loss of generality that
∣

∣X1
pr

∣

∣ ≤
∣

∣X1
qr

∣

∣ and
∣

∣

∣
X2

pq

∣

∣

∣
+
∣

∣

∣
X2

pq

∣

∣

∣
+
∣

∣X2
pr

∣

∣+
∣

∣X2
qr

∣

∣ ≥
∣

∣

∣
X3

pq

∣

∣

∣
+
∣

∣

∣
X3

pq

∣

∣

∣
+
∣

∣X3
pr

∣

∣+
∣

∣X3
qr

∣

∣. (If any of this two inequalities is not true we may alter

the coloring g1 given in Figure 10 and proceed the same way. If
∣

∣X1
pr

∣

∣ ≥
∣

∣X1
qr

∣

∣,

then color X1
pr and X1

r by q, do not color X1
qr, and color X3

r by p. The color of
all other vertices remains the same as in Figure 10. If the second inequality is
not true just exchange the role of X2 and X3 and proceed the same way.) The
size of the set colored by g1 is at least

|Y |+ |Xp|+ |Xq|+ |Xr|+
∣

∣

∣
X1

pq

∣

∣

∣
+
∣

∣

∣
X1

pq

∣

∣

∣
+
∣

∣

∣
X1

pr

∣

∣

∣
+
∣

∣

∣
X1

qr

∣

∣

∣
+
∣

∣X1
qr

∣

∣

+
1

2

(
∣

∣

∣
X2

pq

∣

∣

∣
+
∣

∣

∣
X2

pq

∣

∣

∣
+
∣

∣X2
pr

∣

∣+
∣

∣X2
qr

∣

∣+
∣

∣

∣
X3

pq

∣

∣

∣
+

∣

∣

∣
X3

pq

∣

∣

∣
+
∣

∣X3
pr

∣

∣+
∣

∣X3
qr

∣

∣

)

.
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Since
∣

∣

∣
X1

pr

∣

∣

∣
+
∣

∣

∣
X1

qr

∣

∣

∣
≥

∣

∣X1
qr

∣

∣+
∣

∣X1
pr

∣

∣+
∣

∣

∣
X2

pr

∣

∣

∣
+
∣

∣

∣
X2

qr

∣

∣

∣
+
∣

∣

∣
X3

pr

∣

∣

∣
+
∣

∣

∣
X3

qr

∣

∣

∣
and

∣

∣X1
pr

∣

∣ ≤
∣

∣X1
qr

∣

∣, we find that

∣

∣

∣
X1

pr

∣

∣

∣
+
∣

∣

∣
X1

qr

∣

∣

∣

≥
1

2

(∣

∣

∣
X1

pr

∣

∣

∣
+
∣

∣

∣
X1

qr

∣

∣

∣
+

∣

∣X1
qr

∣

∣+
∣

∣X1
pr

∣

∣+
∣

∣

∣
X2

pr

∣

∣

∣
+
∣

∣

∣
X2

qr

∣

∣

∣
+
∣

∣

∣
X3

pr

∣

∣

∣
+
∣

∣

∣
X3

qr

∣

∣

∣

)

and
∣

∣X1
qr

∣

∣ ≥ 1
2

(
∣

∣X1
pr

∣

∣+
∣

∣X1
qr

∣

∣

)

. Combining these two inequalities with the above
bound on the size of the set colored by g1, we find that this size is at least
|Y |+ |R1|+

1
2 |R2|+

1
2

∣

∣X1
pq

∣

∣ which completes this case.

Case 2.
∣

∣

∣
X1

pr

∣

∣

∣
+

∣

∣

∣
X1

qr

∣

∣

∣
<

∣

∣X1
qr

∣

∣ +
∣

∣X1
pr

∣

∣ +
∣

∣

∣
X2

pr

∣

∣

∣
+

∣

∣

∣
X2

qr

∣

∣

∣
+

∣

∣

∣
X3

pr

∣

∣

∣
+

∣

∣

∣
X3

qr

∣

∣

∣
. In

this case consider the coloring g2 given in Figure 11. Assume that

∣

∣

∣
X2

pq

∣

∣

∣
+

∣

∣

∣
X2

pr

∣

∣

∣
+
∣

∣

∣
X2

qr

∣

∣

∣
+
∣

∣X2
qr

∣

∣+
∣

∣

∣
X3

pq

∣

∣

∣
+
∣

∣

∣
X3

pr

∣

∣

∣
+

∣

∣X3
pr

∣

∣+
∣

∣

∣
X3

qr

∣

∣

∣

≥
∣

∣

∣
X3

pq

∣

∣

∣
+
∣

∣

∣
X3

pr

∣

∣

∣
+
∣

∣

∣
X3

qr

∣

∣

∣
+
∣

∣X3
qr

∣

∣+
∣

∣

∣
X2

pq

∣

∣

∣
+

∣

∣

∣
X2

pr

∣

∣

∣
+
∣

∣X2
pr

∣

∣+
∣

∣

∣
X2

qr

∣

∣

∣

(if not exchange the role of X2 and X3 in Figure 11, and color X2 as X3 is colored
in Figure 11, and vice versa). So the size of the set colored by g2 is

|Y |+ |Xp|+ |Xq|+ |Xr|+
∣

∣

∣
X1

pq

∣

∣

∣
+
∣

∣

∣
X1

pq

∣

∣

∣
+
∣

∣X1
pr

∣

∣+
∣

∣X1
qr

∣

∣+
∣

∣

∣
X2

pq

∣

∣

∣

+
∣

∣

∣
X2

pr

∣

∣

∣
+
∣

∣

∣
X2

qr

∣

∣

∣
+
∣

∣X2
qr

∣

∣+
∣

∣

∣
X3

pq

∣

∣

∣
+
∣

∣

∣
X3

pr

∣

∣

∣
+

∣

∣X3
pr

∣

∣+
∣

∣

∣
X3

qr

∣

∣

∣
.

It follows (with an analogous calculation as in the previous case) from the above
assumptions that the size of the set colored by g2 is at least |Y |+ |R1|+

1
2 |R2|+

1
2

∣

∣X1
pq

∣

∣, which completes the proof.

q p q
X3 p q r pq pq pr pr qr qr pqr pqr pqr

r r r r r r r
X2 p q r pq pq pr pr qr qr pqr pqr pqr

p q p p q p q p
X1 p q r pq pq pr pr qr qr pqr pqr pqr

Figure 10. The coloring g1 of X.

Setting i = 1, c = p and d = q, we arrive at the following corollary.
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q q q q q q q
X3 p q r pq pq pr pr qr qr pqr pqr pqr

p p p p p p p
X2 p q r pq pq pr pr qr qr pqr pqr pqr

r r r r r r r
X1 p q r pq pq pr pr qr qr pqr pqr pqr

Figure 11. The coloring g2 of X.

Corollary 10. For every y ∈ B̄ we have

α3(G) ≥ |Jy ∪My|+
∣

∣Ky
p ∩ (A× B̄)

∣

∣+
∣

∣Ky
q ∩ (A× B̄)

∣

∣+
∣

∣Ky
r ∩ (A× B̄)

∣

∣

+
1

2

(
∣

∣Ky
pq ∩ (A× B̄)

∣

∣+
∣

∣Ky
pr ∩ (A× B̄)

∣

∣+
∣

∣Ky
qr ∩ (A× B̄)

∣

∣

)

+
1

2

∣

∣Ky
pq ∩

(

A1 × B̄
)∣

∣ .

4. Proof of the Main Theorem

We begin by deriving an upper bound for the size of I, and we use the notation
from the introduction.

|I|+ |M | =
∑

x∈V (G)

|Kx ∪Mx|+
∑

y∈V (H)

|Jy ∪My|

=
∑

x∈A

|Kx ∪Mx|+
∑

x∈Ā

|Kx ∪Mx|+
∑

y∈B

|Jy ∪My|+
∑

y∈B̄

|Jy ∪My|

= |I ∩ (A×B)|+ |M ∩ (A×B)|+
∑

x∈A

∣

∣(Kx ∪Mx) ∩ (A× B̄)
∣

∣

+
∑

y∈B

∣

∣(Jy ∪My) ∩ (Ā×B)
∣

∣+
∑

x∈Ā

|Kx ∪Mx|+
∑

y∈B̄

|Jy ∪My|

and therefore

|I| = |I ∩ (A×B)|+
∑

x∈A

|Kx ∩ (A× B̄)|+
∑

y∈B

|Jy ∩ (Ā×B)|

+
∑

x∈Ā

|Kx ∪Mx|+
∑

y∈B̄

|Jy ∪My| −
∣

∣M ∩ (Ā× B̄)
∣

∣

≤ |I ∩ (A×B)|+
∑

y∈B̄

|Ky ∩ (A× B̄)|+
∑

x∈Ā

|Jx ∩ (Ā×B)|
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≤ |I ∩ (A×B)|+
∑

y∈B̄

|Ky ∩ (A× B̄)|+
∑

x∈Ā

|Jx ∩ (Ā×B)|

+
∑

x∈Ā

|Kx ∪Mx|+
∑

y∈B̄

|Jy ∪My|

= |I ∩ (A×B)|+
∑

y∈B̄

(
∣

∣Ky ∩ (A× B̄)
∣

∣+ |Jy ∪My|
)

+
∑

x∈Ā

(∣

∣Jx ∩ (Ā×B)
∣

∣+ |Kx ∪Mx|
)

.

To prove the theorem it remains to prove that

(1)

|I ∩ (A×B)|+
∑

y∈B̄

(

|Ky ∩ (A× B̄)|+ |Jy ∪My|
)

+
∑

x∈Ā

(∣

∣Jx ∩ (Ā×B)
∣

∣+ |Kx ∪Mx|
)

≤ α3(G)|V (H)|+ α3(H)|V (G)| − α3(G)α3(H).

In order to prove (1) we give in each of the five cases, (a), (b), (c), (d) and (e)
shown in Figure 2, two upper bounds for |I ∩ (A×B)| of the following form

|I ∩ (A×B)| ≤ α3(G)α3(H)−
3

∑

j=1

∑

S⊆C

βj
S

∣

∣JS ∩
(

Ā×Bj
)
∣

∣(2)

and

|I ∩ (A×B)| ≤ α3(G)α3(H)−
3

∑

i=1

∑

S⊆C

γiS
∣

∣KS ∩
(

Ai × B̄
)
∣

∣(3)

where the coefficients βj
S , γ

i
S for S ⊆ C and i, j ∈ [3] are declared and explained

later for each case individually. Combining both inequalities (2) and (3) we can
(upper) bound |I ∩ (A×B)| by

(4)

α3(G)α3(H) − Λ1

3
∑

j=1

∑

S⊆C

βj
S

∣

∣JS ∩
(

Ā×Bj
)
∣

∣

− Λ2

3
∑

i=1

∑

S⊆C

γiS
∣

∣KS ∩
(

Ai × B̄
)∣

∣

where Λ1 and Λ2 are two constants such that Λ1 + Λ2 ≤ 1, and these constants
will also be declared later. Then we also bound the other two terms that appear
on the left side of (1) as follows
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(5)

∑

x∈Ā

(∣

∣Jx ∩ (Ā×B)
∣

∣+ |Kx ∪Mx|
)

≤ (|V (G)| − α3(G))α3(H) + Λ1

3
∑

j=1

∑

S⊆C

βj
S

∣

∣JS ∩
(

Ā×Bj
)
∣

∣

and

(6)

∑

y∈B̄

(

|Ky ∩ (A× B̄)|+ |Jy ∪My|
)

≤ (|V (H)| − α3(H))α3(G) + Λ2

3
∑

i=1

∑

S⊆C

γiS
∣

∣KS ∩
(

Ai × B̄
)∣

∣

which gives (when combining (4), (5) and (6)) the desired result (1). Note that

∣

∣Jx ∩ (Ā×B)
∣

∣ =
3

∑

j=1

∑

S⊆C

∣

∣Jx
S ∩

(

Ā×Bj
)∣

∣ .

To prove (5) it suffices to show that for every x ∈ Ā we have

∣

∣Jx ∩ (Ā×B)
∣

∣+ |Kx ∪Mx| ≤ α3(H) + Λ1

3
∑

j=1

∑

S⊆C

βj
S

∣

∣Jx
S ∩

(

Ā×Bj
)∣

∣ ,

which is equivalent to

(7) α3(H) ≥ |Kx ∪Mx|+
3

∑

j=1

∑

S⊆C

(1− Λ1β
j
S)

∣

∣Jx
S ∩ (Ā×Bj)

∣

∣ .

Similarly, to prove (6) it suffices to show that for every y ∈ B̄ we have

(8) α3(G) ≥ |Jy ∪My|+
3

∑

i=1

∑

S⊆C

(

1− Λ2γ
i
S

) ∣

∣Ky
S ∩

(

Ai × B̄
)∣

∣ .

Now we are ready to give the values of the coefficients βj
S and γiS for S ⊆ C such

that (2), (3), (7) and (8) are fulfilled. The values are given in Table 1.

Case (a). We first consider the coloring from Case (a) (see Figure 2 where
in each case sets A1, A2, A3 are arranged horizontally from left to right, and
B1, B2, B3 vertically from bottom to top), and prove the bounds (2), (3), (7)
and (8) for this case. To prove (2) note that for every y ∈ B1 the projections of
U = (Jy

pq ∪ Jy
pqr)∩(Ā×B1) and V = (Jy

pr ∪ Jy
pqr)∩(Ā×B1) to G are independent

sets in G, and for every (x, y) ∈ U ∪ V we have p ∈ f(NH(x, y)). Since f(A ×
B1) = p we find that NG(U) ∩ (A × B1) and NG(V ) ∩ (A × B1) have empty
intersections with I. Since A is a maximum tripartite subgraph of G we find that
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Case : (a) (b) (c) (d) (e)

βj
p, j ∈ [2] 0 0 0 0 0

βj
q , j ∈ [2] 0 0 0 0 0

βj
r , j ∈ [2] 0 0 0 0 0

β3
p 0 0 1 0 3/4

β3
q 0 0 1 0 3/4

β3
r 0 3/2 1 0 3/4

β1
pq 3/2 0 0 3/2 0

β1
pr 3/2 0 0 3/2 0

β1
qr 0 0 0 0 0

β2
pq 3/2 0 3/2 3/2 3/2

β2
pr 0 3/2 3/2 0 3/2

β2
qr 3/2 3/2 3/2 3/2 3/2

β3
pq 0 3/2 3/2 0 3/2

β3
pr 3/2 3/2 3/2 3/2 3/2

β3
qr 3/2 3/2 3/2 3/2 3/2

βj
pqr, j ∈ [3] 3 3 3 3 3

γip, i ∈ [3] 0 0 0 0 0

γiq, i ∈ [3] 0 0 0 0 0

γir, i ∈ [3] 0 0 0 0 0

γ1pq 1 1 1 0 0

γ1pr 1 1 1 3/2 1

γ1qr 1 1 1 3/2 1

γ2pq 1 1 1 3/2 1

γ2pr 1 1 1 3/2 1

γ2qr 1 1 1 3/2 1

γ3pq 1 1 1 3/2 1

γ3pr 1 1 1 3/2 1

γ3qr 1 1 1 3/2 1

γipqr, i ∈ [3] 3 3 3 3 3

Table 1. Values of βj
S and γi

S for S ⊆ C.

∣

∣NG(U) ∩ (Ai ×B1)
∣

∣ ≥ |U | and |NG(V ) ∩ (Ai × B1)| ≥ |V | for i ∈ [3]. Assume
that |U | ≥ |V |. Since |NG(U)∩(A×B1)| ≥ 3|U | we find that |NG(U)∩(A×B1)| ≥
3
2(|U |+ |V |) and therefore

∣

∣NG(U) ∩
(

A×B1
)∣

∣ ≥
3

2

(∣

∣Jy
pq ∩

(

Ā×B1
)∣

∣+
∣

∣Jy
pr ∩

(

Ā×B1
)∣

∣

)

+ 3
∣

∣Jy
pqr ∩

(

Ā×B1
)
∣

∣ .
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Since NG(U) ∩ (A×B1) ∩ I = ∅ we find that for every y ∈ B1 we have

|Iy ∩ (A×B)| ≤ α3(G)−
3

2

(
∣

∣Jy
pq ∩

(

Ā×B1
)
∣

∣+
∣

∣Jy
pr ∩

(

Ā×B1
)
∣

∣

)

− 3
∣

∣Jy
pqr ∩ (Ā×B1)

∣

∣ .

Note that the same bound is true (and with the same proof) for the coloring
in Case (d). Similarly (by observing sets U ′ =

(

Jy
pq ∪ Jy

pqr

)

∩
(

Ā × B2
)

and
V ′ =

(

Jy
qr∪Jy

pqr

)

∩
(

Ā×B2
)

and deducing similar claims as above) we prove that
for every y ∈ B2 we have

|Iy ∩ (A×B)| ≤ α3(G)−
3

2

(
∣

∣Jy
pq ∩ (Ā×B2)

∣

∣+
∣

∣Jy
qr ∩

(

Ā×B2
)
∣

∣

)

− 3
∣

∣Jy
pqr ∩

(

Ā×B2
)∣

∣ .

and (by observing sets U ′′ =
(

Jy
qr∪J

y
pqr

)

∩
(

Ā×B2
)

and V ′′ =
(

Jy
pr∪J

y
pqr

)

∩
(

Ā×B2
)

we find that) for every y ∈ B3

|Iy ∩ (A×B)| ≤ α3(G)−
3

2

(∣

∣Jy
pr ∩

(

Ā×B3
)∣

∣+
∣

∣Jy
qr ∩

(

Ā×B3
)∣

∣

)

− 3
∣

∣Jy
pqr

(

Ā×B3
)
∣

∣ .

Combining all three bounds we get

|I ∩ (A×B)| =
∑

y∈B

|Iy ∩ (A×B)| ≤ α3(G)α3(H)

−
3

2

(
∣

∣Jpq ∩
(

Ā×B1
)
∣

∣+
∣

∣Jpr ∩
(

Ā×B1
)
∣

∣

)

− 3
∣

∣Jpqr ∩
(

Ā×B1
)
∣

∣

−
3

2

(∣

∣Jpq ∩
(

Ā×B2
)∣

∣+
∣

∣Jqr ∩
(

Ā×B2
)∣

∣

)

− 3
∣

∣Jpqr ∩
(

Ā×B2
)∣

∣

−
3

2

(
∣

∣Jpr ∩
(

Ā×B3
)
∣

∣+
∣

∣Jqr ∩
(

Ā×B3
)
∣

∣

)

− 3
∣

∣Jpqr ∩
(

Ā×B3
)
∣

∣ .

This is exactly the bound (2) with coefficients βj
S as given in the first column of

Table 1 (again note that this bound applies also for the coloring in Case (d), so
this also proves inequality (2) for Case (d)).

Now we prove (3). Let a ∈ A and consider the sets U =
(

Kx
pq ∪Kx

pr ∪Kx
pqr

)

∩

(A× B̄) and V =
(

Kx
pq ∪Kx

qr ∪Kx
pqr

)

∩ (A× B̄). Note that for every (x, y) ∈ U

we have p ∈ f(NG(x, y)) and for every (x, y) ∈ V we have q ∈ f(NG(x, y)).
Moreover the projections of both sets to H are independent sets in H. Therefore
|NH(U) ∩ (A × B1)| ≥ |U | and since p ∈ f(NG(x, y)) for all (x, y) ∈ U we find
that (NH(U) ∩ (A × B1)) ∩ I = ∅. Similarly (NH(V ) ∩ (A × B2)) ∩ I = ∅ and
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|NH(V )∩(A×B2)| ≥ |V |. Finally let Z = Kx
pqr. We have (NH(Z)∩(A×B3))∩I

= ∅ and |NH(Z) ∩ (A×B3)| ≥ |Z|. Since

|U |+ |V |+ |Z| =
∣

∣Kx
pq ∩ (A× B̄)

∣

∣+
∣

∣Kx
pr ∩ (A× B̄)

∣

∣

+
∣

∣Kx
qr ∩ (A× B̄)

∣

∣+ 3
∣

∣Kx
pqr ∩ (A× B̄)

∣

∣

we find that

|I ∩ (A×B)| =
∑

x∈A

|Ix ∩ (A×B)| ≤ α3(G)α3(H)−
∣

∣Kpq ∩ (A× B̄)
∣

∣

−
∣

∣Kpr ∩ (A× B̄)
∣

∣−
∣

∣Kqr ∩ (A× B̄)
∣

∣− 3
∣

∣Kpqr ∩ (A× B̄)
∣

∣ .

This is exactly the bound (3) with coefficients γiS as given in the first column of
Table 1.

It remains to prove (7) and (8). If we choose Λ1 = 2/3 and Λ2 = 1/3 then
(7) and (8) follow from Corollaries 8 and 5.

Case (b). The bound (3) is the same as in Case (a), and we use sets U =
Kx

pr∪Kx
qr∪Kx

pqr, V = Kx
pr∪Kx

pq ∪Kx
pqr and Z = Kx

pqr to prove (3) (an analogous

arumentation as in Case (a) works). Next we prove (2). To prove (2) note
that for every y ∈ B3 the projections of U =

(

Jy
pr ∪ Jy

pq ∪ Jy
pqr

)

∩ (Ā × B3)

and V = (Jy
r ∪ Jy

pr ∪ Jy
qr ∪ Jy

pqr) ∩ (Ā × B3) to G are independent sets in G.
Since A is a maximum tripartite subgraph of G and the projections of U and V
induce independent sets in Ā, we find that |A| ≥ 3|U | and |A| ≥ 3|U |, and so
|A| ≥ 3

2(|U |+ |V |). Therefore

|A| ≥
3

2

∣

∣

(

Jy
pq ∪ Jy

pr ∪ Jy
qr ∪ Jy

r

)

∩
(

Ā×B3
)∣

∣+ 3
∣

∣Jy
pqr ∩

(

Ā×B3
)∣

∣ .

Since
0 =

∣

∣Iy ∩
(

A×B3
)
∣

∣ = α3(G)− |A|

we find that for every y ∈ B3 we have

|Iy ∩ (A×B)| ≤ α3(G)−
3

2

∣

∣

(

Jy
pq ∪ Jy

pr ∪ Jy
qr ∪ Jy

r

)

∩
(

Ā×B3
)
∣

∣

− 3
∣

∣Jy
pqr ∩

(

Ā×B3
)
∣

∣ .

This inequaity explains the coefficients β3
pq, β

3
pr, β

3
qr, β

3
r and β3

pqr. We prove, anal-
ogously as in Case (a), that for every y ∈ B2 we have

|Iy ∩ (A×B)| ≤ α3(G)−
3

2

(∣

∣Jy
pr ∩

(

Ā×B2
)∣

∣+
∣

∣Jy
qr ∩

(

Ā×B2
)∣

∣

)

− 3
∣

∣Jy
pqr ∩

(

Ā×B2
)
∣

∣ ,
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which explains coefficients β2
pr, β

2
qr and β2

pqr. Also for every y ∈ B1 we have

|Iy ∩ (A×B)| ≤ α3(G)− 3
∣

∣Jy
pqr ∩

(

Ā×B1
)
∣

∣ ,

explaining the coeficient β1
pqr. If we set Λ1 = 2/3 and Λ2 = 1/3 then (7) follows

from Corollary 6 and (8) follows from Corollary 5.

Case (c). In this case (3) is proved as in Case (a). When we set Λ1 = 2/3
and Λ2 = 1/3 we find that (8) follows from Corollary 5 and (7) follows from
Corollary 7, so it remains to prove (2) to complete this case. Let y ∈ B3 and
assume, without loss of generality, that

∣

∣Jy
p ∩

(

Ā×B3
)
∣

∣ +
∣

∣Jy
q ∩

(

Ā×B3
)
∣

∣ ≥
2
3

(∣

∣Jy
p ∩

(

Ā×B3
)∣

∣+
∣

∣Jy
q ∩

(

Ā×B3
)∣

∣+
∣

∣Jy
r ∩

(

Ā×B3
)∣

∣

)

. Let U =
(

Jy
p ∪ Jy

pq ∪

Jy
pr∪Jy

pqr

)

∩
(

Ā×B3
)

and V =
(

Jy
q ∪Jy

pq∪Jy
qr∪Jy

pqr

)

∩
(

Ā×B3
)

. The projections

of U and V to G induce independent sets in Ā, so it follows from maximality of
A that |A| ≥ 3|U | and |A| ≥ 3|V |. Therefore |A| ≥ 3

2(|U |+ |V |) and thus

0 =
∣

∣Iy ∩
(

A×B3
)∣

∣ ≤ α3(G)−
3

2
(|U |+ |V |).

Now we use the initial asuumption
∣

∣Jy
p ∩

(

Ā×B3
)∣

∣+
∣

∣Jy
q ∩

(

Ā×B3
)∣

∣ ≥ 2
3

(∣

∣Jy
p ∩

(Ā×B3)
∣

∣+
∣

∣Jy
q ∩

(

Ā×B3
)∣

∣+
∣

∣Jy
r ∩

(

Ā×B3
)∣

∣

)

to get

∣

∣Iy ∩
(

A×B3
)
∣

∣ ≤ α3(G)−
(
∣

∣Jy
p ∩

(

Ā×B3
)
∣

∣+
∣

∣Jy
q ∩

(

Ā×B3
)
∣

∣

+
∣

∣Jy
r ∩

(

Ā×B3
)
∣

∣−
3

2

(
∣

∣Jy
pq ∩

(

Ā×B3
)
∣

∣+
∣

∣Jy
pr ∩

(

Ā×B3
)
∣

∣

)

+
∣

∣Jy
qr ∩

(

Ā×B3
)
∣

∣− 3
∣

∣Jy
pqr ∩

(

Ā×B3
)
∣

∣ .

Since also for every y ∈ B2 we have

∣

∣Iy ∩
(

A×B2
)
∣

∣ ≤ α3(G)−
3

2

(
∣

∣Jy
pq ∩

(

Ā×B2
)
∣

∣+
∣

∣Jy
pr ∩

(

Ā×B2
)
∣

∣

+
∣

∣Jy
qr ∩

(

Ā×B2
)∣

∣

)

− 3
∣

∣Jy
pqr ∩

(

Ā×B2
)∣

∣ .

and for every y ∈ B1 we have

∣

∣Iy ∩
(

A×B1
)
∣

∣ ≤ α3(G)− 3
∣

∣Jy
pqr ∩

(

Ā×B1
)
∣

∣ ,

we find that (2) with coefficients βS as given in Table 1 is fulfilled.

Case (d). The bound (2) is the same as in Case (a) and it was already proved,
so it remains to prove (3). Let x ∈ A1 and consider the sets U = (Kx

pr ∪Kx
pqr) ∩

(A × B̄) and V = (Kx
qr ∪ Kx

pqr) ∩ (A × B̄). Note that for every (x, y) ∈ U we
have p, r ∈ f(NG(x, y)) and for every (x, y) ∈ V we have q, r ∈ f(NG(x, y)).
Moreover the projections of both sets to H are independent sets in H. Thus
we have |NH(U) ∩ (A1 × B1)| ≥ |U | and |NH(U) ∩ (A1 × B3)| ≥ |U |, and since
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p, r ∈ f(NG(x, y)) for all (x, y) ∈ U we find that (NH(U) ∩ (A1 × B1)) ∩ I =
(NH(U)∩(A1×B3))∩I = ∅. Similarly (NH(V )∩(A1×B2))∩I = (NH(V )∩(A1×
B3)) ∩ I = ∅, and |NH(V ) ∩ (A1 × B2)| ≥ |V | and |NH(V ) ∩ (A1 × B3)| ≥ |V |.
Putting all together we get

|I ∩ (A1 ×B)| =
∑

x∈A1

∣

∣Ix ∩ (A1 ×B)
∣

∣ ≤ |A1|α3(H)−
3

2
(|Kpr ∩ (A1 × B̄)|

− |Kqr ∩ (A1 × B̄)|)− 3|Kpqr ∩ (A1 × B̄)|.

If x ∈ A2 ∪ A2 then the we set U =
(

Kx
pq ∪ Kx

pr ∪ Kx
pqr

)

∩ (A × B̄) and V =
(

Kx
pq ∪Kx

qr ∪Kx
pqr

)

∩ (A× B̄) and derive similar claims as in Case (a) to obtain

∣

∣I ∩
((

A2 ∪A3
)

×B)
∣

∣ =
∑

x∈A2∪A3

∣

∣Ix ∩
((

A2 ∪A3
)

×B
)
∣

∣ ≤
∣

∣A2 ∪A3
∣

∣α3(H)

−
3

2

(∣

∣Kpq ∩
((

A2 ∪A3
)

× B̄
)∣

∣+
∣

∣Kpr ∩
((

A2 ∪A3
)

× B̄
)∣

∣

+
∣

∣Kqr ∩
((

A2 ∪A3
)

× B̄
)
∣

∣− 3
∣

∣Kpqr ∩
((

A2 ∪A3
)

× B̄
)
∣

∣.

Adding both inequalities we get (3) with coefficients γiS as declared in the fourth
column of Table 1. Finally when we set Λ1 = 2/3 and Λ2 = 1/3 we find that (8)
follows from Corollary 9 and (7) follows from Corollary 8.

Case (e). We first prove (2). Let y ∈ B2 ∪ B3 and assume without loss of
generality that

∣

∣Jy
r ∩

(

Ā × B3
)∣

∣ ≥
∣

∣Jy
q ∩

(

Ā × B3
)∣

∣. Let U =
(

Jy
p ∪ Jy

pr ∪ Jy
pq ∪

Jy
pqr

)

∩
(

Ā × B3
)

and V =
(

Jy
r ∪ Jy

pr ∪ Jy
qr ∪ Jy

pqr

)

∩
(

Ā × B3
)

. Without loss
of generality assume that |U | ≥ |V |. Since the projections of U and V induce
independent sets in Ā we find that |U | ≥ |V | ≥ |Ai| for i ∈ [3]. Note that for
every vertex (x, y) ∈ V we have r ∈ NH(x, y) and so NG(V )∩ (A1 ×B3)∩ I = ∅.
Since

∣

∣NG(V ) ∩
(

A1 ×B3
)∣

∣ ≥ |V | we find that

∣

∣Iy ∩
(

A×B3
)∣

∣ ≤ α3(G)−
3

2
(|U |+ |V |),

and since
∣

∣

(

Jy
r ∪ Jy

p

)

∩
(

Ā×B3
)∣

∣ ≥ 1
2

∣

∣

(

Jy
r ∪ Jy

p ∪ Jy
q

)

∩
(

Ā×B3
)∣

∣ we find that

∣

∣Iy ∩
(

A×B3
)
∣

∣ ≤ α3(G)−
3

2

(
∣

∣Jy
pq ∩

(

Ā×B3
)
∣

∣+
∣

∣Jy
pr ∩

(

Ā×B3
)
∣

∣

+
∣

∣Jy
qr ∩

(

Ā×B3
)∣

∣

)

−
3

4

(∣

∣Jy
p ∩

(

Ā×B3
)∣

∣+
∣

∣Jy
q ∩

(

Ā×B3
)∣

∣

+
∣

∣Jy
r ∩

(

Ā×B3
)∣

∣

)

− 3
∣

∣Jy
pqr ∩

(

Ā×B3
)∣

∣.

which proves (2).
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To prove (3) let x ∈ A1 and define U = (Kx
pr ∪ Kx

pqr) ∩ (A × B̄), V =
(Kx

qr ∪Kx
pqr) ∩ (A× B̄) and Z = Kx

pqr ∩ (A× B̄). Every vertex in U ∪ V ∪Z has
in its G-neighborhood a vertex colored by r. So we have

∣

∣Ix ∩
(

A1 ×B
)
∣

∣ ≤ α3(H)−
(
∣

∣Kx
pr ∩

(

A1 × B̄
)
∣

∣+
∣

∣Kx
qr ∩

(

A1 × B̄
)
∣

∣)

− 3
∣

∣Kx
pqr ∩

(

A1 × B̄
)∣

∣.

For x ∈ A2 ∪ A3 the proof is analogous as in Case (a). In this case we set
Λ1 = Λ2 = 1/2, and so (8) follows from Corollary 10 and (7) follows from
Corollary 7. This completes the proof of the last case.
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