STRONGLY UNICHORD-FREE GRAPHS

Terry A. McKee
Department of Mathematics and Statistics
Wright State University
Dayton, Ohio 45435 USA
e-mail: terry.mckee@wright.edu

Abstract

Several recent papers have investigated unichord-free graphs-the graphs in which no cycle has a unique chord. This paper proposes a concept of strongly unichord-free graph, defined by being unichord-free with no cycle of length 5 or more having exactly two chords. In spite of its overly simplistic look, this can be regarded as a natural strengthening of unichordfree graphs - not just the next step in a sequence of strengthenings - and it has a variety of characterizations. For instance, a 2-connected graph is strongly unichord-free if and only if it is complete bipartite or complete or "minimally 2 -connected" (defined as being 2 -connected such that deleting arbitrary edges always leaves non-2-connected subgraphs).

Keywords: unichord-free graph, strongly chordal graph.
2010 Mathematics Subject Classification: 05C75.

1. Introduction

An edge $a b$ is a chord of a cycle C if $a, b \in V(C)$ but $a b \notin E(C)$. A graph is unichord-free if no cycle has a unique chord. Such graphs were introduced (but not named) independently in $[9,14]$ and have since been studied (and named unichord-free) in additional papers, including [4, 5, 6, 7, 10]; in particular, [14] gives a constructive characterization. Examples of unichord-free graphs include the complete graphs and complete bipartite graphs, along with the Petersen and Heawood graphs (see [14]).

A chord $a b$ of a cycle C has a crossing chord $x y$ if their four endpoints occur in the order a, x, b, y around C, and the chords $a b$ and $x y$ are then said to cross each other. Define a chord of C to be double-crossed if it is crossed
by at least two chords of C. For cycles C_{1} and C_{2} with $E\left(C_{1}\right) \cap E\left(C_{2}\right)=$ $\{a b\}$, define the symmetric difference $C_{1} \oplus C_{2}$ to be the cycle that has edge set $E\left(C_{1}\right) \cup E\left(C_{2}\right)-E\left(C_{1}\right) \cap E\left(C_{2}\right)$; thus $a b$ is a chord of $C_{1} \oplus C_{2}$. For a graph G with $S \subset V(G)$, let $G[S]$ denote the subgraph of G induced by S and, for convenience when C is a cycle of G and $v \in V(C)$, let $G[C]=G[V(C)]$ and let $C-v$ denote the path obtained by deleting v from C.

Lemma 1 [9]. A graph is unichord-free if and only if every chord of every cycle has a crossing chord.

Proof. First suppose G is a unichord-free graph and C is a minimum-length cycle of G such that C has a chord $a b$ with no crossing chord (arguing by contradiction). Let $a^{\prime} b^{\prime}$ be a second chord of C (possibly with $a b$ and $a^{\prime} b^{\prime}$ having one vertex in common). But then the cycle formed by the edge $a^{\prime} b^{\prime}$ and the a^{\prime}-to- b^{\prime} subpath of C through a and b would also have no crossing chord for $a b$, contradicting the assumed minimality of C.

The converse is immediate since a unique chord of a cycle is necessarily uncrossed.

Define a $\geq k$-cycle to be a cycle of length at least k, and define a graph to be strongly unichord-free if it is unichord-free and no ≥ 5-cycle has exactly two chords. Induced subgraphs of strongly unichord-free are also strongly unichord-free, and it is simple to check that complete graphs and complete bipartite graphs are strongly unichord-free. Figure 1 shows the Petersen graph-a unichord-free graph that is fundamental to the constructive approach of [14]-that is not strongly unichordfree, since the 8 -cycle with vertices in numerical order $1,2, \ldots, 8$ has exactly two chords (26 and 48).

Figure 1. A unichord-free graph that is not strongly unichord-free.
The following deceptively simple observation will be surprisingly useful.
Theorem 2. A unichord-free graph is strongly unichord-free if and only if every chord of every ≥ 5-cycle is double-crossed.

Proof. First suppose G is strongly unichord-free and $x y$ is a chord of a minimumlength ≥ 5-cycle C such that $x y$ is not double-crossed (arguing by contradiction). By Lemma $1, x y$ is crossed by some chord $u v$ of C. Since C cannot have exactly two chords, C has a third chord $w z$ that, since it does not cross $x y$, we can assume is a chord of the x-to- y subpath π of $C-v$. The assumed minimality of C ensures that $w z$ is not a chord of either the x-to- u or the u-to- y subpath of π, and so $x y$ is a chord of the cycle C^{\prime} formed by the edge $w z$ and the w-to- z subpath of $C-u$, with $x y$ having no crossing chord in C^{\prime} (contradicting Lemma 1).

Conversely, suppose G is unichord-free and every chord of every ≥ 5-cycle is double-crossed. Therefore, no ≥ 5-cycle has exactly two chords.

Sections 2 and 3 will present additional characterizations of strongly unichordfree graphs that involve, respectively, chords of cycles and graph connectivity. In particular, Corollary 5 will somewhat justify the choice of the descriptor "strongly" with a statement that involves a parameter k for which the $k=1$ case characterizes being unichord-free and the $k=1$ and $k=2$ cases together characterize being strongly unichord-free - as also do all of the $k \geq 1$ cases taken together. (This parallels how strongly chordal graphs, see [1], are characterized in [12] by a statement for which the $k=1$ case characterizes chordal graphs and the $k=1$ and $k=2$ cases together characterize strongly chordal graphs-as do all of the $k \geq 1$ cases holding-showing that chordal graphs and strongly chordal graphs are not simply the first two of a sequence of increasingly stronger graph classes.)

2. Characterizations Involving Chords of Cycles

Lemma 3. Suppose G is a strongly unichord-free graph that contains 2 -connected subgraphs G_{1} and G_{2} that share at least one edge. If G_{1} and G_{2} are both complete (or both complete bipartite), then so is $G\left[V\left(G_{1}\right) \cup V\left(G_{2}\right)\right]$.

Proof. Suppose G is strongly unichord-free and contains 2-connected subgraphs G_{1} and G_{2} with $a b \in E\left(G_{1}\right) \cap E\left(G_{2}\right)$, and let $H=G\left[V\left(G_{1}\right) \cup V\left(G_{2}\right)\right]$. We can assume that $G_{1} \neq H \neq G_{2}$ to avoid a trivial conclusion.

First suppose G_{1} and G_{2} are both complete. Suppose (say) $x_{1} \in V\left(G_{1}\right) \backslash$ $V\left(G_{2}\right)$ and $x_{2} \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$. Thus H has a 4 -cycle C with vertices in the order a, x_{1}, b, x_{2} around C and with chord $a b$. By Lemma 1, $a b$ has the crossing chord $x_{1} x_{2}$ of C, and so x_{1} and x_{2} are adjacent. By the arbitrariness of the choice of x_{1} and x_{2}, the graph H is complete.

Now suppose G_{1} and G_{2} are both complete bipartite. Suppose each G_{i} has partite sets S_{i} and S_{i}^{\prime} where, without loss of generality, $a \in S_{1} \cap S_{2}$ and (so) $b \in S_{1}^{\prime} \cap S_{2}^{\prime}$. An edge $x_{1} x_{2}$ of H cannot have $x_{1} \in S_{1} \backslash\{a\}$ and $x_{2} \in S_{2} \backslash\{a\} ;$
otherwise, the 2-connected subgraph G_{1} would contain $z \in S_{1}^{\prime} \backslash\{b\}$ and the five edges $x_{1} x_{2}, x_{2} b, b a, a z, z x_{1}$ would form a cycle of H with exactly one or two chords ($b x_{1}$, and maybe $x_{2} z$), contradicting that G is strongly unichord-free. Thus and similarly, every edge of H has one endpoint in $S_{1} \cup S_{2}$ and the other in $S_{1}^{\prime} \cup S_{2}^{\prime}$, and so the subgraph H is bipartite with partite sets $S_{1} \cup S_{2}$ and $S_{1}^{\prime} \cup S_{2}^{\prime}$. Suppose (say) $c \in S_{1} \backslash S_{2}$ and $c^{\prime} \in S_{2}^{\prime} \backslash S_{1}^{\prime}$, so each G_{i} being 2 -connected ensures there exist $d^{\prime} \in S_{1}^{\prime} \backslash\{b\}$ and $d \in S_{2} \backslash\{a\}$. Thus H has a 6 -cycle C that consists of the path a, d^{\prime}, c, b in G_{1} and the path b, d, c^{\prime}, a in G_{2}, with $a b$ a chord of C. Since G is strongly unichord-free and $c c^{\prime}$ and $d d^{\prime}$ are the only other possible chords C can have in the bipartite subgraph H, cycle C has all three chords $a b, c c^{\prime}$, and $d d^{\prime}$, so $H[C] \cong K_{3,3}$ and c is adjacent to c^{\prime}. By the arbitrariness of the choice of c and c^{\prime} (and similarly starting from arbitrary $c \in S_{2} \backslash S_{1}$ and $c^{\prime} \in S_{1}^{\prime} \backslash S_{2}^{\prime}$), the graph H is complete bipartite.

Theorem 4. The following are equivalent for every graph.
(1) The graph is strongly unichord-free.
(2) The vertex set of every cycle induces a chordless cycle, a complete bipartite subgraph, or a complete subgraph.
(3) Every n-cycle has exactly zero, $n(n-4) / 4$, or $n(n-3) / 2$ chords.

Proof. First, suppose G satisfies condition (1), and so every induced subgraph of G is strongly unichord-free, toward showing that (2) holds. Argue by induction on $n \geq 3$ that, for every n-cycle C of G, the subgraph $H=G[C]$ has either $H \cong C_{n}$ or $H \cong K_{h, h}$ with $h=n / 2$ (using that all the vertices of a bipartite graph $H=H[C]$ must alternate around C between the two partite sets) or $H \cong K_{n}$. Let $x \sim y$ and $x \nsim y$ denote, respectively, that vertices x and y are or are not adjacent.

If $n=3$, then H must be $C_{3} \cong K_{3}$.
If $n=4$, then the unichord-free graph H must be either $C_{4} \cong K_{2,2}$ or K_{4}.
Suppose $n \geq 5$ and the n-cycle C is not chordless. Thus C has a chord $a b$ that, combined with the two a-to- b subpaths of C forms two cycles C^{\prime} and $C^{\prime \prime}$ that have $C=C^{\prime} \oplus C^{\prime \prime}$. We can assume that $a b$ is chosen to make C^{\prime} as small as possible, thus making C^{\prime} chordless. Since the chord $a b$ must have a crossing chord (say) $a^{\prime} b^{\prime \prime}$ with $a^{\prime} \in V\left(C^{\prime}\right)$ and $b^{\prime \prime} \in V\left(C^{\prime \prime}\right)$ and since $a^{\prime} b^{\prime \prime}$ must, in turn, have a crossing chord different from $a b$ by Theorem 2 (and since C^{\prime} is chordless), one of the two following alternatives must hold:
(i) $a^{\prime} b^{\prime \prime}$ is crossed by a chord $c d$ of $C^{\prime \prime}$; or
(ii) $a^{\prime} b^{\prime \prime}$ is crossed by a chord $a^{\prime \prime} b^{\prime}$ of C where $a^{\prime \prime} \in V\left(C^{\prime \prime}\right) \backslash\left\{a, b, b^{\prime \prime}\right\}$ and $b^{\prime} \in V\left(C^{\prime}\right) \backslash\left\{a, a^{\prime}, b\right\}$.
Figure 2 illustrates the notation that will be used in these two alternatives.
First suppose alternative (i) holds, say with the vertices in the order $a, b, d, b^{\prime \prime}, c$ around $C^{\prime \prime}$ (possibly with $a=c$ or $b=d$). Say $C^{\prime \prime}=C_{1}^{\prime \prime} \oplus C_{2}^{\prime \prime}$ where $a b \in$

Figure 2. Illustrating alternatives (i) and (ii) in the proof of Theorem 4, with subpaths of the cycle C shown as dotted lines.
$E\left(C_{1}^{\prime \prime}\right) \backslash E\left(C_{2}^{\prime \prime}\right)$ and $c d \in E\left(C_{1}^{\prime \prime}\right) \cap E\left(C_{2}^{\prime \prime}\right)$. We can assume that $c d$ is chosen to make $C_{1}^{\prime \prime}$ as small as possible, thus making $C_{1}^{\prime \prime}$ chordless.

Suppose for the moment that $C_{1}^{\prime \prime}$ is an odd cycle, so $G\left[C^{\prime \prime}\right]$ is neither a chordless cycle nor complete bipartite, and so $G\left[C^{\prime \prime}\right]$ is complete by the induction hypothesis. Thus, $a b^{\prime \prime}$ and $b b^{\prime \prime}$ are edges that combine with the a-to- a^{\prime}-to- b subpath of C^{\prime} to form a cycle \widehat{C} such that $G[\widehat{C}]$ is neither a chordless cycle nor complete bipartite, so $G[\widehat{C}]$ is complete by the induction hypothesis. Since the complete subgraphs $G\left[C^{\prime \prime}\right]$ and $G[\widehat{C}]$ both contain $a b$, the subgraph $G[C]$ is complete by Lemma 3.

By the preceding paragraph, we can assume that $C_{1}^{\prime \prime}$ is a chordless even cycle. Since $G\left[C^{\prime} \oplus C_{1}^{\prime \prime}\right]$ is neither a chordless cycle nor complete, $G\left[C^{\prime} \oplus C_{1}^{\prime \prime}\right]$ is complete bipartite by the induction hypothesis. Since $C^{\prime \prime}$ is neither chordless nor complete, $G\left[C^{\prime \prime}\right]$ is complete bipartite by the induction hypothesis. Since the complete bipartite subgraphs $G\left[C^{\prime} \oplus C_{1}^{\prime \prime}\right]$ and $G\left[C^{\prime \prime}\right]$ both contain edge $a b$, the subgraph $G[C]$ is complete bipartite by Lemma 3 .

Now suppose instead that alternative (ii) holds, say with the six vertices $a, a^{\prime}, b^{\prime}, b, b^{\prime \prime}, a^{\prime \prime}$ in that order around C, with each of the chords $a b, a^{\prime} b^{\prime \prime}$, and $a^{\prime \prime} b^{\prime}$ crossing the other two. Partition C into subpaths π_{1}, \ldots, π_{6} as shown in Figure 2. Just as the chord $a b$ was chosen so that C^{\prime} (the cycle formed by the edge $a b$ and the path $\left.\pi_{1} \cup \pi_{2} \cup \pi_{3}\right)$ is chordless, we can assume that chord $a^{\prime} b^{\prime \prime}$ was then chosen to form a chordless cycle with $\pi_{5} \cup \pi_{6} \cup \pi_{1}$, and that chord $a^{\prime \prime} b^{\prime}$ was finally chosen to make a chordless cycle with $\pi_{3} \cup \pi_{4} \cup \pi_{5}$. Thus, $a \nsim b^{\prime}, a^{\prime} \nsim b, a \nsim b^{\prime \prime}, a^{\prime} \nsim a^{\prime \prime}$, $b^{\prime} \nsim b^{\prime \prime}$, and $a^{\prime \prime} \nsim b$.

We can assume that at least one of the six paths π_{i} has length greater than 1 (otherwise, $H \cong K_{3,3}$ is already complete bipartite). Indeed, we can assume that π_{1} has length greater than 1 (since the other five paths π_{i} behave the same as π_{1} in the remainder of this proof), and so $a \nsim a^{\prime}$. Let C_{1} be the cycle formed from the paths and edges in the set $\left\{\pi_{2}, \pi_{3}, a b, \pi_{6}, \pi_{5}, a^{\prime} b^{\prime \prime}\right\}$, noting that $G\left[C_{1}\right]$ is a proper subgraph of G since $G\left[C_{1}\right]$ does not contain the internal vertices of π_{1}. Thus $a^{\prime \prime} b^{\prime}$ is a chord of C_{1}, so $G\left[C_{1}\right]$ is neither a chordless cycle nor complete
(since, for instance, $a \nsim a^{\prime}$), and so $G\left[C_{1}\right]$ is complete bipartite by the induction hypothesis.

If $b \sim b^{\prime}$, let C_{2} be formed from $\left\{\pi_{2}, a^{\prime \prime} b^{\prime}, \pi_{6}, a b, \pi_{4}, a^{\prime} b^{\prime \prime}\right\}$, and if $b \nsim b^{\prime}$, let C_{2} be formed from $\left\{\pi_{1}, \pi_{2}, a^{\prime \prime} b^{\prime}, \pi_{5}, \pi_{4}, a b\right\}$, noting that $G\left[C_{2}\right]$ is a proper subgraph of G either way (since $G\left[C_{2}\right]$ does not contain the internal vertices of π_{1} when $b \sim b^{\prime}$ or of π_{3} when $\left.b \nsim b^{\prime}\right)$. Thus $b b^{\prime}$ (when $b \sim b^{\prime}$) or $a^{\prime} b^{\prime \prime}\left(\right.$ when $\left.b \nsim b^{\prime}\right)$ is a chord of C_{2}, so $G\left[C_{2}\right]$ is neither a chordless cycle nor complete, and so $G\left[C_{2}\right]$ is complete bipartite by the induction hypothesis.

Since the complete bipartite subgraphs $G\left[C_{1}\right]$ and $G\left[C_{2}\right]$ both contain edge $a b$, the subgraph $G[C]$ is complete bipartite by Lemma 3. Therefore, G satisfies condition (2).

Next, suppose G satisfies (2), C is an n-cycle of G, and $H=G[C]$. If $H \cong C_{n}$, then C has zero chords; otherwise, by (2), H is complete bipartite or complete. If H is complete bipartite, then its vertices alternate around C between the two partite sets, so $H \cong K_{h, h}$ with $h=n / 2$, and so C has exactly $n(n-4) / 4$ chords. If $H \cong K_{n}$, then C has exactly $n(n-3) / 2$ chords. Therefore, G satisfies (3).

Finally, suppose G satisfies (3). Since $n \geq 4$ implies $n(n-4) / 4 \neq 1$ and $n(n-3) / 2 \neq 1$, no ≥ 4-cycle can have a unique chord, and so G is unichord-free. Since $n \geq 5$ implies $n(n-4) / 4 \neq 2$ and $n(n-3) / 2 \neq 2$, no ≥ 5-cycle can have exactly two chords. Therefore G satisfies (1).

Corollary 5. A graph is strongly unichord-free if and only if, for all $k \geq 1$, every chord of every $\geq(k+3)$-cycle is crossed by at least k chords when $k=1$ or k is even, and is crossed by at least $k-1$ chords when $k \geq 3$ is odd.

Proof. First suppose G is strongly unichord-free, C is an n-cycle with a chord $a b$ (so $n \geq 4$), and $H=G[C]$. Let $N_{a b}^{\times}$denote the number of chords of C that cross $a b$. Theorem 4 ensures that H is complete bipartite or complete, and Lemma 1 ensures $N_{a b}^{\times} \geq 1$ when $k=1$. Hence, we can assume $k \geq 2$ and $n \geq k+3 \geq 5$.

If H is complete bipartite, then n is even and $H \cong K_{h, h}$ with $h=n / 2$, so $N_{a b}^{\times} \geq n-4$ (with equality when a and b are distance- 3 apart along C). If H is complete, then $H \cong K_{n}$, so $N_{a b}^{\times} \geq n-3$ (with equality when a and b are distance-2 apart along C).

Therefore, if $k \geq 2$ is even, then $n \geq k+3$ ensures that either H is complete bipartite, $n \geq k+4$ is even, and $N_{a b}^{\times} \geq(k+4)-4$ or H is complete and $N_{a b}^{\times} \geq(k+3)-3$; thus, either way, $N_{a b}^{\times} \geq k$. Similarly, if $k \geq 3$ is odd, then $n \geq k+3$ ensures that either H is complete bipartite, $n \geq k+3$ is even, and $N_{a b}^{\times} \geq(k+3)-4$ or H is complete and $N_{a b}^{\times} \geq(k+3)-3$; thus, either way, $N_{a b}^{\times} \geq k-1$.

The converse follows from Lemma 1 (by taking $k=1$ in the statement of the corollary) and from Theorem 2 (by taking $k=2$).

3. Characterizations Involving Connectivity

A graph is minimally k-connected if it is k-connected and, for every edge $a b$, deleting $a b$ leaves a graph that is not k-connected; see [8] for details.

Corollary 6. A graph is strongly unichord-free if and only if the vertex set of every cycle induces a minimally k-connected subgraph for some $k \geq 2$.

Proof. First suppose G is a strongly unichord-free graph with an n-cycle C, and let $H=G[C]$. By Theorem 4, either H is a chordless cycle (so H is minimally 2-connected) or H is complete bipartite with its vertices alternating around C between the two partite sets (so $H \cong K_{h, h}$ with $h=n / 2$ and H is minimally ($n / 2$)-connected) or H is complete (so $H \cong K_{n}$ with $n \geq 3$ and H is minimally ($n-1$)-connected).

Conversely, suppose G is not strongly unichord-free. Thus, G contains a subgraph $H=G[C]$ such that either (i) C is a ≥ 4-cycle with a unique chord or (ii) C is a ≥ 5-cycle with exactly two chords. In either case, H contains a degree-2 vertex, so H is 2 -connected but not 3 -connected, and deleting a chord of C leaves a 2 -connected subgraph of H. Therefore, H is not minimally k-connected for any $k \geq 2$.

Minimally 2 -connected graphs were introduced in [2, 13]. They appeared independently in [3], characterized as the 2 -connected chordless graphs-defined by no cycle having a chord-along with a $\mathcal{O}\left(n^{2} m\right)$ recognition algorithm (on n vertices and m edges); also see [5]. Since being 2 -connected, complete bipartite, and complete can each be recognized in linear time, Theorem 7 will guarantee a $\mathcal{O}\left(n^{2} m\right)$ recognition algorithm for strongly unichord-free graphs (in contrast to a $\mathcal{O}(n m)$ recognition algorithm for unichord-free graphs in [14]).

Theorem 7. A 2-connected graph is strongly unichord-free if and only if the graph is either minimally 2-connected or complete bipartite or complete.

Proof. First suppose G is a 2-connected, strongly unichord-free graph that is not minimally 2-connected. Thus G has an edge $a b$ that can be deleted without losing 2 -connectedness, so $a b$ is a chord of some cycle C and so $G[C]$ is not a chordless cycle. Thus, $G[C]$ is either complete or complete bipartite by Theorem 4. For every path π, let π° denote the set of internal vertices of π.

Suppose for the moment that $G[C]$ is complete, and assume that H is an inclusion-maximal complete subgraph of G that contains C where $H \neq G$ (arguing by contradiction). Thus, the 2 -connected, non-complete graph G has a minimum-length x-to- y path π for some $x, y \in V(H)$ where $\pi^{\circ} \neq \emptyset=\pi^{\circ} \cap V(H)$ and the cycle formed from π and the edge $x y$ is chordless. Pick any triangle $x y z$ of H. Since the cycle C^{\prime} formed from π and the edges $x z$ and $y z$ cannot
have the unique chord $x y$, there must be a vertex in π° that is adjacent to z, so the assumed minimality of π ensures that C^{\prime} is a 4-cycle, and so $G\left[C^{\prime}\right] \cong K_{4}$ is complete. Since the complete subgraphs H and $G\left[C^{\prime}\right]$ both contain $x y$, the subgraph $G\left[V(H) \cup V\left(C^{\prime}\right)\right]$ is complete by Lemma 3 (contradicting the assumed maximality of H).

By the preceding paragraph, we can assume that $G[C]$ is complete bipartite. Assume H is an inclusion-maximal complete bipartite subgraph of G that contains C, with $V(H)$ partitioned into bipartite sets S_{1} and S_{2}. Since $a b$ is a chord of a cycle of H, the complete bipartite graph $H \not \not K_{2, n}$ for any n, and so $\left|S_{1}\right| \geq 3$ and $\left|S_{2}\right| \geq 3$. Assume $H \neq G$ (arguing by contradiction). Thus, the 2 -connected graph G has a minimum-length x-to- y path π for some $x, y \in V(H)$ where $\pi^{\circ} \neq$ $\emptyset=\pi^{\circ} \cap V(H)$ and $x y$ is the only possible chord that the path π can have.

Suppose for the moment that $x \in S_{1}$ and $y \in S_{2}$; thus x and y are adjacent and there are vertices $x^{\prime} \in V(H) \cap S_{1} \backslash\{x\}$ and $y^{\prime} \in V(H) \cap S_{2} \backslash\{y\}$ such that $G\left[\left\{x, x^{\prime}, y, y^{\prime}\right\}\right] \cong K_{2,2}$. Thus G contains a ≥ 5-cycle C^{\prime} made from π and the path $x, y^{\prime}, x^{\prime}, y$. Since C^{\prime} has the chord $x y$ and $G\left[C^{\prime}\right]$ is not complete, $G\left[C^{\prime}\right]$ is complete bipartite by Theorem 4. Since the complete bipartite subgraphs H and $G\left[C^{\prime}\right]$ both contain $x y$, the subgraph $G\left[V(H) \cup V\left(C^{\prime}\right)\right]$ is complete bipartite by Lemma 3 (contradicting the assumed maximality of H).

By the preceding paragraph, we can assume that x and y are in the same partite set; say $x, y \in S_{1}$ (and so x and y are not adjacent) and, since $\left|S_{1}\right| \geq 3$ and $\left.\left|S_{2}\right| \geq 3\right)$ there are vertices $z \in S_{1} \subset V(H)$ and $u, v \in S_{2} \subset V(H)$ such that $G[\{u, v, x, y, z\}] \cong K_{2,3}$. Let C^{\prime} be the ≥ 6-cycle made from π and the path x, u, z, v, y of H, so C^{\prime} has exactly two chords between vertices of H (namely, $v x$ and $u y$) together with possible chords between vertices in π° and vertices in $\{u, v, z\}$. Since C^{\prime} has the chord $v x$ and $G\left[C^{\prime}\right]$ is not complete, $G\left[C^{\prime}\right]$ is complete bipartite by Theorem 4. Since the complete bipartite subgraphs H and $G\left[C^{\prime}\right]$ both contain $v x$, Lemma 3 ensures that $G\left[V(H) \cup V\left(C^{\prime}\right)\right]$ is complete bipartite (contradicting the assumed maximality of H).

The converse follows from every cycle of each minimally 2-connected graph being chordless implying that G is strongly unichord-free, together with every complete bipartite graph and every complete graph being strongly unichord-free.

Corollary 8. A 2-connected graph with minimum degree at least 3 is strongly unichord-free if and only if the graph is either complete bipartite or complete.

Proof. This follows from Theorem 7 since every minimally 2-connected graph has a vertex of degree 2 ; see $[2,3,13]$.

From a different point of view, [11] characterizes the graphs in which some chord of every ≥ 5-cycle is double-crossed. The final section of [11] introducesadmittedly without any real motivation-those graphs in which every chord of
every ≥ 5-cycle is double-crossed, as in Theorem 2. Some of that discussion in [11] is translated into our current terminology in the following corollary (which would also follow using Theorem 7).
Corollary 9 [11]. The following are equivalent for every unichord-free graph G that is 2 -connected with no induced ≥ 5-cycle.
(1) G is strongly unichord-free.
(2) G is complete bipartite or complete.
(3) Every ≥ 5-cycle C of G has $G[C]$ nonplanar.

References

[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796
[2] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204216. doi:10.1515/crll.1967.228.204
[3] B. Lévêque, F. Maffray and N. Trotignon, On graphs with no induced subdivision of K_{4}, J. Combin. Theory Ser. B 102 (2012) 924-947.
doi:10.1016/j.jctb.2012.04.005
[4] R.C.S. Machado and C.M.H. de Figueiredo, Total chromatic number of unichordfree graphs, Discrete Appl. Math. 159 (2011) 1851-1864.
doi:10.1016/j.dam.2011.03.024
[5] R.C.S. Machado, C.M.H. de Figueiredo and N. Trotignon, Edge-colouring and totalcolouring chordless graphs, Discrete Math. 313 (2013) 1547-1552. doi:10.1016/j.disc.2013.03.020
[6] R.C.S. Machado, C.M.H. de Figueiredo and N. Trotignon, Complexity of colouring problems restricted to unichord-free and $\{$ square, unichord $\}$-free graphs, Discrete Appl. Math. 164 (2014) 191-199. doi:10.1016/j.dam.2012.02.016
[7] R.C.S. Machado, C.M.H. de Figueiredo and K. Vušković, Chromatic index of graphs with no cycle with a unique chord, Theoret. Comput. Sci. 411 (2010) 1221-1234. doi:10.1016/j.tcs.2009.12.018
[8] W. Mader, On vertices of degree n in minimally n-connected graphs and digraphs, in: Combinatorics, Paul Erdős is Eighty 2 (Bolyai Soc. Stud. Math. Budapest, 1996) 423-449.
[9] T.A. McKee, Independent separator graphs, Util. Math. 73 (2007) 217-224.
[10] T.A. McKee, A new characterization of unichord-free graphs, Discuss. Math. Graph Theory 35 (2015) 765-771.
doi:10.7151/dmgt. 1831
[11] T.A. McKee, Double-crossed chords and distance-hereditary graphs, Australas. J. Combin. 65 (2016) 183-190.
[12] T.A. McKee and P. De Caria, Maxclique and unit disk characterizations of strongly chordal graphs, Discuss. Math. Graph Theory 34 (2014) 593-602. doi:10.7151/dmgt. 1757
[13] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85-94. doi:10.1090/S0002-9947-1968-0228369-8
[14] N. Trotignon and K. Vušković, A structure theorem for graphs with no cycle with a unique chord and its consequences, J. Graph Theory 63 (2010) 31-67. doi:10.1002/jgt. 20405

Received 25 March 2017
Revised 30 August 2017
Accepted 30 August 2017

