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Abstract

An even factor of a graph is a spanning subgraph in which each vertex
has a positive even degree. Jackson and Yoshimoto showed that if G is a
3-edge-connected graph with |G| ≥ 5 and v is a vertex with degree 3, then
G has an even factor F containing two given edges incident with v in which
each component has order at least 5. We prove that this theorem is satisfied
for each pair of adjacent edges. Also, we show that each 3-edge-connected
graph has an even factor F containing two given edges e and f such that
every component containing neither e nor f has order at least 5. But we
construct infinitely many 3-edge-connected graphs that do not have an even
factor F containing two arbitrary prescribed edges in which each component
has order at least 5.
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1. Introduction

In this paper, a graph means a multi-graph, which may have multiple edges but
has no loops. A graph having neither multiple edges nor loops is called a simple

graph. An even factor of a graph G = (V (G), E(G)) is a spanning subgraph in
which each vertex has a positive even degree. The minimum order of components
of G is denoted by σ(G).

It is known that every 2-edge connected graph (i.e., a multi-graph) with
minimum degree at least 3 has an even factor L. Lovász, Problem 42, Section 7 of
Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979). This
result was strengthened by Jackson and Yoshimoto [3]. They showed that every
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2-edge-connected simple graph with n vertices and minimum degree at least 3
has an even factor F with σ(F ) ≥ min{n, 4}. They proved better results for
3-edge-connected graphs.

Theorem 1 (Jackson and Yoshimoto, [4]). Let G be a 3-edge-connected graph

with n vertices, v be a vertex of G with dG(v) = 3, and e = vx, f = vy be edges of

G. (We allow the posibility that x = y.) Then G has an even factor F containing

e and f and satisfying σ(F ) ≥ min{n, 5}.

Theorem 2 (Jackson and Yoshimoto, [4]). Let G be a 3-edge-connected graph

with n vertices. Then G has an even factor F with σ(F ) ≥ min{n, 5}.

In [2] we prove the following theorem.

Theorem 3 [2]. Let G be a 2-edge-connected simple graph with δ(G) ≥ 3. Then

for each pair of edges e and f of G, G has an even factor F that contains e and

f and satisfies σ(F ) ≥ 4.

We show that Theorem 1 is satisfied for each pair of adjacent edges. More-
over, we prove that every 3-edge-connected graph has an even factor F containing
two given edges e and f such that every component containing neither e nor f has
order at least 5. But we construct infinitely many 3-edge-connected graphs having
no even factor F containing two arbitrary prescribed edges in which σ(F ) ≥ 5.

Every 4-edge-connected graph has a connected even factor [5]. Also, it has a
connected even factor F containing two arbitrary prescribed edges [7].

Kano et al. [6] proved that every cubic bipartite graph has a {Cn|n ≥ 6}-
factor. We extend this result to every r-regular bipartite graph. But we show that
there are infinitely many 2-edge-connected simple bipartite graphs with minimum
degree at least 3 having no even factor F in which σ(F ) ≥ 6.

All concepts not defined in this paper can be found in [1]. We denote the set
of edges incident to a vertex v by EG(v). If v ∈ V (G) and e ∈ E(G), then the
graphs (V (G) − v,E(G) − EG(v)) and (V (G), E(G) − e) are denoted by G − v
and G− e, respectively. Similarly, G+ e is defined. For a subset X ⊆ V (G), the
subgraph of G induced by X is denoted by 〈X〉G. Also, for a connected subgraph
H of G, we denote by G/H the graph obtained from G by contracting every edge
in H. The vertex of G/H corresponding to H is denote by H∗. An edge cut of
a connected graph G is a set S ⊆ E(G) such that G − S is disconnected. The
minimum size of edge cuts of G is denoted by κ′(G).

2. Even Factors of 3-Edge-Connected Graphs

We state some results about even factors of 3-edge-connected graphs that contain
or do not contain some given edges.
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Theorem 4. Let G be a 3-edge-connected graph. Then for each pair of edges e
and f of G, there is an even factor containing e and f in which every component

containing neither e nor f has order at least min{|G|, 5}.

Proof. Let e = xx′ and f = yy′. We construct the graph G′ by subdividing
two edges e = xx′ and f = yy′ and put new vertices x′′ and y′′ on e and f ,
respectively, then connect x′′ to y′′ with the new edge h.

x y

x’

e

y′

fx′′ y′′
h

Figure 1. G′.

Now, we have dG′(x′′) = dG′(y′′) = 3. It is easy to see that the graph obtained
from a 3-edge-connected by dividing one edge is still 2-edge-connected. Then G′

is 2-edge-connected. Let W = {xx′′, x′x′′, x′′y′′, yy′′, y′y′′}. If there is a minimum
edge cut S with |S| = 2, then by considering three states for S′ = W ∩ S, we
can easily find the edge cut S′ such that |S′| ≤ 2 and G− S′ is disconnected. It
is a contradiction. Hence, G′ is 3-edge-connected. Now, by Theorem 1, there is
an even factor F ′ of G′ avoiding h in which σ(F ′) ≥ min{|G′|, 5}. It is clear that
F = F ′ − {x′′, y′′} ∪ {e, f} is a desired even factor of G.

Theorem 5. Let G be a 3-edge-connected graph. Then for every given edge

e of G, G has an even factor F that does not contain e and satisfies σ(F ) ≥
min{|G|, 5} .

Proof. Let e = xy be an edge. If dG(x) = 3 or dG(y) = 3, then the assertion
is clear by Theorem 1. Therefore, dG(x) ≥ 4 and dG(y) ≥ 4. If G − e is 3-edge-
connected, then by Theorem 2, G − e has an even factor F in which σ(F ) ≥
min{|G − e|, 5}. Hence, F is a desired even factor of G. Then we may assume
that S′ = {e1, e2} is a minimum edge cut of G − e. Also, S = {e1, e2, e} is
a minimum edge cut in G. Let G1 and G2 be two components of G − S and
G′

1
= G/G1 and G′

2
= G/G2. We can assume that S ⊆ E(G′

1
) and S ⊆ E(G′

2
).

We have dG′

1
(G∗

1
) = dG′

2
(G∗

2
) = 3. By Theorem 1, there are even factors F1 of

G′

1
and F2 of G′

2
that contain e1 and e2, respectively, but do not contain e and

satisfy σ(F1) ≥ min{|G′

1
|, 5} and σ(F2) ≥ min{|G′

2
|, 5}. It is easy to see that

F = ((F1 −G∗

1
) ∪ (F2 −G∗

2
)) ∪ {e1, e2} is a desired even factor of G.
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Now, we have the following theorem.

Theorem 6. Let G be a 3-edge-connected graph and e = vx, f = vy be two

adjacent edges of G. Then G has an even factor F containig e and f such that

σ(F ) ≥ min{|G|, 5}.

Proof. We can assume that dG(v) ≥ 4, by Theorem 1. Suppose on the contrary
that G is a counterexample to the statement such that |E(G)| is minimized.
Consider the graph H = G − {f, e} + v′x + v′y + vv′, where v′ is a new vertex.
There are three cases.

Case 1. κ′(H) = 3. In this case by Theorem 1, H has an even factor F ′

containing v′x and v′y in which σ(F ′) ≥ min{|H|, 5}, since dH(v′) = 3. By
replacing v′ with v in F ′, we obtain an even factor F of G containing e and f . If
σ(F ) ≥ min{|G|, 5}, then we are done. Therefore, F has exactly one component
D of order 4 and F ′ has exactly one component D′ of order 5. Now, there are
two subcases.

Subcase 1a. x 6= y. In this case there is vertex s such that V (D) = {x, y, v, s}
and there is a vertex t ∈ {x, y, s} such that there is a multiple edge between t
and v. Consider graph G′ obtained from G by contracting this multiple edge and
removing all resulted loops. Let v∗ be the new vertex of G′ instead of v and t.
Since x 6= y, we can assume that f ∈ E(G′). The graph G′ is 3-edge-connected
and dG′(v∗) ≥ 3, since G is a 3-edge-connected graph. The graph G′ has an even
factor F ′ containing f in which σ(F ′) ≥ min{|G′|, 5}, since |E(G′)| < |E(G)|.
If F ′ contains even number of edges incident with v and even number of edges
incident with t, then we can convert F ′ to a desired even factor of G by adding
e and another edge of the contracted multiple edge. Otherwise, F ′ contains odd
number of edges incident with v and odd number of edges incident with x and
we can convert F ′ to a desired even factor of G by adding the edge e, and we are
done.

Subcase 1b. x = y. In this case there are vertices r and t such that E(D′) =
{vr, vt, rx, tx, v′x, v′x} and E(D) = {vr, vt, rx, tx, e, f}. Graph G′′ = G − e is
3-edge-connected, since there are three edge disjoint path between v and x in G′′.
By Theorem 5, G′′ has an even factor F ′′ in which σ(F ′′) ≥ min{|G′′|, 5} and F ′′

does not contain f . It is obvious that F = F ′′ + {e, f} is a required even factor
of G.

Case 2. κ′(H) = 2. In this case assume that S is a minimum edge cut of
H. It is clear that vv′ ∈ S, since G is 3-edge-connected. We may suppose that
S = {vv′, zw}. It is possible that {x, y} ∩ {z, w} 6= ∅.

Now, let G3 and G4 be two components of H − S and we have v, z ∈ V (G3)
and v′, w ∈ V (G4). Assume first v = z. It is clear that v is a cut vertex
of G. Let G1 be a component of G − {e, f, zw} containing v, and let G2 =
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Figure 2. H.

〈V (G) − (V (G1) − {v})〉G. Since G is 3-edge-connected, G1 and G2 are 3-edge-
connected and δ(G1), δ(G2) ≥ 3. We can consider that e, f ∈ E(G1). Since
|E(G1)| < |E(G)|, the graph G1 has an even factor F1 containinig e and f such
that σ(F1) ≥ min{|G1|, 5}. Also, G2 has an even factor F2 in which σ(F2) ≥
min{|G2|, 5}, by Theorem 2. It is clear that F = F1 ∪ F2 is an even factor of G
containing e and f in which σ(F ) ≥ min{|G|, 5}. Thus we may assume v 6= z. It
is obvious that v′ 6= w. We show that G3+vz and G4+v′w are 3-edge-connected
and δ(G3 + vz), δ(G4 + v′w) ≥ 3. It is possible that we obtain multiple edges.
We show that G3 + vz is 3-edge-connected and for G4 + v′w the result follows
similarly. Let S′ be a minimum edge cut for G3 + vz. If G′

3
and G′′

3
are two

componenets of (G3 + vz) − S′, then v and z are not in the same component,
since otherwise, S′ is an edge cut for G and it is a contradiction. Then we may
assume that v ∈ V (G′

3
) and z ∈ V (G′′

3
) and we have vz ∈ S′ and |S′| = 2, since

G is 3-edge-connected. Let S′ = {vz, e′}. If vz ∈ E(G), then we have e′ = vz.
Now, according to Figure 3, it is clear that {e′, zw} is an edge cut in G and it is
a contradiction. Hence, G3 + vz is 3-edge-connected.

We have e, f ∈ E(G4+v′w) and |E(G4+v′w)| < |E(G)|. Then G4+v′w has
an even factor F4 containing e and f such that σ(F4) ≥ min{|G4 + v′w|, 5}. By
Theorem 5, G3 + vz has an even factor F3 in which σ(F3) ≥ min{|G3 + vz|, 5}
and F3 does not contain vz. Therefore, by replacing v′ with v in F4, F = F3 ∪F4
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Figure 3. G3, G4, G
′

3
and G′′

3
.

is a desired even factor of G containing e and f such that σ(F ) ≥ min{|G|, 5}.

Case 3. κ′(H) = 1. In this case vv′ is a bridge of H. Hence, {e, f} is an edge
cut of G, a contradiction.

In the next theorem we show that Theorem 4 is not satisfied for each pair of
edges of G.

Theorem 7. There are infinitely many 3-edge-connected graphs which do not

have an even factor F containing two arbitrary prescribed edges in which σ(F ) ≥
5.

Proof. We costruct these graphs like in Figure 4.
The graph G is cubic and 3-edge-connected. By symmetry, it is easy to see

that G does not have an even factor F containing e and f such that σ(F ) ≥ 5.

3. Even Factors of 2-Edge-Connected Graphs

Now, there are some results in 2-edge-connected bipartite graphs with minimum
degree at least 3.

Lemma 8 [6]. Let r ≥ 2 be an integer. Then every connected r-regular bipartite

graph is 2-edge-connected.
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Figure 4. The 3-edge-connected graph G.
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Figure 5. G.

Theorem 9 [6]. Every connected cubic bipartite graph has a {Cn|n ≥ 6}-factor.

By König’s theorem [1], the edges of an r-regular bipartite graph can be
decomposed into 1-factors. By combining three 1-factors of an r-regular graph,
we obtain a cubic bipartite graph and we have the following corollary.

Corollary 10. Every r-regular bipartite graph has a {Cn|n ≥ 6}-factor.

Also, by Theorem 2, it is obvious that every 3-edge-connected bipartite graph
has an even factor in which the order of its components is at least 6. But, we
have the following theorem.

Theorem 11. There are infinitely many 2-edge-connected bipartite graphs with

minimum degree at least 3 having no even factor F in which σ(F ) ≥ 6.
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Proof. Consider the graph G depicted in Figure 5. By the symmetry of three
components G−{x, y}, if G has an even factor F with σ(F ) ≥ 6, then K has an
even factor F ′ with σ(F ′) ≥ 6. The graph K does not have an even factor such
that every component has order at least 6. Hence, G does not have a desired
even factor. Now, if we put each 3-edge-connected graph instead of the subgraph
H of G, then we can construct infinitely many such graphs.
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