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Abstract

Several recent papers have investigated unichord-free graphs—the graphs
in which no cycle has a unique chord. This paper proposes a concept of
strongly unichord-free graph, defined by being unichord-free with no cy-
cle of length 5 or more having exactly two chords. In spite of its overly
simplistic look, this can be regarded as a natural strengthening of unichord-
free graphs—not just the next step in a sequence of strengthenings—and
it has a variety of characterizations. For instance, a 2-connected graph is
strongly unichord-free if and only if it is complete bipartite or complete or
“minimally 2-connected” (defined as being 2-connected such that deleting
arbitrary edges always leaves non-2-connected subgraphs).
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1. Introduction

An edge ab is a chord of a cycle C if a, b ∈ V (C) but ab 6∈ E(C). A graph is
unichord-free if no cycle has a unique chord. Such graphs were introduced (but
not named) independently in [9, 14] and have since been studied (and named
unichord-free) in additional papers, including [4, 5, 6, 7, 10]; in particular, [14]
gives a constructive characterization. Examples of unichord-free graphs include
the complete graphs and complete bipartite graphs, along with the Petersen and
Heawood graphs (see [14]).

A chord ab of a cycle C has a crossing chord xy if their four endpoints
occur in the order a, x, b, y around C, and the chords ab and xy are then said
to cross each other. Define a chord of C to be double-crossed if it is crossed
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by at least two chords of C. For cycles C1 and C2 with E(C1) ∩ E(C2) =
{ab}, define the symmetric difference C1 ⊕ C2 to be the cycle that has edge set
E(C1)∪E(C2)−E(C1)∩E(C2); thus ab is a chord of C1⊕C2. For a graph G with
S ⊂ V (G), let G[S] denote the subgraph of G induced by S and, for convenience
when C is a cycle of G and v ∈ V (C), let G[C] = G[V (C)] and let C − v denote
the path obtained by deleting v from C.

Lemma 1 [9]. A graph is unichord-free if and only if every chord of every cycle

has a crossing chord.

Proof. First suppose G is a unichord-free graph and C is a minimum-length cycle
of G such that C has a chord ab with no crossing chord (arguing by contradiction).
Let a′b′ be a second chord of C (possibly with ab and a′b′ having one vertex in
common). But then the cycle formed by the edge a′b′ and the a′-to-b′ subpath of
C through a and b would also have no crossing chord for ab, contradicting the
assumed minimality of C.

The converse is immediate since a unique chord of a cycle is necessarily
uncrossed.

Define a ≥k-cycle to be a cycle of length at least k, and define a graph to be
strongly unichord-free if it is unichord-free and no ≥5-cycle has exactly two chords.
Induced subgraphs of strongly unichord-free are also strongly unichord-free, and it
is simple to check that complete graphs and complete bipartite graphs are strongly
unichord-free. Figure 1 shows the Petersen graph—a unichord-free graph that is
fundamental to the constructive approach of [14]—that is not strongly unichord-
free, since the 8-cycle with vertices in numerical order 1, 2, . . . , 8 has exactly two
chords (26 and 48).

0
@
@
@

@
@@

1
�
�
�

�
��

B
B
B
B
B

2HHHHHHHH
3

4
�
�
�
�
�
56

7
��������

�
�
�
�
�
�
�

8

9
A
A
A
A
A
A
A

Figure 1. A unichord-free graph that is not strongly unichord-free.

The following deceptively simple observation will be surprisingly useful.

Theorem 2. A unichord-free graph is strongly unichord-free if and only if every

chord of every ≥5-cycle is double-crossed.
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Proof. First suppose G is strongly unichord-free and xy is a chord of a minimum-
length ≥5-cycle C such that xy is not double-crossed (arguing by contradiction).
By Lemma 1, xy is crossed by some chord uv of C. Since C cannot have exactly
two chords, C has a third chord wz that, since it does not cross xy, we can assume
is a chord of the x-to-y subpath π of C−v. The assumed minimality of C ensures
that wz is not a chord of either the x-to-u or the u-to-y subpath of π, and so
xy is a chord of the cycle C ′ formed by the edge wz and the w-to-z subpath of
C − u, with xy having no crossing chord in C ′ (contradicting Lemma 1).

Conversely, suppose G is unichord-free and every chord of every ≥5-cycle is
double-crossed. Therefore, no ≥5-cycle has exactly two chords.

Sections 2 and 3 will present additional characterizations of strongly unichord-
free graphs that involve, respectively, chords of cycles and graph connectivity.
In particular, Corollary 5 will somewhat justify the choice of the descriptor
“strongly” with a statement that involves a parameter k for which the k = 1
case characterizes being unichord-free and the k = 1 and k = 2 cases together
characterize being strongly unichord-free—as also do all of the k ≥ 1 cases taken
together. (This parallels how strongly chordal graphs, see [1], are characterized
in [12] by a statement for which the k = 1 case characterizes chordal graphs and
the k = 1 and k = 2 cases together characterize strongly chordal graphs—as do
all of the k ≥ 1 cases holding—showing that chordal graphs and strongly chordal
graphs are not simply the first two of a sequence of increasingly stronger graph
classes.)

2. Characterizations Involving Chords of Cycles

Lemma 3. Suppose G is a strongly unichord-free graph that contains 2-connected
subgraphs G1 and G2 that share at least one edge. If G1 and G2 are both complete

(or both complete bipartite), then so is G[V (G1) ∪ V (G2)].

Proof. Suppose G is strongly unichord-free and contains 2-connected subgraphs
G1 and G2 with ab ∈ E(G1) ∩ E(G2), and let H = G[V (G1) ∪ V (G2)]. We can
assume that G1 6= H 6= G2 to avoid a trivial conclusion.

First suppose G1 and G2 are both complete. Suppose (say) x1 ∈ V (G1) \
V (G2) and x2 ∈ V (G2) \ V (G1). Thus H has a 4-cycle C with vertices in the
order a, x1, b, x2 around C and with chord ab. By Lemma 1, ab has the crossing
chord x1x2 of C, and so x1 and x2 are adjacent. By the arbitrariness of the choice
of x1 and x2, the graph H is complete.

Now suppose G1 and G2 are both complete bipartite. Suppose each Gi has
partite sets Si and S′

i where, without loss of generality, a ∈ S1 ∩ S2 and (so)
b ∈ S′

1
∩ S′

2
. An edge x1x2 of H cannot have x1 ∈ S1 \ {a} and x2 ∈ S2 \ {a};
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otherwise, the 2-connected subgraph G1 would contain z ∈ S′

1
\ {b} and the five

edges x1x2, x2b, ba, az, zx1 would form a cycle ofH with exactly one or two chords
(bx1, and maybe x2z), contradicting that G is strongly unichord-free. Thus and
similarly, every edge of H has one endpoint in S1 ∪ S2 and the other in S′

1
∪ S′

2
,

and so the subgraph H is bipartite with partite sets S1∪S2 and S′

1
∪S′

2
. Suppose

(say) c ∈ S1 \ S2 and c′ ∈ S′

2
\ S′

1
, so each Gi being 2-connected ensures there

exist d′ ∈ S′

1
\ {b} and d ∈ S2 \ {a}. Thus H has a 6-cycle C that consists of the

path a, d′, c, b in G1 and the path b, d, c′, a in G2, with ab a chord of C. Since G is
strongly unichord-free and cc′ and dd′ are the only other possible chords C can
have in the bipartite subgraph H, cycle C has all three chords ab, cc′, and dd′, so
H[C] ∼= K3,3 and c is adjacent to c′. By the arbitrariness of the choice of c and c′

(and similarly starting from arbitrary c ∈ S2 \ S1 and c′ ∈ S′

1
\ S′

2
), the graph H

is complete bipartite.

Theorem 4. The following are equivalent for every graph.

(1) The graph is strongly unichord-free.

(2) The vertex set of every cycle induces a chordless cycle, a complete bipartite

subgraph, or a complete subgraph.

(3) Every n-cycle has exactly zero, n(n− 4)/4, or n(n− 3)/2 chords.

Proof. First, suppose G satisfies condition (1), and so every induced subgraph of
G is strongly unichord-free, toward showing that (2) holds. Argue by induction
on n ≥ 3 that, for every n-cycle C of G, the subgraph H = G[C] has either
H ∼= Cn or H ∼= Kh,h with h = n/2 (using that all the vertices of a bipartite
graph H = H[C] must alternate around C between the two partite sets) or
H ∼= Kn. Let x ∼ y and x 6∼ y denote, respectively, that vertices x and y are or
are not adjacent.

If n = 3, then H must be C3
∼= K3.

If n = 4, then the unichord-free graph H must be either C4
∼= K2,2 or K4.

Suppose n ≥ 5 and the n-cycle C is not chordless. Thus C has a chord ab
that, combined with the two a-to-b subpaths of C forms two cycles C ′ and C ′′

that have C = C ′ ⊕ C ′′. We can assume that ab is chosen to make C ′ as small
as possible, thus making C ′ chordless. Since the chord ab must have a crossing
chord (say) a′b′′ with a′ ∈ V (C ′) and b′′ ∈ V (C ′′) and since a′b′′ must, in turn,
have a crossing chord different from ab by Theorem 2 (and since C ′ is chordless),
one of the two following alternatives must hold:
(i) a′b′′ is crossed by a chord cd of C ′′; or

(ii) a′b′′ is crossed by a chord a′′b′ of C where a′′ ∈ V (C ′′) \ {a, b, b′′} and

b′ ∈ V (C ′) \ {a, a′, b}.
Figure 2 illustrates the notation that will be used in these two alternatives.

First suppose alternative (i) holds, say with the vertices in the order a, b, d, b′′, c
around C ′′ (possibly with a = c or b = d). Say C ′′ = C ′′

1
⊕ C ′′

2
where ab ∈



Strongly Unichord-Free Graphs 369

a
q

q

q

q

q

q

q

c
q

q

q

q

a′
q

q

q

q

b′′
q

q

q

b

q

q

q

d

C ′′

1

C ′′

2

C ′

C ′′

a
q

q

q

q

π1

q

q

q

q

π6

a′ q q q q q

π2

e
e
e
e
ee

a′′
%
%
%
%
%%

q q q q q

π5

b′
q

q

q

q

π3

b′′
q

q

q

q

π4

b

C ′

C ′′

Figure 2. Illustrating alternatives (i) and (ii) in the proof of Theorem 4, with subpaths
of the cycle C shown as dotted lines.

E(C ′′

1
) \ E(C ′′

2
) and cd ∈ E(C ′′

1
) ∩ E(C ′′

2
). We can assume that cd is chosen to

make C ′′

1
as small as possible, thus making C ′′

1
chordless.

Suppose for the moment that C ′′

1
is an odd cycle, so G[C ′′] is neither a chord-

less cycle nor complete bipartite, and so G[C ′′] is complete by the induction hy-
pothesis. Thus, ab′′ and bb′′ are edges that combine with the a-to-a′-to-b subpath
of C ′ to form a cycle Ĉ such that G[Ĉ] is neither a chordless cycle nor complete
bipartite, so G[Ĉ] is complete by the induction hypothesis. Since the complete
subgraphs G[C ′′] and G[Ĉ] both contain ab, the subgraph G[C] is complete by
Lemma 3.

By the preceding paragraph, we can assume that C ′′

1
is a chordless even

cycle. Since G[C ′ ⊕ C ′′

1
] is neither a chordless cycle nor complete, G[C ′ ⊕ C ′′

1
]

is complete bipartite by the induction hypothesis. Since C ′′ is neither chordless
nor complete, G[C ′′] is complete bipartite by the induction hypothesis. Since the
complete bipartite subgraphs G[C ′ ⊕ C ′′

1
] and G[C ′′] both contain edge ab, the

subgraph G[C] is complete bipartite by Lemma 3.

Now suppose instead that alternative (ii) holds, say with the six vertices
a, a′, b′, b, b′′, a′′ in that order around C, with each of the chords ab, a′b′′, and a′′b′

crossing the other two. Partition C into subpaths π1, . . . , π6 as shown in Figure 2.
Just as the chord ab was chosen so that C ′ (the cycle formed by the edge ab and
the path π1∪π2∪π3) is chordless, we can assume that chord a′b′′ was then chosen
to form a chordless cycle with π5∪π6∪π1, and that chord a′′b′ was finally chosen
to make a chordless cycle with π3 ∪ π4 ∪ π5. Thus, a 6∼ b′, a′ 6∼ b, a 6∼ b′′, a′ 6∼ a′′,
b′ 6∼ b′′, and a′′ 6∼ b.

We can assume that at least one of the six paths πi has length greater than 1
(otherwise, H ∼= K3,3 is already complete bipartite). Indeed, we can assume that
π1 has length greater than 1 (since the other five paths πi behave the same as
π1 in the remainder of this proof), and so a 6∼ a′. Let C1 be the cycle formed
from the paths and edges in the set {π2, π3, ab, π6, π5, a

′b′′}, noting that G[C1]
is a proper subgraph of G since G[C1] does not contain the internal vertices of
π1. Thus a

′′b′ is a chord of C1, so G[C1] is neither a chordless cycle nor complete
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(since, for instance, a 6∼ a′), and so G[C1] is complete bipartite by the induction
hypothesis.

If b ∼ b′, let C2 be formed from {π2, a
′′b′, π6, ab, π4, a

′b′′}, and if b 6∼ b′, let C2

be formed from {π1, π2, a
′′b′, π5, π4, ab}, noting that G[C2] is a proper subgraph

of G either way (since G[C2] does not contain the internal vertices of π1 when
b ∼ b′ or of π3 when b 6∼ b′). Thus bb′ (when b ∼ b′) or a′b′′ (when b 6∼ b′) is a
chord of C2, so G[C2] is neither a chordless cycle nor complete, and so G[C2] is
complete bipartite by the induction hypothesis.

Since the complete bipartite subgraphs G[C1] and G[C2] both contain edge
ab, the subgraph G[C] is complete bipartite by Lemma 3. Therefore, G satisfies
condition (2).

Next, suppose G satisfies (2), C is an n-cycle of G, andH = G[C]. IfH ∼= Cn,
then C has zero chords; otherwise, by (2), H is complete bipartite or complete.
If H is complete bipartite, then its vertices alternate around C between the two
partite sets, so H ∼= Kh,h with h = n/2, and so C has exactly n(n− 4)/4 chords.
If H ∼= Kn, then C has exactly n(n− 3)/2 chords. Therefore, G satisfies (3).

Finally, suppose G satisfies (3). Since n ≥ 4 implies n(n − 4)/4 6= 1 and
n(n− 3)/2 6= 1, no ≥4-cycle can have a unique chord, and so G is unichord-free.
Since n ≥ 5 implies n(n − 4)/4 6= 2 and n(n − 3)/2 6= 2, no ≥5-cycle can have
exactly two chords. Therefore G satisfies (1).

Corollary 5. A graph is strongly unichord-free if and only if, for all k ≥ 1, every
chord of every ≥(k + 3)-cycle is crossed by at least k chords when k = 1 or k is

even, and is crossed by at least k − 1 chords when k ≥ 3 is odd.

Proof. First suppose G is strongly unichord-free, C is an n-cycle with a chord ab
(so n ≥ 4), and H = G[C]. Let N×

ab denote the number of chords of C that cross
ab. Theorem 4 ensures that H is complete bipartite or complete, and Lemma 1
ensures N×

ab ≥ 1 when k = 1. Hence, we can assume k ≥ 2 and n ≥ k + 3 ≥ 5.

If H is complete bipartite, then n is even and H ∼= Kh,h with h = n/2, so
N×

ab ≥ n − 4 (with equality when a and b are distance-3 apart along C). If H
is complete, then H ∼= Kn, so N×

ab ≥ n − 3 (with equality when a and b are
distance-2 apart along C).

Therefore, if k ≥ 2 is even, then n ≥ k+3 ensures that either H is complete
bipartite, n ≥ k + 4 is even, and N×

ab ≥ (k + 4) − 4 or H is complete and
N×

ab ≥ (k + 3) − 3; thus, either way, N×

ab ≥ k. Similarly, if k ≥ 3 is odd, then
n ≥ k + 3 ensures that either H is complete bipartite, n ≥ k + 3 is even, and
N×

ab ≥ (k + 3) − 4 or H is complete and N×

ab ≥ (k + 3) − 3; thus, either way,
N×

ab ≥ k − 1.

The converse follows from Lemma 1 (by taking k = 1 in the statement of the
corollary) and from Theorem 2 (by taking k = 2).
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3. Characterizations Involving Connectivity

A graph is minimally k-connected if it is k-connected and, for every edge ab,
deleting ab leaves a graph that is not k-connected; see [8] for details.

Corollary 6. A graph is strongly unichord-free if and only if the vertex set of

every cycle induces a minimally k-connected subgraph for some k ≥ 2.

Proof. First suppose G is a strongly unichord-free graph with an n-cycle C, and
let H = G[C]. By Theorem 4, either H is a chordless cycle (so H is minimally
2-connected) or H is complete bipartite with its vertices alternating around C
between the two partite sets (so H ∼= Kh,h with h = n/2 and H is minimally
(n/2)-connected) or H is complete (so H ∼= Kn with n ≥ 3 and H is minimally
(n− 1)-connected).

Conversely, suppose G is not strongly unichord-free. Thus, G contains a
subgraph H = G[C] such that either (i) C is a ≥4-cycle with a unique chord or
(ii) C is a ≥5-cycle with exactly two chords. In either case, H contains a degree-2
vertex, so H is 2-connected but not 3-connected, and deleting a chord of C leaves
a 2-connected subgraph of H. Therefore, H is not minimally k-connected for
any k ≥ 2.

Minimally 2-connected graphs were introduced in [2, 13]. They appeared
independently in [3], characterized as the 2-connected chordless graphs—defined
by no cycle having a chord—along with a O(n2m) recognition algorithm (on n
vertices and m edges); also see [5]. Since being 2-connected, complete bipartite,
and complete can each be recognized in linear time, Theorem 7 will guarantee a
O(n2m) recognition algorithm for strongly unichord-free graphs (in contrast to a
O(nm) recognition algorithm for unichord-free graphs in [14]).

Theorem 7. A 2-connected graph is strongly unichord-free if and only if the

graph is either minimally 2-connected or complete bipartite or complete.

Proof. First suppose G is a 2-connected, strongly unichord-free graph that is not
minimally 2-connected. Thus G has an edge ab that can be deleted without losing
2-connectedness, so ab is a chord of some cycle C and so G[C] is not a chordless
cycle. Thus, G[C] is either complete or complete bipartite by Theorem 4. For
every path π, let π◦ denote the set of internal vertices of π.

Suppose for the moment that G[C] is complete, and assume that H is an
inclusion-maximal complete subgraph of G that contains C where H 6= G (ar-
guing by contradiction). Thus, the 2-connected, non-complete graph G has a
minimum-length x-to-y path π for some x, y ∈ V (H) where π◦ 6= ∅ = π◦ ∩ V (H)
and the cycle formed from π and the edge xy is chordless. Pick any triangle
xyz of H. Since the cycle C ′ formed from π and the edges xz and yz cannot
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have the unique chord xy, there must be a vertex in π◦ that is adjacent to z,
so the assumed minimality of π ensures that C ′ is a 4-cycle, and so G[C ′] ∼= K4

is complete. Since the complete subgraphs H and G[C ′] both contain xy, the
subgraph G[V (H) ∪ V (C ′)] is complete by Lemma 3 (contradicting the assumed
maximality of H).

By the preceding paragraph, we can assume that G[C] is complete bipartite.
AssumeH is an inclusion-maximal complete bipartite subgraph ofG that contains
C, with V (H) partitioned into bipartite sets S1 and S2. Since ab is a chord of
a cycle of H, the complete bipartite graph H 6∼= K2,n for any n, and so |S1| ≥ 3
and |S2| ≥ 3. Assume H 6= G (arguing by contradiction). Thus, the 2-connected
graph G has a minimum-length x-to-y path π for some x, y ∈ V (H) where π◦ 6=
∅ = π◦ ∩ V (H) and xy is the only possible chord that the path π can have.

Suppose for the moment that x ∈ S1 and y ∈ S2; thus x and y are adjacent
and there are vertices x′ ∈ V (H) ∩ S1 \ {x} and y′ ∈ V (H) ∩ S2 \ {y} such that
G[{x, x′, y, y′}] ∼= K2,2. Thus G contains a ≥5-cycle C ′ made from π and the
path x, y′, x′, y. Since C ′ has the chord xy and G[C ′] is not complete, G[C ′] is
complete bipartite by Theorem 4. Since the complete bipartite subgraphs H and
G[C ′] both contain xy, the subgraph G[V (H) ∪ V (C ′)] is complete bipartite by
Lemma 3 (contradicting the assumed maximality of H).

By the preceding paragraph, we can assume that x and y are in the same
partite set; say x, y ∈ S1 (and so x and y are not adjacent) and, since |S1| ≥ 3
and |S2| ≥ 3) there are vertices z ∈ S1 ⊂ V (H) and u, v ∈ S2 ⊂ V (H) such
that G[{u, v, x, y, z}] ∼= K2,3. Let C ′ be the ≥6-cycle made from π and the path
x, u, z, v, y of H, so C ′ has exactly two chords between vertices of H (namely,
vx and uy) together with possible chords between vertices in π◦ and vertices in
{u, v, z}. Since C ′ has the chord vx and G[C ′] is not complete, G[C ′] is complete
bipartite by Theorem 4. Since the complete bipartite subgraphs H and G[C ′]
both contain vx, Lemma 3 ensures that G[V (H) ∪ V (C ′)] is complete bipartite
(contradicting the assumed maximality of H).

The converse follows from every cycle of each minimally 2-connected graph
being chordless implying that G is strongly unichord-free, together with every
complete bipartite graph and every complete graph being strongly unichord-free.

Corollary 8. A 2-connected graph with minimum degree at least 3 is strongly

unichord-free if and only if the graph is either complete bipartite or complete.

Proof. This follows from Theorem 7 since every minimally 2-connected graph
has a vertex of degree 2; see [2, 3, 13].

From a different point of view, [11] characterizes the graphs in which some

chord of every ≥5-cycle is double-crossed. The final section of [11] introduces—
admittedly without any real motivation—those graphs in which every chord of
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every ≥5-cycle is double-crossed, as in Theorem 2. Some of that discussion in [11]
is translated into our current terminology in the following corollary (which would
also follow using Theorem 7).

Corollary 9 [11]. The following are equivalent for every unichord-free graph G
that is 2-connected with no induced ≥5-cycle.

(1) G is strongly unichord-free.

(2) G is complete bipartite or complete.

(3) Every ≥5-cycle C of G has G[C] nonplanar.
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[14] N. Trotignon and K. Vušković, A structure theorem for graphs with no cycle with a

unique chord and its consequences, J. Graph Theory 63 (2010) 31–67.
doi:10.1002/jgt.20405

Received 25 March 2017
Revised 30 August 2017

Accepted 30 August 2017

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.7151/dmgt.1757
http://dx.doi.org/10.1090/S0002-9947-1968-0228369-8
http://dx.doi.org/10.1002/jgt.20405
http://www.tcpdf.org

