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Abstract

The Hamiltonian number of a connected graph is the minimum of the
lengths of the closed spanning walks in the graph. In 1968, Grinberg pub-
lished a necessary condition for the existence of a Hamiltonian cycle in a
plane graph, formulated in terms of the degrees of its faces. We show how
Grinberg’s theorem can be adapted to provide a lower bound on the Hamil-
tonian number of a plane graph.
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1. Introduction

A walk in a graph G is a sequence v0, e1, v1, . . . , vk−1, ek, vk of vertices vi and
edges ei of G such that, for each i ∈ {1, . . . , k}, the edge ei has endpoints vi−1

and vi; the length of a walk is the number of its edges. The walk is closed if
vk = v0 and spanning if each vertex of G appears at least once in the sequence.
In a closed walk and for j ∈ {1, . . . , k− 1}, the vertex vj is a repeat if vj = vi for
some i ∈ {0, . . . , j− 1}. Thus the number of repeats in a closed spanning walk in
G is the difference between the length of the walk and the order of G. For ease
of notation, whenever G is simple, we will denote a walk in G by a sequence of
adjacent vertices of G, since the intervening edges can be inferred.

A Hamiltonian cycle in a graph is a closed spanning walk that visits each
vertex exactly once; a graph is called Hamiltonian provided that it contains a
Hamiltonian cycle. While not every graph is Hamiltonian, every connected graph
contains a closed spanning walk. A Hamiltonian walk is a closed spanning walk
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of minimum length. The Hamiltonian number of a connected graph G, denoted
by h(G), is the length of a Hamiltonian walk in G. Thus the Hamiltonian number
of a graph can be thought of as a measure of how far the graph deviates from
being Hamiltonian.

In 1968, Grinberg [11] published a necessary condition for the existence of
a Hamiltonian cycle in a planar graph, formulated in terms of the degrees of its
faces. The main goal of this paper is to show how Grinberg’s theorem can be
adapted to provide a lower bound on the Hamiltonian number of a plane graph.
Before we state this theorem, we will place our work in context.

In general, determining the Hamiltonian number of a graph is difficult, but
for a connected graph G of order n, the bounds n ≤ h(G) ≤ 2(n − 1) are easily
obtained. A Hamiltonian walk in G must visit each vertex, which gives the lower
bound. On the other hand, a pre-order, closed spanning walk in a spanning tree
of G has length 2(n− 1), yielding the upper bound. Over the years, much of the
research on the Hamiltonian number has advanced along two fronts: developing
tighter bounds for the Hamiltonian number in terms of natural graph parameters,
or evaluating the Hamiltonian numbers of some special graphs or families of
graphs.

Goodman and Hedetniemi [9] initiated the study of the Hamiltonian number
of a graph. They proved, among other things, properties of Hamiltonian walks,
upper and lower-bounds for the Hamiltonian number of a graph, and a formula
for the Hamiltonian number of a complete n-partite graph. Their most accessible
result is this: let G be a k-connected graph on n vertices with diameter d, then
h(G) ≤ 2(n− 1)− ⌊k/2⌋ (2d− 2), which improves the elementary upper bound.

Soon after the publication of the seminal paper of Goodman and Hedetniemi,
Bermond [3] published a theorem on the Hamiltonian number problem inspired
by Ore’s theorem. Ore’s theorem gives a sufficient condition for a graph to be
Hamiltonian in terms of the sums of the degrees of non-adjacent vertices; see, for
example, Theorem 6.6 of [7]. Bermond showed the following: let G be a graph
of order n and let c ≤ n; if deg(v) + deg(w) ≥ c for every pair of non-adjacent
vertices v and w in V (G), then h(G) ≤ 2n− c.

Chartrand, Thomas, Zhang, and Saenpholphat [8] introduced an alternative
approach to the Hamiltonian number. Let G be a connected graph of order n.
Given vertices u and v, let d(u, v) denote the length of a shortest path from u to
v. A cyclic ordering of the vertices of G is a permutation s : v1, v2, . . . , vn, vn+1

of V (G), where vn+1 = v1. Given a cyclic ordering s, let d(s) =
∑n

i=1
d(vi, vi+1).

The set H(G) = {d(s) : s is a cyclic ordering of V (G)} is called the Hamiltonian

spectrum of G. Chartrand and his colleagues showed that h(G) = minH(G).
This paper contains two other notable results: first, that a connected graph G
of order n satisfies h(G) ≤ 2(n − 1) with equality if and only if G is a tree;
second, that for each integer n ≥ 3, every integer in the interval [n, 2(n − 1)] is
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the Hamiltonian number of some graph of order n. Král, Tong, and Zhu [12] and
Liu [13] conducted additional research on the Hamiltonian spectra of graphs.

Various authors have studied the Hamiltonian number of special graphs and
families of graphs. Punnim and Thaithae [19, 17] studied the Hamiltonian num-
bers of cubic graphs. A graph of order n with Hamiltonian number n+1 is called
almost Hamiltonian. Punnim, Saenpholphat, and Thaithae [16] characterized
the almost Hamiltonian cubic graphs and the almost Hamiltonian generalized
Petersen graphs. Asano, Nishizeki, and Watanabe [2, 14] established a simple
upper bound for the Hamiltonian number of a maximal planar graph of order
n ≥ 3 and created an algorithm for finding closed spanning walks in a graph with
length close to its Hamiltonian number. Chang et al. [5] studied the Hamiltonian
numbers of Möbius double-loop networks. The Hamiltonian number problem has
a variety of cognates: Vacek [20, 21] analyzed open Hamiltonian walks; Araya and
Wiener [1, 22] investigated hypohamiltonian graphs; Goodman, Hedetniemi, and
Slater [10] studied the Hamiltonian completion problem; Chang and Tong [6] con-
sidered the Hamiltonian numbers of strongly connected digraphs; and, Okamoto,
Zhang, and Saenpholphat [18, 15] studied the upper traceable numbers of graphs.

2. The Grinberg Number of a Plane Graph

The boundary of a face (region) of a plane graph is the subgraph induced by the
edges adjacent to that face, and a boundary walk is a closed walk containing each
of these edges. The degree of a face is the minimum length of a boundary walk.
We will denote the degree of the face F by deg(F ). Two faces of a plane graph
are said to be adjacent if they share at least one common boundary edge. A
vertex (or an edge) is said to be incident to a face if it lies on the boundary of
the face.

Let G be a plane graph and let its faces (including its exterior face) be labeled
F1, . . . , FN . Let G (G) be the set of all nonnegative sums of the form

(1)
N
∑

i=1

εi
(

deg(Fi)− 2
)

where (ε1, ε2, . . . , εN ) ∈ {−1,+1}N , and let gr(G) = minG (G). We will call G (G)
the Grinberg set of G and gr(G) the Grinberg number of G. To get a sense of
this, consider the graphs pictured in Figure 1. The graph G1 has 1 face of degree
18 and 5 faces of degree 6; thus, G (G1) = {4, 12, 20, 28, 36}, and gr(G1) = 4. The
graph G2 has 1 face of degree 7 and 3 faces of degree 3; thus, G (G2) = {2, 4, 6, 8}
and gr(G2) = 2. Finally, the graph G3 has 3 faces of degree 6 and 2 faces of
degree 4; thus, G (G3) = {0, 4, 8, 12, 16} and gr(G3) = 0.
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G1 G2
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G3

Figure 1. For these graphs, G (G1) = {4, 12, 20, 28, 36}, G (G2) = {2, 4, 6, 8}, and G (G3) =
{0, 4, 8, 12, 16}; hence, gr(G1) = 4, gr(G2) = 2, and gr(G3) = 0.

Given a graph G of order n, let rep(G) denote the number of repeats in
a Hamiltonian walk in G, that is, rep(G) = h(G) − n. For a plane graph G,
Grinberg’s theorem can be restated as follows: if rep(G) = 0, then gr(G) = 0; see
[11]. Our main result can be seen as a natural extension of Grinberg’s theorem.

Theorem 1. Let G be a plane graph. Then, for some γ ∈ G (G) and nonnegative

integer k,

(2) rep(G) =
γ

2
+ 2k.

In particular,

(3) rep(G) ≥
gr(G)

2
.

Proof. Our proof is an adaptation of the customary proof of Grinberg’s theorem;
see, for example, Theorem 18.2 of [4]. Hereafter let V = {v1, . . . , vn} denote the
vertex set of G and let σ be a closed spanning walk in G.

The walk σ in G induces a natural multigraph on V . Let Gσ have vertex set
V . For each pair of vertices vi and vj in V , let there be as many edges in Gσ

between vi and vj as there are occurrences of the edge vivj in σ. We will call
Gσ the reduction of G relative to σ. The graph Gσ is planar, Eulerian, and the
number of edges in Gσ is equal to the length of σ.

Since Gσ is Eulerian, its dual graph is bipartite. Accordingly, we will label
each face of Gσ with a + or a − sign as follows: the unbounded face is marked +;
thereafter, if a face of Gσ is adjacent to (shares an edge with) a + region, then it
is marked −, and if a face of Gσ is adjacent to a − region, then it is marked +.
An example of a plane graph and its reduction relative to a closed spanning walk
is presented in Figure 2.

There is a simple relationship between the number of faces of Gσ and the
number of repeats in σ. For each i ∈ {1, . . . , n}, let mi count the number of times
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Figure 2. A plane graph (left) and its reduction (right) based on the closed spanning walk
a, b, c, d, e, f, g, h, a, i, j, r, j, k, l,m, n, p, q, p, n, o, a. Notice that the walk has 4 repeats and
its reduction has 4 + 2 faces, in accord with equation (4).

vertex vi is a repeat in the walk σ, that is, mi = (degGσ

vi)/2 − 1. Let Φ count
the number of faces of Gσ. We claim that

(4) Φ = 2 +
n
∑

i=1

mi.

Since the degree of the vertex vi in Gσ is 2mi + 2, the number of edges in Gσ is
∑n

i=1
(mi + 1). By the Euler characteristic formula, n −

∑n
i=1

(mi + 1) + Φ = 2,
which yields equation (4).

Our argument now moves into a second phase, culminating in a simple for-
mula relating the degrees of the positively and negatively signed faces of Gσ. Let
ℓ+ denotes the number of positively signed faces of Gσ and label these faces by
{A+

i : 1 ≤ i ≤ ℓ+}. Let ℓ
−

and {A−

i : 1 ≤ i ≤ ℓ
−
} be defined likewise for the

negatively signed faces of Gσ. Since each edge of Gσ is adjacent to a positively
and a negatively signed face, it follows that

∑ℓ+
i=1

deg(A+

i ) =
∑ℓ

−

i=1
deg(A−

i ). Let
∆ = ℓ

−
− ℓ+. Then

(5)

ℓ+
∑

i=1

(

deg(A+

i )− 2
)

−

ℓ
−

∑

i=1

(

deg(A−

i )− 2
)

= 2∆.

We will modify this formula to incorporate the faces of G. Let the faces of G
be labeled {Fi : 1 ≤ i ≤ N}. Each face of G is contained by a unique face of Gσ.
For each i ∈ {1, . . . , N}, let εi be sign of the face of Gσ that contains Fi. We will
show that

(6)
N
∑

i=1

εi
(

deg(Fi)− 2
)

= 2∆.
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To verify this claim, we will follow Grinberg’s strategy: we will add to Gσ, one at
a time, those edges of G that were not traversed by σ. Such an edge must split
a face of Gσ into two sub-faces, each with the same sign as the parent face. For
the sake of argument, let us say that a face labeled A+

i is divided by an edge of
G into two sub-faces, labeled A+

i1
and A+

i2
. Since the two sub-faces share exactly

one edge, we have

deg(A+

i )− 2 =
(

deg(A+

i1
)− 2

)

+
(

deg(A+

i2
)− 2

)

.

Hence we can substitute
(

deg(A+

i1
) − 2

)

+
(

deg(A+

i2
) − 2

)

for deg(A+

i ) − 2 in
equation (5) and retain equality. We continue this process until all of these edges
have been added. We have almost arrived at equation (6). The only difference
corresponds to those faces of Gσ that were created because an edge was traversed
more than once by σ. Such a face has only two edges and thus contributes 0 to
the sum. In this way, we have transformed equation (5) into equation (6).

Our proof is nearly complete. For simplicity, let ν = ℓ− − 1, π = ℓ+ − 1,
and ρ =

∑n
i=1

mi, the number of repeats in σ. Recalling equation (4), it follows
that π+ ν = ρ. According to equation (6) and the definition of the Grinberg set,
there exists γ ∈ G (G) such that |π − ν| = γ/2. Solving this system of equations,
we find ρ = γ/2 + 2min{ν, π}. This result applies to a Hamiltonian walk, which
yields equation (2). The inequality (3) follows from this, since gr(G)/2 is the
smallest element of G (G).

3. Some Observations and Applications

Different planar embeddings of a graph may produce different Grinberg sets and
Grinberg numbers. For example, for each positive integerm, let Bm = P2m+1◦K2,
the corona product of a path graph P2m+1 and a complete graph K2. Two planar
embeddings of B1 are pictured in Figure 3, labeled B1,O (outerplanar) and B1,C

(concentric). Observe that G (B1,O) = {8, 10, 12, 14} and gr(B1,C) = 8, while
G (B1,C) = {0, 2, 10, 12, 14} and gr(B1,C) = 0.

B1,O B1,C

Figure 3. An outerplanar and a concentric embedding of the graph B1.

This same family of graphs demonstrates that the difference between the
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left and right-hand sides of inequality (3) can be arbitrarily large. Observe that
gr(Bm,C) = 0. However, since gr(Bm,O) = 8m, rep(Bm,C) = rep(Bm,O) ≥ 4m.

As a consequence of inequality (3), if a plane graph G possesses a closed
spanning walk with gr(G)/2 repeats, then rep(G) = gr(G)/2. This is the case
for the graphs G1 and G2 pictured in Figure 1, which satisfy gr(G1) = 4 and
gr(G2) = 2. It is easy to find a closed spanning walk in G1 with 2 repeats; thus,
rep(G1) = 2. Likewise, it is easy to find a closed spanning walk in G2 with 1
repeat; thus, rep(G2) = 1.

Whenever inequality (3) is strict, some additional work is required to deter-
mine rep(G), and equation (2) can be helpful in this undertaking. The graph G3

pictured in Figure 1 has Grinberg set {0, 4, 8, 12, 16}. Thus, according to equa-
tion (2), rep(G3) must be a nonnegative even integer. Since G3−{a, b} has three
components, G3 is not Hamiltonian; thus, rep(G3) ≥ 2. It is easy, however, to
find a closed spanning walk with 2 repeats; thus, rep(G3) = 2.

Our next theorem can be used in conjunction with equation (2) to determine
the number of repeats in a Hamiltonian walk. Let σ be a closed spanning walk
in a plane graph G. Relative to σ, an edge of G is even provided that σ crosses
it an even number of times; an edge of G is odd if it is not even. A vertex of G
is enveloped if it has degree two and its incident edges are even.

Theorem 2. Let σ be a closed spanning walk in a simple plane graph G. Then

the number of repeats in σ must be at least the number of enveloped vertices.

Proof. Let us assume that G has at least one enveloped vertex relative to σ
and let {x1, . . . , xk} be the list of its enveloped vertices. Let a and b denote the
vertices of G that are adjacent to x1. Let G1 be the plane graph obtained by
deleting x1 and inserting the edge ab. This process is known as smoothing out

or smoothing away the vertex x1. The closed spanning walk σ in G naturally
generates a closed spanning walk σ1 in G1. First, in the listing of the vertices of
G by σ, replace (one at a time) all occurrences of the string a, x1, a with a and
all occurrences of the string b, x1, b with b. Next, replace all occurrences of the
string a, x1, b with a, b and all occurrences of the string b, x1, a with b, a.

We claim that σ has at least one more repeat of vertices than σ1. Since σ
is a spanning walk, the vertex x1 must occur at least once in σ and it must be
preceded by a or b and followed by a or b. If a, x1, a occurs in σ, then this repeat of
a does not occur in σ1. If b, x1, b occurs in σ, then this repeat of b does not occur
in σ1. If either a, x1, b or b, x1, a occurs in σ, then, since the edge ax1 is crossed
an even number of times, this repeat of x1 does not occur in σ1. This process can
be continued, one enveloped vertex at a time, until all of the enveloped vertices
are smoothed out, resulting in a closed spanning walk σk in the graph Gk. The
walk σk has at least k fewer repeats than σ, proving our result.

Here is an application of Theorem 2. The graph H pictured in Figure 4
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H

F1 F2 F3

F4 F5 F6

F7 F8 F9

Figure 4. Although the graph H has Grinberg number 6, a Hamiltonian walk in H must
have at least 5 repeats. A closed spanning walk with 5 repeats is pictured to the right.

has 8 interior faces of degree 8 and an exterior face of degree 20; thus, G (H) =
{6, 18, 30, 42, 54, 66}. According to equation (2), there exists a nonnegative inte-
ger k such that rep(H) = 3 + 2k. If a closed spanning walk σ in H corresponds
to a Grinberg number of 6, then σ partitions the faces of H so that face F9 must
have the same sign as either two or three of the octagonal faces and the remain-
ing faces must have the opposite sign. In all cases, Theorem 2 demonstrates
that more than three repeats must occur. For example, if F9, F6, and F5 have
the same sign and the remaining faces have the opposite sign, then there are 5
enveloped vertices, shown as the filled vertices in Figure 4. The same argument
holds in each of the remaining cases. On the other hand, a closed spanning walk
with 5 repeats can be readily found; see Figure 4. Thus, rep(H) = 5.

The Grinberg number of plane graph can be easily calculated if one of its
faces has large degree.

Theorem 3. Let G be a plane graph of order n and let F be one of its faces.

If deg(F ) ≥ n, then gr(G) = 2(deg(F )− n).

Proof. Let e and f denote the number of edges and faces of G. Let F1, . . . , Ff

denote the faces of G with F = F1. We will show that the sum in equation (1) is
minimized for a particular choice of signs. Since the sum of the face degrees of
G is two times the number of its edges,

(

deg(F1)− 2
)

−

f
∑

i=2

(

deg(Fi)− 2
)

=2
(

deg(F )− 2
)

−

f
∑

i=1

(

deg(Fi)− 2
)

=2
(

deg(F )− n
)

+ 2 (f − e+ n− 2)

=2
(

deg(F )− n
)

.

Since 2
(

deg(F ) − n
)

≥ 0, it follows that gr(G) = 2
(

deg(F ) − n
)

, as was to be
shown.
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The graph G2 pictured in Figure 1 has 6 vertices and the degree of its exterior
face is 7; thus, according to Theorem 3, gr(G1) = 2. A tree has a single face, and
the degree of this face is twice the number of its edges. According to Theorem 3,
the Grinberg number of a tree of order n, n ≥ 2, is 2(n− 2).

4. Some Remarks on Plane Almost Hamiltonian Graphs

As noted in the introduction, a graph of order n with Hamiltonian number n+1
is called almost Hamiltonian. For example, the graph G2 pictured in Figure 1 is
almost Hamiltonian. One consequence of Theorem 1 is that the Grinberg number
of a plane almost Hamiltonian graph must be 0 or 2; our next theorem states
that, in either case, 2 must be in its Grinberg set.

Theorem 4. Let the graph G be planar and almost Hamiltonian. Then the

Grinberg set of any planar embedding of G must contain 2.

Proof. Let Ĝ be an embedding of G in the plane. A Hamiltonian walk in Ĝ
contains one repeat; thus, according to equation (2), there exists a Grinberg
number γ ∈ G (Ĝ) and a nonnegative integer k such that 1 = γ/2+2k. It follows
that γ = 2, as was to be shown.

It would be interesting to identify some distinguishing characteristics of plane
almost Hamiltonian graphs that produce a Grinberg number of 2. Our next two
theorems offer two such characteristics.

Theorem 5. Let α and β be positive integers with gcd(α, β) ≥ 2. Let G be a plane

graph such that the degree of each face is in the set {αk + β + 2 : k ≥ 0, k ∈ Z}.
If G is almost Hamiltonian, then gr(G) = 2.

Proof. Let the faces of G be lableled F1, . . . , FN . Let us assume, to the contrary,
that gr(G) 6= 2. Then, by Theorem 4, {0, 2} ⊂ G (G). It follows that there are
choices of signs (ε1, . . . , εN ) ∈ {−1, 1}N and (δ1, . . . , δN ) ∈ {−1, 1}N such that

1 =
N
∑

i=1

(

εi − δi
2

)

(

deg(Fi)− 2
)

.

Because of the condition on the degrees of the faces of G, this equation can
be expressed as αp + βq = 1 for some integers p and q, which contradicts the
assumption that gcd(α, β) ≥ 2. Thus gr(G) = 2, as was to be shown.

For α = β = 2, our theorem asserts that any plane almost Hamiltonian graph
whose face degrees are in the set {2k + 4 : k ∈ Z, k ≥ 0} must have Grinberg
number 2. For each integer m ≥ 1, the grid graph P2m+1�P2m+1 is such a graph.
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Theorem 6. Let G be a plane almost Hamiltonian graph for which all of its

vertices belong to the outer face of the drawing. Then gr(G) = 2.

Proof. Let F be the exterior face of G. Since G is not Hamiltonian, deg(F ) >
n. By Theorem 3, gr(G) = 2(deg(F ) − n) ≥ 2. However, since G is almost
Hamiltonian, gr(G) ≤ 2; thus, gr(G) = 2, as was to be shown.

The graph G2 pictured in Figure 1 is an example of such a graph.
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