EDGE-CONNECTIVITY AND EDGES OF EVEN FACTORS OF GRAPHS

Nastaran Haghparast and Dariush Kiani
Department of Mathematics and Computer Sciences
Amirkabir University of Technology, Tehran, Iran
e-mail: nhaghparast@aut.ac.ir
dkiani@aut.ac.ir

Abstract

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Jackson and Yoshimoto showed that if G is a 3-edge-connected graph with $|G| \geq 5$ and v is a vertex with degree 3 , then G has an even factor F containing two given edges incident with v in which each component has order at least 5 . We prove that this theorem is satisfied for each pair of adjacent edges. Also, we show that each 3-edge-connected graph has an even factor F containing two given edges e and f such that every component containing neither e nor f has order at least 5. But we construct infinitely many 3 -edge-connected graphs that do not have an even factor F containing two arbitrary prescribed edges in which each component has order at least 5 .

Keywords: 3-edge-connected graph, 2-edge-connected graph, even factor, component.
2010 Mathematics Subject Classification: 05C70, 05C45.

1. Introduction

In this paper, a graph means a multi-graph, which may have multiple edges but has no loops. A graph having neither multiple edges nor loops is called a simple graph. An even factor of a graph $G=(V(G), E(G))$ is a spanning subgraph in which each vertex has a positive even degree. The minimum order of components of G is denoted by $\sigma(G)$.

It is known that every 2-edge connected graph (i.e., a multi-graph) with minimum degree at least 3 has an even factor L. Lovász, Problem 42, Section 7 of Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979). This result was strengthened by Jackson and Yoshimoto [3]. They showed that every

2-edge-connected simple graph with n vertices and minimum degree at least 3 has an even factor F with $\sigma(F) \geq \min \{n, 4\}$. They proved better results for 3-edge-connected graphs.

Theorem 1 (Jackson and Yoshimoto, [4]). Let G be a 3-edge-connected graph with n vertices, v be a vertex of G with $d_{G}(v)=3$, and $e=v x, f=v y$ be edges of G. (We allow the posibility that $x=y$.) Then G has an even factor F containing e and f and satisfying $\sigma(F) \geq \min \{n, 5\}$.
Theorem 2 (Jackson and Yoshimoto, [4]). Let G be a 3-edge-connected graph with n vertices. Then G has an even factor F with $\sigma(F) \geq \min \{n, 5\}$.

In [2] we prove the following theorem.
Theorem 3 [2]. Let G be a 2-edge-connected simple graph with $\delta(G) \geq 3$. Then for each pair of edges e and f of G, G has an even factor F that contains e and f and satisfies $\sigma(F) \geq 4$.

We show that Theorem 1 is satisfied for each pair of adjacent edges. Moreover, we prove that every 3-edge-connected graph has an even factor F containing two given edges e and f such that every component containing neither e nor f has order at least 5 . But we construct infinitely many 3 -edge-connected graphs having no even factor F containing two arbitrary prescribed edges in which $\sigma(F) \geq 5$.

Every 4-edge-connected graph has a connected even factor [5]. Also, it has a connected even factor F containing two arbitrary prescribed edges [7].

Kano et al. [6] proved that every cubic bipartite graph has a $\left\{C_{n} \mid n \geq 6\right\}$ factor. We extend this result to every r-regular bipartite graph. But we show that there are infinitely many 2 -edge-connected simple bipartite graphs with minimum degree at least 3 having no even factor F in which $\sigma(F) \geq 6$.

All concepts not defined in this paper can be found in [1]. We denote the set of edges incident to a vertex v by $E_{G}(v)$. If $v \in V(G)$ and $e \in E(G)$, then the graphs $\left(V(G)-v, E(G)-E_{G}(v)\right)$ and $(V(G), E(G)-e)$ are denoted by $G-v$ and $G-e$, respectively. Similarly, $G+e$ is defined. For a subset $X \subseteq V(G)$, the subgraph of G induced by X is denoted by $\langle X\rangle_{G}$. Also, for a connected subgraph H of G, we denote by G / H the graph obtained from G by contracting every edge in H. The vertex of G / H corresponding to H is denote by H^{*}. An edge cut of a connected graph G is a set $S \subseteq E(G)$ such that $G-S$ is disconnected. The minimum size of edge cuts of G is denoted by $\kappa^{\prime}(G)$.

2. Even Factors of 3-Edge-Connected Graphs

We state some results about even factors of 3-edge-connected graphs that contain or do not contain some given edges.

Theorem 4. Let G be a 3-edge-connected graph. Then for each pair of edges e and f of G, there is an even factor containing e and f in which every component containing neither e nor f has order at least $\min \{|G|, 5\}$.

Proof. Let $e=x x^{\prime}$ and $f=y y^{\prime}$. We construct the graph G^{\prime} by subdividing two edges $e=x x^{\prime}$ and $f=y y^{\prime}$ and put new vertices $x^{\prime \prime}$ and $y^{\prime \prime}$ on e and f, respectively, then connect $x^{\prime \prime}$ to $y^{\prime \prime}$ with the new edge h.

Figure 1. G^{\prime}.
Now, we have $d_{G^{\prime}}\left(x^{\prime \prime}\right)=d_{G^{\prime}}\left(y^{\prime \prime}\right)=3$. It is easy to see that the graph obtained from a 3 -edge-connected by dividing one edge is still 2-edge-connected. Then G^{\prime} is 2-edge-connected. Let $W=\left\{x x^{\prime \prime}, x^{\prime} x^{\prime \prime}, x^{\prime \prime} y^{\prime \prime}, y y^{\prime \prime}, y^{\prime} y^{\prime \prime}\right\}$. If there is a minimum edge cut S with $|S|=2$, then by considering three states for $S^{\prime}=W \cap S$, we can easily find the edge cut S^{\prime} such that $\left|S^{\prime}\right| \leq 2$ and $G-S^{\prime}$ is disconnected. It is a contradiction. Hence, G^{\prime} is 3 -edge-connected. Now, by Theorem 1 , there is an even factor F^{\prime} of G^{\prime} avoiding h in which $\sigma\left(F^{\prime}\right) \geq \min \left\{\left|G^{\prime}\right|, 5\right\}$. It is clear that $F=F^{\prime}-\left\{x^{\prime \prime}, y^{\prime \prime}\right\} \cup\{e, f\}$ is a desired even factor of G.

Theorem 5. Let G be a 3-edge-connected graph. Then for every given edge e of G, G has an even factor F that does not contain e and satisfies $\sigma(F) \geq$ $\min \{|G|, 5\}$.

Proof. Let $e=x y$ be an edge. If $d_{G}(x)=3$ or $d_{G}(y)=3$, then the assertion is clear by Theorem 1. Therefore, $d_{G}(x) \geq 4$ and $d_{G}(y) \geq 4$. If $G-e$ is 3-edgeconnected, then by Theorem $2, G-e$ has an even factor F in which $\sigma(F) \geq$ $\min \{|G-e|, 5\}$. Hence, F is a desired even factor of G. Then we may assume that $S^{\prime}=\left\{e_{1}, e_{2}\right\}$ is a minimum edge cut of $G-e$. Also, $S=\left\{e_{1}, e_{2}, e\right\}$ is a minimum edge cut in G. Let G_{1} and G_{2} be two components of $G-S$ and $G_{1}^{\prime}=G / G_{1}$ and $G_{2}^{\prime}=G / G_{2}$. We can assume that $S \subseteq E\left(G_{1}^{\prime}\right)$ and $S \subseteq E\left(G_{2}^{\prime}\right)$. We have $d_{G_{1}^{\prime}}\left(G_{1}^{*}\right)=d_{G_{2}^{\prime}}\left(G_{2}^{*}\right)=3$. By Theorem 1, there are even factors F_{1} of G_{1}^{\prime} and F_{2} of G_{2}^{\prime} that contain e_{1} and e_{2}, respectively, but do not contain e and satisfy $\sigma\left(F_{1}\right) \geq \min \left\{\left|G_{1}^{\prime}\right|, 5\right\}$ and $\sigma\left(F_{2}\right) \geq \min \left\{\left|G_{2}^{\prime}\right|, 5\right\}$. It is easy to see that $F=\left(\left(F_{1}-G_{1}^{*}\right) \cup\left(F_{2}-G_{2}^{*}\right)\right) \cup\left\{e_{1}, e_{2}\right\}$ is a desired even factor of G.

Now, we have the following theorem.
Theorem 6. Let G be a 3-edge-connected graph and $e=v x, f=v y$ be two adjacent edges of G. Then G has an even factor F containige and f such that $\sigma(F) \geq \min \{|G|, 5\}$.

Proof. We can assume that $d_{G}(v) \geq 4$, by Theorem 1 . Suppose on the contrary that G is a counterexample to the statement such that $|E(G)|$ is minimized. Consider the graph $H=G-\{f, e\}+v^{\prime} x+v^{\prime} y+v v^{\prime}$, where v^{\prime} is a new vertex. There are three cases.

Case 1. $\kappa^{\prime}(H)=3$. In this case by Theorem $1, H$ has an even factor F^{\prime} containing $v^{\prime} x$ and $v^{\prime} y$ in which $\sigma\left(F^{\prime}\right) \geq \min \{|H|, 5\}$, since $d_{H}\left(v^{\prime}\right)=3$. By replacing v^{\prime} with v in F^{\prime}, we obtain an even factor F of G containing e and f. If $\sigma(F) \geq \min \{|G|, 5\}$, then we are done. Therefore, F has exactly one component D of order 4 and F^{\prime} has exactly one component D^{\prime} of order 5. Now, there are two subcases.

Subcase 1a. $x \neq y$. In this case there is vertex s such that $V(D)=\{x, y, v, s\}$ and there is a vertex $t \in\{x, y, s\}$ such that there is a multiple edge between t and v. Consider graph G^{\prime} obtained from G by contracting this multiple edge and removing all resulted loops. Let v^{*} be the new vertex of G^{\prime} instead of v and t. Since $x \neq y$, we can assume that $f \in E\left(G^{\prime}\right)$. The graph G^{\prime} is 3 -edge-connected and $d_{G^{\prime}}\left(v^{*}\right) \geq 3$, since G is a 3 -edge-connected graph. The graph G^{\prime} has an even factor F^{\prime} containing f in which $\sigma\left(F^{\prime}\right) \geq \min \left\{\left|G^{\prime}\right|, 5\right\}$, since $\left|E\left(G^{\prime}\right)\right|<|E(G)|$. If F^{\prime} contains even number of edges incident with v and even number of edges incident with t, then we can convert F^{\prime} to a desired even factor of G by adding e and another edge of the contracted multiple edge. Otherwise, F^{\prime} contains odd number of edges incident with v and odd number of edges incident with x and we can convert F^{\prime} to a desired even factor of G by adding the edge e, and we are done.

Subcase 1b. $x=y$. In this case there are vertices r and t such that $E\left(D^{\prime}\right)=$ $\left\{v r, v t, r x, t x, v^{\prime} x, v^{\prime} x\right\}$ and $E(D)=\{v r, v t, r x, t x, e, f\}$. Graph $G^{\prime \prime}=G-e$ is 3-edge-connected, since there are three edge disjoint path between v and x in $G^{\prime \prime}$. By Theorem $5, G^{\prime \prime}$ has an even factor $F^{\prime \prime}$ in which $\sigma\left(F^{\prime \prime}\right) \geq \min \left\{\left|G^{\prime \prime}\right|, 5\right\}$ and $F^{\prime \prime}$ does not contain f. It is obvious that $F=F^{\prime \prime}+\{e, f\}$ is a required even factor of G.

Case 2. $\kappa^{\prime}(H)=2$. In this case assume that S is a minimum edge cut of H. It is clear that $v v^{\prime} \in S$, since G is 3 -edge-connected. We may suppose that $S=\left\{v v^{\prime}, z w\right\}$. It is possible that $\{x, y\} \cap\{z, w\} \neq \emptyset$.

Now, let G_{3} and G_{4} be two components of $H-S$ and we have $v, z \in V\left(G_{3}\right)$ and $v^{\prime}, w \in V\left(G_{4}\right)$. Assume first $v=z$. It is clear that v is a cut vertex of G. Let G_{1} be a component of $G-\{e, f, z w\}$ containing v, and let $G_{2}=$

Figure 2. H.
$\left\langle V(G)-\left(V\left(G_{1}\right)-\{v\}\right)\right\rangle_{G}$. Since G is 3-edge-connected, G_{1} and G_{2} are 3-edgeconnected and $\delta\left(G_{1}\right), \delta\left(G_{2}\right) \geq 3$. We can consider that $e, f \in E\left(G_{1}\right)$. Since $\left|E\left(G_{1}\right)\right|<|E(G)|$, the graph G_{1} has an even factor F_{1} containinig e and f such that $\sigma\left(F_{1}\right) \geq \min \left\{\left|G_{1}\right|, 5\right\}$. Also, G_{2} has an even factor F_{2} in which $\sigma\left(F_{2}\right) \geq$ $\min \left\{\left|G_{2}\right|, 5\right\}$, by Theorem 2. It is clear that $F=F_{1} \cup F_{2}$ is an even factor of G containing e and f in which $\sigma(F) \geq \min \{|G|, 5\}$. Thus we may assume $v \neq z$. It is obvious that $v^{\prime} \neq w$. We show that $G_{3}+v z$ and $G_{4}+v^{\prime} w$ are 3-edge-connected and $\delta\left(G_{3}+v z\right), \delta\left(G_{4}+v^{\prime} w\right) \geq 3$. It is possible that we obtain multiple edges. We show that $G_{3}+v z$ is 3-edge-connected and for $G_{4}+v^{\prime} w$ the result follows similarly. Let S^{\prime} be a minimum edge cut for $G_{3}+v z$. If G_{3}^{\prime} and $G_{3}^{\prime \prime}$ are two componenets of $\left(G_{3}+v z\right)-S^{\prime}$, then v and z are not in the same component, since otherwise, S^{\prime} is an edge cut for G and it is a contradiction. Then we may assume that $v \in V\left(G_{3}^{\prime}\right)$ and $z \in V\left(G_{3}^{\prime \prime}\right)$ and we have $v z \in S^{\prime}$ and $\left|S^{\prime}\right|=2$, since G is 3 -edge-connected. Let $S^{\prime}=\left\{v z, e^{\prime}\right\}$. If $v z \in E(G)$, then we have $e^{\prime}=v z$. Now, according to Figure 3, it is clear that $\left\{e^{\prime}, z w\right\}$ is an edge cut in G and it is a contradiction. Hence, $G_{3}+v z$ is 3-edge-connected.

We have $e, f \in E\left(G_{4}+v^{\prime} w\right)$ and $\left|E\left(G_{4}+v^{\prime} w\right)\right|<|E(G)|$. Then $G_{4}+v^{\prime} w$ has an even factor F_{4} containing e and f such that $\sigma\left(F_{4}\right) \geq \min \left\{\left|G_{4}+v^{\prime} w\right|, 5\right\}$. By Theorem 5, $G_{3}+v z$ has an even factor F_{3} in which $\sigma\left(F_{3}\right) \geq \min \left\{\left|G_{3}+v z\right|, 5\right\}$ and F_{3} does not contain $v z$. Therefore, by replacing v^{\prime} with v in $F_{4}, F=F_{3} \cup F_{4}$

Figure 3. $G_{3}, G_{4}, G_{3}^{\prime}$ and $G_{3}^{\prime \prime}$.
is a desired even factor of G containing e and f such that $\sigma(F) \geq \min \{|G|, 5\}$.
Case 3. $\kappa^{\prime}(H)=1$. In this case $v v^{\prime}$ is a bridge of H. Hence, $\{e, f\}$ is an edge cut of G, a contradiction.

In the next theorem we show that Theorem 4 is not satisfied for each pair of edges of G.

Theorem 7. There are infinitely many 3-edge-connected graphs which do not have an even factor F containing two arbitrary prescribed edges in which $\sigma(F) \geq$ 5.

Proof. We costruct these graphs like in Figure 4.
The graph G is cubic and 3 -edge-connected. By symmetry, it is easy to see that G does not have an even factor F containing e and f such that $\sigma(F) \geq 5$.

3. Even Factors of 2-Edge-Connected Graphs

Now, there are some results in 2-edge-connected bipartite graphs with minimum degree at least 3.
Lemma 8 [6]. Let $r \geq 2$ be an integer. Then every connected r-regular bipartite graph is 2-edge-connected.

Figure 4. The 3-edge-connected graph G.

Figure 5. G.

Theorem 9 [6]. Every connected cubic bipartite graph has a $\left\{C_{n} \mid n \geq 6\right\}$-factor.
By König's theorem [1], the edges of an r-regular bipartite graph can be decomposed into 1 -factors. By combining three 1-factors of an r-regular graph, we obtain a cubic bipartite graph and we have the following corollary.

Corollary 10. Every r-regular bipartite graph has a $\left\{C_{n} \mid n \geq 6\right\}$-factor.
Also, by Theorem 2, it is obvious that every 3-edge-connected bipartite graph has an even factor in which the order of its components is at least 6 . But, we have the following theorem.

Theorem 11. There are infinitely many 2-edge-connected bipartite graphs with minimum degree at least 3 having no even factor F in which $\sigma(F) \geq 6$.

Proof. Consider the graph G depicted in Figure 5. By the symmetry of three components $G-\{x, y\}$, if G has an even factor F with $\sigma(F) \geq 6$, then K has an even factor F^{\prime} with $\sigma\left(F^{\prime}\right) \geq 6$. The graph K does not have an even factor such that every component has order at least 6 . Hence, G does not have a desired even factor. Now, if we put each 3 -edge-connected graph instead of the subgraph H of G, then we can construct infinitely many such graphs.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, NewYork-Amsterdam-Oxford, 1982).
[2] N. Haghparast and D. Kiani, Even factor of bridgeless graphs containing two specified edges (2017), Czechoslovak Math. J., submitted.
[3] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2 -factors of line graphs, Discrete Math. 307 (2007) 2775-2785. doi:10.1016/j.disc.2006.11.023
[4] B. Jackson and K. Yoshimoto, Spanning even subgraphs of 3-edge-connected graphs, J. Graph Theory 62 (2009) 37-47. doi:10.1002/jgt. 20386
[5] F. Jaeger, A note on sub-Eulerian graphs, J. Graph Theory 3 (1979) 91-93. doi:10.1002/jgt. 3190030110
[6] M. Kano, C. Lee and K. Suzuki, Path and cycle factors of cubic bipartite graphs, Discuss. Math. Graph Theory 28 (2008) 551-556. doi:10.7151/dmgt. 1426
[7] H.-J. Lai, Eulerian subgraphs containing given edges, Discrete Math. 230 (2001) 63-69.
doi:10.1016/S0012-365X(00)00070-4

