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Abstract

We prove that any harmonic partial cube is antipodal, which was con-
jectured by Fukuda and K. Handa, Antipodal graphs and oriented matroids,
Discrete Math. 111 (1993) 245–256. Then we prove that a partial cube G is
antipodal if and only if the subgraphs induced by Wab and Wba are isomor-
phic for every edge ab of G. This gives a positive answer to a question of
Klavžar and Kovše, On even and harmonic-even partial cubes, Ars Combin.
93 (2009) 77–86. Finally we prove that the distance-balanced partial cube
that are antipodal are those whose pre-hull number is at most 1.
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1. Introduction

If x, y are two vertices of a connected graph G, then y is said to be a relative

antipode of x if dG(x, y) ≥ dG(x, z) for every neighbor z of x, where dG denotes
the usual distance in G; and it is said to be an absolute antipode of x if dG(x, y) =
diam(G) (the diameter of G). The graph G is said to be antipodal if every vertex
x of G has exactly one relative antipode; it is diametrical if every vertex x of
G has exactly one absolute antipode x; and it is harmonic (or automorphically

diametrical [27]) if it is diametrical and the antipodal map x 7→ x, x ∈ V (G), is
an automorphism of G, i.e., xy ∈ E(G) whenever xy ∈ E(G). Note that, if G is
antipodal, then the unique relative antipode of a vertex x is an absolute antipode
of x, and thus is denoted by x.
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Bipartite antipodal graphs were introduced by Kotzig [18] under the name
of S-graphs. Later Glivjak, Kotzig and Plesńık [10] proved in particular that a

graph G is antipodal if and only if for any x ∈ V (G) there is an x ∈ V (G) such

that

dG(x, y) + dG(y, x) = dG(x, x) for all y ∈ V (G),(1)

where dG denotes the usual distance in G. The definition was extended to the
non-bipartite case by Kotzig and Laufer [19]. Several papers followed.

On the other hand diametrical graphs were introduced by Mulder [22] in
the case of median graphs. They were later studied by Parthasarathy and Nan-
dakumar [24] under the name of self-centered unique eccentric point graphs, then
by Göbel and Veldman [11] under the name of even graphs, by Fukuda and
Handa [9] who proved that the tope graphs of oriented matroids are harmonic
partial cubes (i.e., isometric subgraphs of hypercubes), and more recently by
Klavžar and Kovše [16] who gave a partial solution to a problem set in [9].

Any antipodal graph is clearly harmonic, and thus diametrical. Two re-
sults [9, Proposition 4.1 and Theorem 4.2] of Fukuda and Handa implicitely
imply that any harmonic partial cube is antipodal. Partial cubes, i.e., isometric
subgraphs of hypercubes, which were introduced by Firson [8] and characterized
by Djoković [5] and Winkler [28], have been extensively studied, see [20, 3] for
recent papers. Actually the aim of Fukuda and Handa in [9] was the character-
ization of the tope graph of an acycloid, and the fact that any harmonic partial
cube is antipodal, which is clearly a consequence of their results, is not plainly
expressed in their paper. This is why some had thought that this property was
not proved in [9]. In Section 3, we give a direct proof of this property by using
the fact that a diametrical partial cube is antipodal if and only if its diameter is
equal to its isometric dimension, i.e., the least non-negative integer n such that
this graph is an isometric subgraph of an n-cube (Lemma 3.2).

A graph G is said to be distance-balanced if |Wab| = |Wba| for every edge ab of
G, whereWab denotes the set of vertices that are closer to a than to b. Since their
introduction by Handa [13], distance-balanced graphs have played an important
role, and given rise to several papers, see for example some recent ones [15, 14, 7].
Handa [13] observed that any harmonic graph is distance-balanced, but that there
exist distance-balanced partial cubes that are not diametrical. In Section 6 we
show that the distance-balanced partial cubes that are antipodal are those whose
pre-hull number is at most 1 (see [26]).

Harmonic partial cubes have a property that is stronger than the one of being
distance-balanced. Actually if a partial cube G is harmonic, and thus antipodal,
then its antipodal map induces an isomorphism between the subgraphs induced
by Wab and Wba for every edge ab of G. In Section 5 we prove that the converse
is also true, i.e., that the above property characterizes antipodal partial cubes,
which answers a question of Klavžar and Kovše [16, Section 5]. More generally,
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they asked [16, Problem 5.3] whether a partial cube G is harmonic if and only if
the subgraphs induced by Wab and Wba are isomorphic for every edge ab of G.
The above two results give several ways of tackling this problem.

2. Preliminaries

The graphs we consider are undirected, without loops or multiple edges, and are
finite and connected. For a set S of vertices of a graph G we denote by G[S] the
subgraph of G induced by S, and G−S := G[V (G)−S]. A path P with V (P ) =
{x0, . . . , xn}, xi 6= xj if i 6= j, and E(P ) = {xixi+1 : 0 ≤ i < n} is denoted by
〈x0, . . . , xn〉 and is called an (x0, xn)-path. A cycle C with V (C) = {x1, . . . , xn},
xi 6= xj if i 6= j, and E(C) = {xixi+1 : 1 ≤ i < n} ∪ {xnx1}, is denoted by
〈x1, . . . , xn, x1〉.

The usual distance between two vertices x and y of a graph G, that is, the
length of any (x, y)-geodesic (= shortest (x, y)-path) in G, is denoted by dG(x, y).
A connected subgraph H of G is isometric in G if dH(x, y) = dG(x, y) for all
vertices x and y of H. The (geodesic) interval IG(x, y) between two vertices x
and y of G consists of the vertices of all (x, y)-geodesics in G.

In the geodesic convexity, that is, the convexity on the vertex set of a graph
G which is induced by the geodesic interval operator IG, a subset C of V (G)
is convex provided it contains the geodesic interval IG(x, y) for all x, y ∈ C.
The convex hull coG(A) of a subset A of V (G) is the smallest convex set which
contains A. A subset H of V (G) is a half-space if H and V (G)−H are convex.
We denote by IG the pre-hull operator of the geodesic convex structure of G, i.e.,
the self-map of P(V (G)) such that IG(A) :=

⋃
x,y∈A IG(x, y) for each A ⊆ V (G).

The convex hull of a set A ⊆ V (G) is then coG(A) =
⋃

n∈N In
G(A).

For an edge ab of a graph G, let

Wab := {x ∈ V (G) : dG(a, x) < dG(b, x)}.

Note that the sets Wab and Wba are disjoint and that V (G) = Wab ∪Wab if G is
bipartite.

Two edges xy and uv are in the Djoković-Winkler relation Θ if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u).

The relation Θ is clearly reflexive and symmetric.

Remark 2.1. If G is bipartite, then, by [12, Lemma 11.2], the notation can be

chosen so that the edges xy and uv are in relation Θ if and only if

dG(x, u) = dG(y, v) = dG(x, v)− 1 = dG(y, u)− 1,
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or equivalently if and only if

y ∈ IG(x, v) and x ∈ IG(y, u).

From now on, we will always use this way of defining the relation Θ. Note that,
in this way, the edges xy and yx are not in relation Θ because y /∈ IG(x, x) and
x /∈ G(y, y). In other word, each time the relation Θ is used, the notation of an
edge induces an orientation of this edge.

We recall that, by Djoković [5, Theorem 1] and Winkler [28], a connected bi-

partite graph G is a partial cube, that is, an isometric subgraph of some hypercube,

if it has the following equivalent properties:

(Conv.) For every edge ab of G, the sets Wab and Wba are convex.

(Trans.) The relation Θ is transitive, and thus is an equivalence relation.

It follows in particular that the non-trivial (i.e., distinct from ∅ and V (G))
half-spaces of a partial cube G are the sets Wab, ab ∈ E(G). In the following
lemma we recall two well-known properties of partial cubes that we will need
later.

Lemma 2.2. Let G be a partial cube. We have the following properties.

(i) Let x, y be two vertices of G, P an (x, y)-geodesic and W an (x, y)-path of

G. Then each edge of P is Θ-equivalent to some edge of W .

(ii) A path P in G is a geodesic if and only if no two distinct edges of P are

Θ-equivalent.

3. Harmonicity Versus Antipodality

In this section we give an alternative proof of the following property.

Theorem 3.1. Any harmonic partial cube is antipodal.

Recall that the isometric dimension of a finite partial cube G, i.e., the least
non-negative integer n such that G is an isometric subgraph of an n-cube, co-
incides with the number of Θ-classes of E(G). We denote it by idim(G). By
Lemma 2.2(ii) we clearly have diam(G) ≤ idim(G).

We need the following lemma which is an immediate consequence of Deshar-
nais [4, Lemme 1.6.9]. However we give a short proof of it. Note that, by (1), a
graph G is antipodal if and only if

IG(x, x) = V (G) for all x ∈ V (G).(2)

Lemma 3.2. Let G be a diametrical partial cube. Then G is antipodal if and

only if diam(G) = idim(G).
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Proof. Necessity. By Lemma 2.2(ii), diam(G) ≤ idim(G). Conversely, let uv be
an edge of G, and P a (u, u)-geodesic. Then uv is Θ-equivalent to an edge of P ,
since otherwise 〈v, u〉 ∪ P is a geodesic, contrary to the fact that P is a geodesic
of maximal length. Therefore idim(G) ≤ diam(G). Whence the equality.

Sufficiency. Assume that diam(G) = idim(G) =: d. Then G is an isometric
subgraph of some d-cube H. Let u be some vertex of G, and u its antipode in
G. Note that H is antipodal, and that u is the antipode of u in H, since G is an
isometric subgraph of H and diam(H) = d = diam(G). It follows that IH(u, u) =
V (H) by (2). Therefore IG(u, u) = IH(u, u) ∩ V (G) = V (H) ∩ V (G) = V (G),
which proves that G is antipodal.

Proof of Theorem 3.1. Let G be a harmonic partial cube. Denote by d its
diameter, and by u the unique absolute antipode of any vertex u of G. Then the
antipodal map α : u→ u is an automorphism of G. Moreover denote by Pu some
(u, u)-geodesic for every u ∈ V (G). Finally, for an edge e of G and a subgraph F
of G, let Θ[e] be the Θ-class of e, and

Θ[F ] := {Θ[e] : e ∈ E(F )}.

Let u ∈ V (G).

Claim 1. Any neighbor v of u belongs to IG(u, u), and thus Θ[uv] ∈ Θ[Pu].
This is obvious if v ∈ V (Pu). Suppose that v /∈ V (Pu). Then dG(v, u) < d

since v 6= u because α is an automorphism. It follows that v ∈ IG(u, u). Hence
the edge uv is Θ-equivalent to some edge of Pu by Lemma 2.2(i).

Claim 2. Θ[Pu] = Θ[Pv] for any neighbor v of u in G.
Note that v is a neighbor of u since α is an automorphism. Let Q be some

(v, u)-geodesic. Then R := 〈u, v〉 ∪ Q and R′ := Q ∪ 〈u, v〉 are a (u, u)-geodesic
and a (v, v)-geodesic, respectively. On the other hand, the edges uv and vu are
Θ-equivalent.

It follows that Θ[Pu] = Θ[R] = Θ[R′] = Θ[Pv] by Lemma 2.2(i).

Claim 3. Θ[Pu] = Θ[Pv] for any v ∈ V (G).
This is Claim 2 if v is a neighbor of u. Suppose that dG(u, v) = n > 1, and

let 〈x0, . . . , xn〉 be a (u, v)-geodesic with x0 = u and xn = v. Then 〈x0, . . . , xn〉
is a (u, v)-geodesic since α is an automorphism.

By a successive application of Claim 2, we obtain

Θ[Pu] = Θ[Px0
] = Θ[Px1

] = · · · = Θ[Pxn
] = Θ[Pv].

Now, each edge xy of G is such that Θ[xy] ∈ Θ[Px] = Θ[Pu] by Claims 1 and
3, that is, each edge of G is Θ-equivalent to some edge of Pu. Therefore idim(G)
is equal to the number of edges of Pu, because any two distinct edges of a geodesic
are non-Θ-equivalent by Lemma 2.2(ii). It follows that idim(G) = d = diam(G).
Hence G is antipodal by Lemma 3.2.
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4. Expansion

In this section we recall some properties of expansions of a graph, a concept that
we will need in the next section and which was introduced by Mulder [21] to
characterize median graphs and which was later generalized by Chepoi [2].

Definition 4.1. A pair (V0, V1) of sets of vertices of a graph G is called a proper

cover of G if it satisfies the following conditions
• V0 ∩ V1 6= ∅ and V0 ∪ V1 = V (G);

• there is no edge between a vertex in V0 − V1 and a vertex in V1 − V0;
• G[V0] and G[V1] are isometric subgraphs of G.

Recall that the prism over a graph G is the Cartesian product of G and K2,
i.e., the graph denoted by G�K2 whose vertex set is V (G) × V (K2), and such
that, for all x, y ∈ V (G) and i, j ∈ V (K2) = {0, 1}, (x, i)(y, j) ∈ E(G�K2) if
xy ∈ E(G) and i = j, or x = y and i 6= j.

Definition 4.2. An expansion of a graph G with respect to a proper cover
(V0, V1) of G is the subgraph of the prism over G induced by the set (V0×{0})∪
(V1 × {1}).

An expansion of a bipartite graph (respectively, a partial cube) is a bipartite
graph (respectively, a partial cube (see [2])). If G′ is an expansion of a partial
cube G, then we say that G is a Θ-contraction of G′, because, as we can easily see,
G is obtained from G′ by contracting each element of some Θ-class of edges of G′.
More precisely, let G be a partial cube different from K1 and let uv be an edge of
G. LetG/uv be the quotient graph ofG whose vertex set V (G/uv) is the partition
of V (G) such that x and y belong to the same block of this partition if and only
if x = y or xy is an edge which is Θ-equivalent to uv. The natural surjection γuv
of V (G) onto V (G/uv) is a contraction (weak homomorphism in [12]) of G onto
G/uv, that is, an application which maps any two adjacent vertices to adjacent
vertices or to a single vertex. Then clearly the graph G/uv is a partial cube and
(γuv(W

G
uv), γuv(W

G
vu)) is a proper cover of G/uv with respect to which G is an

expansion of G/uv. We will say that G/uv is the Θ-contraction of G with respect

to the Θ-class of uv.
Let G′ be an expansion of a graph G with respect to a proper cover (V0, V1)

of G. We will use the following notation.
• For i = 0, 1 denote by ψi : Vi → V (G′) the natural injection ψi : x 7→ (x, i),

x ∈ Vi, and let V ′

i := ψi(Vi). Note that V
′

0 and V ′

1 are complementary half-spaces
of G′.

• For A ⊆ V (G) put ψ(A) := ψ0(A ∩ V0) ∪ ψ1(A ∩ V1).
The following lemma is a restatement with more precisions of [25, Lemma

4.5] (also see [23, Lemma 8.1]).
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Lemma 4.3. Let G be a connected bipartite graph and G′ an expansion of G with

respect to a proper cover (V0, V1) of G, and let P = 〈x0, . . . , xn〉 be a path in G.
We have the following properties

(i) If x0, xn ∈ Vi for some i = 0 or 1, then
– if P is a geodesic in G, then there exists an (x0, xn)-geodesic R in G[Vi]
such that V (P ) ∩ Vi ⊆ V (R);

– P is a geodesic in G[Vi] if and only if P ′ = 〈ψi(x0), . . . , ψi(xn)〉 is a

geodesic in G′;

– dG′(ψi(x0), ψi(xn)) = dG(x0, xn);

– dG′(ψi(x0), ψi(xn)) = dG(x0, xn);

– IG′(ψi(x0), ψi(xn)) = ψi(IG[Vi](x0, xn)) ⊆ ψ(IG(x0, xn)).

(ii) If x0 ∈ Vi and xn ∈ V1−i for some i = 0 or 1, then
– if there exists p such that x0, . . . , xp ∈ Vi and xp, . . . , xn ∈ V1−i, then P is a

geodesic in G if and only if the path P ′ = 〈ψi(x0), . . . , ψi(xp), ψ1−i(xp), . . . ,
ψ1−i(xn)〉 is a geodesic in G′;

– dG′(ψi(x0), ψ1−i(xn)) = dG(x0, xn) + 1;

– IG′(ψi(x0), ψ1−i(xn)) = ψ(IG(x0, xn)).

Now we introduce a variety of expansions that are related to antipodal partial
cubes. We need the following notation. If A is a set of vertices of an antipodal
graph G, we write

A := {x̄ : x ∈ A}.

Lemma 4.4. If G is an antipodal partial cube, then Wab = Wba for every edge

ab of G.

Proof. Suppose both x and x belong to Wab for some vertex x of G. Then
IG(x, x) ⊆Wab since Wab is convex by (Conv.), hence IG(x, x) 6= V (G), contrary
to (2).

Definition 4.5. A proper cover (V0, V1) of an antipodal partial cube G is said
to respect the antipodality, or to be antipodality-respectful, if V0 = V1.

Clearly, if V0 = V1, then V1 = V0 and V0 ∩ V1 = V0 ∩ V1. For any antipodal
partial cube G, there always exists a proper cover that respects the antipodality.
For example, the proper cover (V0, V1) such that V0 = V1 = V (G) respects the
antipodality, and the expansion of G with respect to this proper cover is the
prism over G.

Definition 4.6. An expansion of an antipodal partial cube G with respect to
an antipodality-respectful proper cover of G is called an antipodality-respectful

expansion of G.
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These antipodality-respectful expansions were already defined in [9] under
the name of acycloidal expansions.

Lemma 4.7. Any antipodality-respectful expansion of an antipodal partial cube

is an antipodal partial cube.

Proof. Let G′ be an expansion of an antipodal partial cube G with respect to
an antipodality-respectful proper cover (V0, V1) of G. Clearly G′ is a bipartite
partial cube such that diam(G′) = diam(G) + 1. Denote by pr the projection of
G′ onto G. Let x ∈ V (G′). Then x ∈ V ′

i for some i = 0 or 1, and thus pr(x) ∈ Vi
and pr(x) ∈ V1−i because (V0, V1) respects the antipodality. Let y ∈ V (G′). Then
pr(y) ∈ IG(pr(x), pr(x)) since G is antipodal. Hence y ∈ IG′(x, ψ1−i(pr(x))) by
Lemma 4.3. It follows, by (2), that G′ is antipodal with x = ψ1−i(pr(x)).

Lemma 4.8. Let G′ be an expansion of a partial cube G with respect to a proper

cover (V0, V1). If G′ is antipodal, then so is G and moreover (V0, V1) is an

antipodality-respectful proper cover of G.

Proof. Assume that G′ is antipodal. We use the notations introduced above.

Claim 1. G is antipodal.

Because V ′

0 and V ′

1 are complementary half-spaces of G′, it follows that V ′

i =
V ′

1−i for i = 0, 1 by Lemma 4.4.
Let x ∈ V (G). Without loss of generality, we can suppose that x ∈ V0. Then

ψ0(x) ∈ V ′

0 and ψ0(x) ∈ V ′

1 . Hence, by Lemma 4.3,

ψ(IG(x, pr(ψ0(x))) = I ′G(ψ0(x), ψ1(ψ0(x)) = V (G′).

It follows that IG(x, pr(ψ0(x)) = V (G), which proves that pr(ψ0(x)) is the an-
tipode of x in G. Therefore G is antipodal.

Claim 2. (V0, V1) respects the antipodality.

By Lemma 4.4, V ′

i = V ′

1−i for i = 0, 1 since G is antipodal by Claim 1.

Hence, by Lemma 4.3, Vi = pr(V ′

i ) = pr(V ′

i ) = pr(V ′

1−i) = V1−i for i = 0, 1, and
thus (V0, V1) respects the antipodality, or in other words, G′ is an antipodality-
respectful expansion of G.

The following theorem, which is similar to a characterization of median
graphs by Mulder [21] and of partial cubes by Chepoi [2] (also see [9, Theo-
rem 4.6]), is easily proved by induction on the isometric dimension by using the
above two lemmas.

Theorem 4.9. A finite graph is an antipodal partial cube if and only if it can be

obtained from K1 by a sequence of antipodality-respectful expansions.

The number of iterations to obtain some antipodal partial cube G from K1

is equal to the isometric dimension of G.



On Some Characterizations of Antipodal Partial Cubes 447

5. Special Automorphisms

By Lemma 4.4, if G is an antipodal partial cube, then the antipodal map x→ x,
x ∈ V (G), is an isomorphism of G[Wab] onto G[Wba]. We will show that such a
property characterizes antipodal partial cubes. Let G be a partial cube. Recall
that the subgraphs G[Wab], ab ∈ E(G), are called semicubes by Eppstein [6], and
that the semicubes G[Wab] and G[Wba] are said to be opposite.

Definition 5.1. Let α be an automorphism of a partial cube G. We say that α
is

(i) semicube-switching if it induces an isomorphism between the subgraphs
G[Wab] and G[Wba] for each edge ab of G.

(ii) Θ-faithful if the edges uv and α(v)α(u) are Θ-equivalent for each uv ∈ E(G).

In Remark 2.1 we observed that the edges xy and yx are not Θ-equivalent.
It follows that the identity automorphism of a partial cube distinct from K1 is
not Θ-faithful. Also note that, if, for example, G is a 4-cycle 〈x1, x2, x3, x4, x1〉,
then the only Θ-faithful automorphism, and also the only semicube-switching
automorphism, is the antipodal map. Indeed, the involution β mapping x1 to x2,
and x3 to x4 is not Θ-faithful because the edges x1x4 and β(x4)β(x1) = x3x2 are
not Θ-equivalent since x4 /∈ IG(x1, x2).

Theorem 5.2. Let G be a partial cube. The following assertions are equivalent.

(i) G is antipodal.

(ii) There exits an automorphism of G that is Θ-faithful.

(iii) There exits an automorphism of G that is semicube-switching.

Proof. (i) ⇒ (ii): Assume that G is antipodal, and let uv ∈ E(G). Then, by
(2), v ∈ IG(u, u) and u ∈ IG(v, v). Hence the edges uv and vu are Θ-equivalent.
Therefore the antipodal map α is Θ-faithful.

(ii) ⇒ (iii): Assume that there exists a Θ-faithful automorphism α of G.
Let uv ∈ E(G), and let x ∈ Wuv. Then u ∈ IG(x, v), and thus no edge of any
(u, x)-geodesic is Θ-equivalent to uv. Because α is Θ-faithful, it follows that no
edge of any (α(u), α(x))-geodesic is Θ-equivalent to uv, and thus to α(v)α(u).
Hence α(u) ∈ IG(α(x), α(v)), and thus α(x) ∈ Wα(u)α(v) = Wvu. Therefore α is
an isomorphism between G[Wab] and G[Wba], and thus α is semicube-switching.

(iii)⇒ (i): We prove by induction on the isometric dimension that any partial
cube G that has a semicube-switching automorphism α is antipodal and that α
is its antipodal map. This is obvious if idim(G) ≤ 2, i.e., if G is K1, K2 or a
4-cycle. Note that a path of length 2, which is also a partial cube of isometric
dimension 2, has no semicube-switching automorphism. Suppose that this holds
for any partial cube of isometric dimension n for some n ≥ 2. Let G be a partial
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cube with idim(G) = n+ 1 that has a semicube-switching automorphism α. Let
uv be an edge of G, F := G/uv the Θ-contraction of G with respect to the Θ-class
of uv, and γ the natural surjection of V (G) onto V (F ). Then F is a partial cube
with idim(F ) = n.

Note that, if xy is an edge of G that is Θ-equivalent to uv, then so is the
edge α(v)α(u), because α(u) ∈Wvu, α(v) ∈Wuv and α(u) and α(v) are adjacent
since α is a semicube-switching automorphism.

Let β : V (F ) → V (F ) be such that β ◦ γ = γ ◦ α. Because α is an au-
tomorphism of G, it is sufficient to prove that β preserves the edges to show
that it is an automorphism of F . Let x and y be two adjacent vertices of G. If
xy is not Θ-equivalent to uv, then so is α(y)α(x), and thus γ(x) and γ(y) are
adjacent, and so are γ(α(x)) and γ((α(y)), and hence so also are β(γ(x)) and
β(γ(y)). If xy is Θ-equivalent to uv, then so is α(y)α(x), and thus γ(x) = γ(y)
and γ(α(x)) = γ((α(y)). Therefore β is an automorphism of F .

We now show that β is semicube-switching. Note that each edge of F is the
image by γ of somme edge of G that is not Θ-equivalent to uv. Let ab be an
edge of G that is not Θ-equivalent to uv, and x a vertex of G. Without loss of
generality we can suppose that x ∈Wab. Then a ∈ IG(x, b), and thus each (x, a)-
geodesic contains an edge that is Θ-equivalent to uv if and only if so does each
(x, b)-geodesic. It follows, by Lemma 4.3, that γ(a) ∈ IF (γ(x), γ(b)), and thus
γ(x) ∈ WF

γ(a)γ(b). On the other hand, α(x) ∈ Wba since α is semicube-switching.

Hence, as above, γ(α(x)) ∈ WF
γ(b)γ(a), that is, β(γ(x)) ∈ WF

γ(b)γ(a), which implies
that β is semicube-switching.

It follows, by the induction hypothesis and since idim(F ) = n, that the par-
tial cube F is antipodal and that β is its antipodal map. Note that β(γ(Wuv)) =
γ(α(Wuv)) = γ(Wvu). Hence (γ(Wuv), γ(Wvu)) is an antipodality-respectful
proper cover of F , and G is the expansion of F with respect to this proper
cover. Consequently G is antipodal by Lemma 4.7.

6. Pre-Hull Number and Distance-Balanced Graphs

We now give a characterization of antipodal partial cubes that uses the concept of
pre-hull number, a concept which was introduced in [26] and that we first recall.

A copoint at a vertex x of a graph G is a convex set C which is maximal
with respect to the property that x /∈ C; x is an attaching point of C. Note that
coG(C ∪ {x}) = coG(C ∪ {y}) for any two attaching points x, y of C. We denote
by Att(C) the set of all attaching points of C, i.e.,

Att(C) := coG(C ∪ {x})− C.(3)

By [26, Proposition 5.6], the copoints of a partial cube G are precisely the
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sets Wab, ab ∈ E(G), and thus are the non-trivial half-spaces of G.

Definition 6.1. Let G be a graph. The least non-negative integer n (if it exists)
such that coG(C ∪ {x}) = In

G(C ∪ {x}) for each vertex x of G and each copoint
C at x, is called the pre-hull number of G and is denoted by ph(G). If there is
no such n we put ph(G) := ∞.

Recall that by [26, Corollary 3.8], the pre-hull number of a connected bipartite
graph G is zero if and only if G is a tree. For a graph G, ph(G) ≤ 1 if coG(C ∪
{x}) = IG(C ∪ {x}) for each vertex x of G and each copoint C at x, i.e., for all
x, y ∈ Att(C) there exists some z ∈ C such that y ∈ IG(x, z).

Lemma 6.2. If a partial cube G is distance-balanced, then every non-trivial half-

space of G is maximal.

Proof. Assume that G is distance-balanced, and letH be a non-trivial half-space
of G. Then H = Wuv for some uv ∈ E(G) (see Section 2). Then |Wuv| = |Wvu|
since G is distance-balanced. Suppose that H is not maximal. Then there exists
a non-trivial half-space H ′ that contains H ∪ {x} for some x ∈ Wvu. Hence
H ′ = Wab for some ab ∈ E(G), and thus |Wba| < |Wvu| = |Wuv| < |Wab|,
contrary to the assumption. Therefore H is maximal.

Theorem 6.3. Let G be a partial cube. The following assertions are equivalent.

(i) G is antipodal.

(ii) ph(G) ≤ 1 and G is distance-balanced.

(iii) ph(G) ≤ 1 and every non-trivial half-space of G is maximal.

Proof. (i) ⇒ (ii): Assume that G is antipodal. Then ph(G) ≤ 1 by [26, Section
8]. Because the antipodal map of G is semicube-switching by Theorem 5.2, it
follows that |Wuv| = |Wvu| for every uv ∈ E(G).

(ii) ⇒ (iii) is a consequence of Lemma 6.2.
(iii) ⇒ (i): Assume that G satisfies (iii). Let uv ∈ E(G). Because the half-

space Wvu is maximal, it follows that Att(Wvu) =Wuv. Indeed, if some x ∈Wuv

is not an attaching point of Wvu, then there exists a copoint at x, and thus a
half-space by what we saw above, which strictly contains Wvu, contrary to the
maximality of Wvu.

Let x, y ∈ Wuv. Because ph(G) ≤ 1, there is some z ∈ Wvu such that
y ∈ IG(x, z). This implies that no geodesic in the subgraph G[Wuv] is maximal
in G. Hence, for every x ∈Wuv, any relative antipode of x belongs to Wvu.

It follows that, if x has several antipodes, then, for any edge uv of G, if x ∈
Wuv, then all antipodes of x belong to Wvu, contrary to the fact that any partial
cube has the Separation Property S2, i.e., any two vertices can be separated by
a half-space. Therefore any vertex of G has exactly one relative antipode, and
thus G is antipodal.



450 N. Polat

In other words, the distance-balanced partial cubes that are antipodal are those

whose pre-hull number is at most 1.

7. Crossing Graph

Let G be a partial cube. We say that two Θ-classes A,B of edges of G cross if,
for a0a1 ∈ A and b0b1 ∈ B,

Waia1−i
∩Wbjb1−j

6= ∅ for all i, j ∈ {0, 1}.

Note that this definition is independent of the choice of the edges in A and B.
The crossing graph of a partial cube G is the graph G# whose vertices are the

Θ-classes of G, and where two vertices are adjacent if they cross. The concept
of crossing graph was introduced by Bandelt and Dress [1] under the name of
incompatibility graph, and extensively studied by Klavžar and Mulder [17].

Proposition 7.1. The crossing graph G# of a partial cube G is a complete graph

if and only if every non-trivial half-space of G is maximal.

Proof. Suppose that some non-trivial half-space H of G is not maximal. Then
there exist two edges uv and ab of G such that H = Wuv and Wuv ⊂ Wab. It
follows that Wuv ∩Wba = ∅, and thus that the Θ-classes of uv and ab do not
cross. Therefore G# is not complete.

Conversely suppose that two Θ-classes A and B of G do not cross. Then
there exist a0a1 ∈ A and b0b1 ∈ B such that Wa0a1 ⊂ Wb0b1 . It follows that the
half-space Wa0a1 is not maximal.

From Theorem 6.3 we then deduce immediately.

Theorem 7.2. A partial cube G is antipodal if and only if ph(G) ≤ 1 and G# is

complete.

Median graphs are particular partial cubes whose pre-hull number is at most 1
([26, Theorem 4.4]). We recall the following result.

Proposition 7.3. (Klavžar and Mulder [17, Proposition 4.1] and Mulder [22,
Corollary 5]) Let G be a median graph. The following assertions are equivalent.

(i) G is antipodal.

(ii) G# is complete.

(iii) G is a hypercube.

In [17], Klavžar and Mulder defined an all-color expansion of a partial cube G
as an expansion with respect to a proper cover (V0, V1) such that each Θ-classes
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of G has a representative occurring in E(G[Vi]) for i = 0, 1. They prove [17,
Proposition 4.4] that the crossing graph of a partial cube G is complete if and

only if G can be obtained from K1 by a sequence of all-color expansions. By
comparing this result with Theorem 4.9, we see that any antipodality-respectful
expansion is an all-color expansion, but that the converse is false.

8. On Two Problems of Klavžar and Kovše

At the end of their paper [16], after having noticed that, for any harmonic (and
thus antipodal by Theorem 3.1) partial cube G, the antipodal map induces an
isomorphism between each opposite semicubes, Klavžar and Kovše asked if the
converse is true. Theorem 5.2 asserts that so it is. However they asked the
more general question [16, Problem 5.3] whether a partial cube G is harmonic

if and only if G[Wab] is isomorphic to G[Wba] for every ab ∈ E(G). We still
have no definitive answer to this problem, but Theorems 5.2 and 6.3 (because a
partial cube all of whose opposite semicubes are isomorphic is obviously distance-
balanced) give new approaches of dealing with this question. More precisely, if
a partial cube G is such that the opposite semicubes G[Wab] and G[Wba] are
isomorphic for every ab ∈ E(G), then we can tackle the above problem by asking
one of the following question:

(a) Does there exist an automorphism of G that is Θ-faithful?

(b) Does there exist an automorphism of G that is semicube-switching?

(c) Do we have ph(G) ≤ 1?

Acknowledgments

I would like to thank one of the referees for his careful reading of the manuscript
and helpful suggestions.

References

[1] H.-J. Bandelt and A.W.M. Dress, A canonical decomposition theory for metrics on

a finite set , Adv. Math. 92 (1992) 47–105.
doi:10.1016/0001-8708(92)90061-O

[2] V. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity , Cybernetics
24 (1988) 6–11.
doi:10.1007/BF01069520

[3] V. Chepoi, K. Knauer and T. Marc, Partial cubes without Q−

3
minors, CoRR

abs/1606.02154 (2016) (submitted).

[4] J. Desharnais, Maille et Plongements de Graphes Antipodaux, Mémoire de Maitrise
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[11] F. Göbel and H.J. Veldman, Even graphs , J. Graph Theory 10 (1986) 225–239.
doi:10.1002/jgt.3190100212

[12] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second
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