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Abstract

A set of vertices S in a graph G = (V,E) is a dominating set if every
vertex not in S is adjacent to at least one vertex in S. A domatic partition

of graph G is a partition of its vertex-set V into dominating sets. A domatic
partition P of G is called b-domatic if no larger domatic partition of G can
be obtained from P by transferring some vertices of some classes of P to
form a new class. The minimum cardinality of a b-domatic partition of G
is called the b-domatic number and is denoted by bd(G). In this paper,
we explain some properties of b-domatic partitions, and we determine the
b-domatic number of some families of graphs.
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1. Introduction

Let G = (V,E) be a finite, simple and undirected graph with vertex-set V and
edge-set E. We call |V | the order of G and denote it by n. For any nonempty
subset S ⊂ V , let G[S] denote the subgraph of G induced by S. For any vertex
v of G, the open neighborhood of v is the set NG(v) = {u ∈ V (G) | (u, v) ∈ E}
and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. The private

neighborhood of a vertex v ∈ S with respect to S is the set pn[v, S] = {u ∈
V (G) : NG[u] ∩ S = {v}}. Each vertex in pn [v, S] is called a private neighbor of
v with respect to S. Remark that pn [v, S] is a set contained in {v}∪ (V \S). Let
∆(G) (respectively, δ(G)) be the maximum (respectively, minimum) degree in G.
Through this paper, the notations Pn, Cn, and Kn always denote a path, a cycle,
and a complete graph of order n, respectively, while Kp,q (p ≥ q) denotes the
complete bipartite graph with partite sets of sizes p, q. For further terminology
on graphs we refer to the book by Berge [2].

Graph coloring and domination are two major areas in graph theory that
have been extensively studied. These two concepts can be defined as a vertex
partition into classes according to certain rules. By a vertex partition (partition
for short), we will mean a partition of its vertex-set into disjoint subsets (classes).
The cardinality of a partition is the number of its classes.

A set S ⊆ V (G) is called independent if no two vertices in S are adjacent. A
partition P in which each of its classes is an independent set is called a proper

coloring of G. The smallest integer k such that G admits a proper coloring
with k colors is called the chromatic number of G and is denoted by χ(G). In
general, it is NP-complete to compute the chromatic number. For this reason,
many heuristics have been developed for finding an approximate solution to this
problem. One approach is to start with an arbitrary proper coloring and try
to reduce the number of colors used by transferring all vertices from one color
class to other classes. This technique is not possible if each color class contains
a vertex having neighbors in all other color classes. A coloring satisfying such a
property is called b-coloring. The b-chromatic number b(G) of a graph G is the
largest integer k such that G admits a b-coloring with k colors. This concept was
introduced by Irving and Manlove [7, 8].

A set S ⊆ V is called a dominating set if every vertex in V \ S is adjacent
to some vertex in S. The minimum cardinality of a dominating set of G is called
the domination number of G and is denoted by γ(G). By analogy to the concept
of chromatic partition, Cockayne and Hedetniemi [3] introduced the concept of
domatic partition of a graph. A partition P in which each of its classes is a
dominating set is called a domatic partition of G. The domatic number d(G) is
defined as the largest number of sets in a domatic partition.

In [5], Favaron introduced the b-domatic number by considering a new type of
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domatic partition. As defined in [5], a domatic partition P of G is b-domatic if no
larger domatic partition ofG can be obtained from P by transferring some vertices
of some classes of P to form a new class. Formally, a domatic partition P =
{U1, . . . , Uk} is called b-domatic if there do not exist k non-empty subsets πi ⊆ Ui,

i ∈ {1, . . . , k} with
⋃k

i=1
(Ui \ πi) 6= ∅, such that {π1, . . . , πk,

⋃k
i=1

(Ui \ πi)} is a
domatic partition of G. The minimum cardinality of a b-domatic partition of G
is called the b-domatic number and is denoted by bd(G).

It was observed in [5] that if δ(G) = 0, then {V (G)} is the unique domatic
partition and so bd(G) = d(G) = 1. For this, all graphs considered in this paper
are without isolated vertices. Many other properties of domatic and b-domatic
partitions were given in [5]. In particular, it was observed that any graph G with
minimum degree δ(G) ≥ 1, satisfies 2 ≤ bd(G) ≤ d(G). The same author [5] asked
several questions, some of which we answer in this paper. We first investigate a
new property of a b-domatic partition by giving a sufficient condition for which a
given domatic partition of a graph G is b-domatic. We next present some classes
of graphs for which bd(G) = 2 and bd(G) = δ(G) + 1, and we determine the b-
domatic number of some special bipartite graphs and block graphs. Other results
are given for particular classes of graphs.

2. Known Results

The authors of [3] showed the following result.

Proposition 1 [3]. Let G be a graph of order n and minimum degree δ(G). Then

(1) d(G) ≤ min

{

n

γ(G)
, δ(G) + 1

}

.

For some other results on domatic partitions see [1, 4, 10].

Proposition 2 [5]. Let G be a graph of minimum degree δ(G). If δ(G) = 0, then
bd(G) = d(G) = 1, otherwise 2 ≤ bd(G) ≤ d(G).

Hence, by Propositions 1 and 2, the next result follows immediately.

Proposition 3 [5]. For any graph G of minimum degree δ(G), we have bd(G) ≤
δ(G) + 1.

The following results are proved by Favaron in [5].

Theorem 4 [5]. Let G1, . . . , Gk be the components of a disconnected graph G

without isolated vertices. Then bd(G) = min{bd(Gi) : 1 ≤ i ≤ k}.

Proposition 5 [5]. Every domatic partition such that each class is a minimal

dominating set of G is b-domatic.
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The same author has computed the b-domatic number for some particular
classes of graphs.

Proposition 6 [5]. bd(Kn) = n, bd(C3) = 3, bd(Cn) = 2 for n ≥ 4, and

bd(Kp,q) = 2.

3. Main Results

We start this section by giving a sufficient condition for which a given domatic
partition of a graph G is b-domatic. Let P be a domatic partition of a graph G.
For a vertex v ∈ V (G), let Uv denote the class of P containing v.

Theorem 7. Let P be a domatic partition of a graph G = (V,E). If G has a

vertex v such that for each u ∈ NG [v] the set pn[u, Uu] is not empty, then P is

b-domatic.

Proof. Let P = {U1, . . . , Uk} be a domatic partition of a graph G and let v ∈
V (G) such that for each vertex u ∈ NG[v], pn[u, Uu] 6= ∅. Suppose, to the contrary,
that P is not b-domatic. Then, there exist k non-empty subsets πi ⊆ Ui, i ∈
{1, . . . , k} with

⋃k
i=1

(Ui \ πi) 6= ∅ for which π =
{

π1, . . . , πk,
⋃k

i=1
(Ui \ πi)

}

is a

domatic partition of G. Let πk+1 =
⋃k

i=1
(Ui \ πi). We claim that any vertex u

in NG [v] cannot be in πk+1. Suppose, to the contrary, that u ∈ NG [v] ∩ πk+1.

Then, there is a class πp ⊂ Uu that does not contain u for a some p ∈ {1, . . . , k}.
Therefore, either u is isolated in Uu in which case no vertex of πp can dominate u
for the partition π, or there exists a vertex z ∈ pn[u, Uu] in which case no vertex
of πp can dominate z for the partition π. In either case, we have a contradiction
with the fact that π is a domatic partition of G. This means that neither v nor
its neighbors are in πk+1, so v is not dominated by πk+1, which contradicts again
that π is a domatic partition of G.

Note that the converse is not true in general. For example, the domatic
partition P0={{v1, v2, v3}, {v4, v5, v6}} of the graph H0 in Figure 1 is b-domatic
but there is no vertex of H0 which satisfies the sufficient condition of Theorem 7
for P0. Remark that, as P0 is a b-domatic partition of H0 of cardinality 2, the
lower bound of Proposition 2 implies that bd(H0) = 2.

We next show that for any integer k ≥ 6, there exists a graph Gk of order k
that contains H0 as an induced subgraph and has b-domatic number equal to 2.
Recall that, as proved in [9], if G = (V,E) is a graph with no isolated vertices,
then the complement V \ S of every minimal dominating set S is a dominating
set.

Theorem 8. For any integer k ≥ 6, there exists a graph Gk of order k containing

H0 as an induced subgraph, such that bd(Gk) = 2.



On the b-Domatic Number of Graphs 317

v1 v2
v4

v5v6

v3

Figure 1. Graph H0.

Proof. Let v1, v2, v3, v4, v5, v6 be the vertices of H0 as shown in Figure 1. Let
V (H0) = A1 ∪ A2 such that A1 = {v1, v2, v3} and A2 = {v4, v5, v6}. It is not
difficult to see that {A1, A2} is a domatic partition of H0. Let Gk (k ≥ 6) be
a graph of order k, having no isolated vertices and with vertex-set V (Gk) =
A1 ∪ A2 ∪ A3 where G[A1 ∪ A2] = H0 and A3 is a set of extra vertices (may be
empty) such that there is no edge between A1 and A3. Note that if k = 6, then
A3 is an empty set and therefore G6 = H0. By the remark before the Theorem 8,
bd(G6) = 2. Assume now that k ≥ 7, so |A3| ≥ 1. Let H1 = G[A3], and let S be a
minimal dominating set of H1. Then, as proved in [9], A3 \S is a dominating set
of H1 implying that {S, A3 \ S} is a domatic partition of H1. Let U1 = A1 ∪ S

and U2 = A2 ∪ (A3 \ S). Clearly V (Gk) = U1 ∪ U2, further {U1, U2} is a domatic
partition of Gk. In addition, it is a routine exercise to show that U1 is a minimal
dominating set of Gk. We shall show that {U1, U2} is a b-domatic partition of
Gk. Suppose not. Then there exist two subsets πi ⊆ Ui (i = 1, 2) such that
(U1 \ π1) ∪ (U2 \ π2) 6= ∅ and π =

{

π1, π2, (U1 \ π1) ∪ (U2 \ π2)
}

is a domatic
partition of Gk. Let π3 = (U1 \ π1)∪ (U2 \ π2). Since U1 is a minimal dominating
set of Gk, then no vertex of U1 can be in π3, so π1 = U1. Likewise, no vertex of A2

belongs to π3 because if not, there is a vertex in A1 (⊂ π1) that is not dominated
by π3 (or by π2), a contradiction. For example, if v4 is the only vertex of A2 in π3,

then v3 will have no neighbors in π3, and if A2 has at least two vertices, say v4, v5
in π3, then v2 will have no neighbors in π2; in each case, we have a contradiction
with the fact that π is a domatic partition of Gk. Thus, no vertex of A2 can be
in π3, which means that A2 ⊂ π2. Therefore, since there is no edge between A1

and A3, no vertex of A1 is dominated by π3, this contradicts again that π is a
domatic partition of Gk. Thus {U1, U2} is a b-domatic partition of Gk, and so
bd(Gk) ≤ 2. The lower bound of Proposition 2 implies that bd(Gk) = 2.

We now give other classes of graphs for which the b-domatic number is equal
to 2.

Theorem 9. If G has a vertex such that its neighbors form an independent set,

then bd(G) = 2.



318 M. Benatallah, N. Ikhlef-Eschouf and M. Mihoubi

Proof. Let H be a connected component of G (possibly H = G ). Let v be a
vertex of H such that NH(v) is an independent set. Let U1 be the set of vertices
of H whose distance from v is even, and let U2 be the set of vertices of H whose
distance from v is odd. Observe that v ∈ U1 and each neighbor of v is in U2.

Clearly, {U1, U2} is a domatic partition of H. In view of Theorem 7, {U1, U2} is
a b-domatic partition of H because each neighbor of v is isolated in U2 and v is
isolated in U1. Therefore bd(H) ≤ 2, and so Theorem 4 and Proposition 2 yield
bd(G) = 2.

Corollary 10. If G is triangle-free, then bd(G) = 2.

Consider a graph H with vertex-set V (H). For any permutation π of V (H),
the prism of H with respect to π is the graph obtained by taking two disjoint
copies of H, denoted by H1 and H2, and joining every u ∈ V (H1) with π(u) ∈
V (H2). The complementary prism of H is the graph formed from the disjoint
union of H and its complementary graph H by adding the edges of a perfect
matching between the corresponding vertices of H and H.

Proposition 11. Let H be a graph. If G is a prism of H or a complementary

prism of H, then bd(G) = 2.

Proof. Let H1, H2 be two disjoint copies of H and P = {V (H1), V (H2)} be a
partition of V (G). It is not difficult to see that P is a domatic partition of G,
further, for i = 1, 2, each vertex of V (Hi) has a private neighbor with respect
to V (Hi). Therefore, in view of Theorem 7, P is b-domatic of G, and hence by
Proposition 2, bd(G) = 2. The same proof still holds if G is the complementary
prism of H, by substituting H2 with the complementary graph H.

Theorem 12. Let G = (V,E) be an r-regular graph and µ = max{|Sv| : v ∈
V (G) and Sv is a maximum independent set in G[N(v)]}. If d(G) = r + 1, then
bd(G) ≤ r − µ+ 2.

Proof. Let P = {U1, . . . , Ur+1} be a domatic partition of G of cardinality r+1.
We can easily observe that for i ∈ {1, . . . , r + 1},

(2)
Ui is an independent set of G, and each vertex in Ui has exactly
one neighbor in each other class Uj , j 6= i.

Let v be a vertex of G such that µ = |Sv|. Clearly r ≥ µ ≥ 1. Let v1, . . . , vr be
the neighbors of v. By (2), we may assume that v ∈ U1 and vi ∈ Ui+1 for each
i ∈ {1, . . . , r}. Without loss of generality, assume also that Sv = {v1, . . . , vµ}.
Set q = r − µ + 2 and let π ={π

1
, . . . , πq} be a partition of G of cardinality q

obtained from P as follows. π1 = {v}∪
((

⋃µ
i=1

Ui+1

)

\Sv

)

, π2 = Sv∪(U1\{v}) and
πi = Ui+µ−1 for i ∈ {3, . . . , q}. Now, we shall show that π is a domatic partition of
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G. For i ∈ {3, . . . , q}, πi is a dominating set of G because Ui+µ−1 is a dominating
set of G. So, it suffices to show that π1 and π2 are dominating sets of G. Observe
first that (2) implies that each vertex in Ui+1 \ {vi}, i = 1, . . . , µ, has at least one
neighbor in U1 \ {v} and vice versa. Therefore, each vertex of π2 is dominated
by π1 and vice versa. On the other hand, as Sv is a maximum independent set
of G[NG(v)], each vertex in {vµ+1, . . . , vr} has at least one neighbor in Sv and
so in π2. Notice that v has no neighbor in

⋃r
i=1

(Ui+1 \ {vi}). Therefore, since
U1 is a dominating set of G, each vertex in Ui+1 \ {vi} (i ≥ 1) has at least one
neighbor in U1 \ {v} and so in π2. Hence, each vertex in πi, 3 ≤ i ≤ q has a
neighbor in π2. This means that π2 is a dominating set of G. Thus, it remains
to show that π1 is a dominating set of G. To this end, we show that each vertex
u ∈ Uj+1, (j ≥ µ + 1) is dominated by π1. Remember that vj is the neighbor of
v in Uj+1. Clearly, if u = vj (j ≥ µ + 1), then u is adjacent to v and so u is
dominated by π1. Suppose now that u 6= vj . Then u cannot be adjacent to all
vertices of Sv, otherwise, since u and vj are in the same class Uj+1, the second
part of Observation 2 implies that vj cannot be adjacent to any vertex of Sv

and so Sv ∪ {vj} is an independent set of G[NG(v)], a contradiction. Hence u

is non-adjacent to at least one vertex in Sv. Therefore, u must be adjacent to
at least one vertex of

⋃µ
i=1

(Ui+1 \ {vi}) and hence u is dominated by π1. Thus
each vertex of

⋃q
i=3

πi is dominated by π1. Hence, π1 is a dominating set of G.
Consequently, π is a domatic partition of cardinality q for which each vertex of
NG[v] is isolated in its class. Therefore, Theorem 7 implies that π is b-domatic
of G, which means that bd(G) ≤ q = r − µ+ 2.

This bound is achieved, for example, by a complete bipartite graph minus
a perfect matching G of order 2p, with partite sets of the same size p, in which
δ(G) = µ = p− 1 and d(G) = p, while, by Theorem 9, bd(G) = 2.

Theorem 13. Let r be a positive integer and let G be a r-regular graph. Then

bd(G) = r + 1 if and only if G = pKr+1 for some positive integer p.

Proof. Using Theorem 4 and Proposition 6, we can easily verify that the state-
ment is true when G = pKr+1. So, let us prove the converse. As bd(G) = r+1 =
d(G), Theorem 12 implies that r + 1 ≤ r − µ + 2. So, since µ ≥ 1, it follows
that r + 1 ≤ r − µ+ 2 ≤ r + 1. Hence µ = 1 implying that the neighborhood of
any vertex of G induces a complete subgraph. This means that G is the union of
p ≥ 1 copies of complete graphs of order r + 1.

A vertex v in a graph G is universal if it is adjacent to every other vertex in
G. Recall that if G has no universal vertex, then γ(G) ≥ 2. So, the next result
follows immediately by applying Propositions 1 and 2.

Observation 14. If G is a graph of order n without universal vertices, then

bd(G) ≤ n
2
.
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This bound is achieved, for example, by (n− 2)-regular graphs of order n.

Proposition 15. If G is an (n− 2)-regular graph of order n, then bd(G) = n
2
.

Proof. Let G be an r-regular graph of order n = r+2. Obviously, n is even, every
vertex of G has exactly n− 2 neighbors and one non-neighbor, and G is without
isolated vertices. Hence, according to the Observation 14, we have bd(G) ≤ n

2
.

Suppose to the contrary that bd(G) = k < n
2
, and consider a b-domatic partition

P = {U1, . . . , Uk} of G of cardinality k. Therefore, since any set of two vertices of
G dominates G, there are two classes Ui, Uj (i 6= j) of P such that both together
contain at least 6 vertices. In this case, we can split Ui∪Uj into three dominating
sets U ′

i , U
′

j , Uk+1 each of them of size at least two such that U ′

i ⊆ Ui, U
′

j ⊆ Uj

and Uk+1 ⊆ Ui ∪ Uj . It is easy to check that
(

P \ {Ui, Uj}
)

∪
(

{U ′

i , U
′

j , Uk+1}
)

is
a domatic partition of G of cardinality k + 1, a contradiction. So bd(G) = n

2
.

It was shown in [4] that if v is a universal vertex, then d(G) = d(G \ v) + 1.
We give here a similar result for the b-domatic number.

Proposition 16. If v is a universal vertex in G, then bd(G) = bd(G \ v) + 1.

Proof. Let v be a universal vertex in G. Set k = bd(G \ v) and let {U1, . . . , Uk}
be a b-domatic partition of G \ v. Clearly, {U1, . . . , Uk, {v}} is a b-domatic
partition of G, so bd(G) ≤ bd(G \ v) + 1. Now set t = bd(G) and let {π1, . . . , πt}
be a b-domatic partition of G. Assume that v ∈ π1. Observe that {(π1 ∪ π2)\
{v}, π3, . . . , πt} is a b-domatic partition of G \ v. Thus bd(G \ v) ≤ bd(G) − 1
which gives the desired result.

A threshold graph is a graph that can be constructed from the one-vertex
graph by repeatedly adding an isolated vertex or a universal vertex. As a conse-
quence of Proposition 16, we determine the b-domatic number of threshold graph
and its complementary graph.

Corollary 17. Let Gn be a threshold graph of order n. Then

bd(G1) = 1 and for n ≥ 2, bd(Gn) = 1 +
n
∑

j=2

αn · · ·αj ,

where αj =

{

1 if the added vertex to Gj−1 is an universal vertex,

0 if the added vertex to Gj−1 is an isolated vertex.

Proof. Proposition 2 and Proposition 16 imply that bd(G1) = 1 and bd(Gn) =
αn · bd(Gn−1) + 1 for n ≥ 2. This recurrence relation admits the unique solution
bd(Gn) = 1 +

∑n
j=2

αn · · ·αj .
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Corollary 18. If Gn is the complementary graph of a threshold graph Gn, then

bd(Gn) = 1 +
n
∑

j=2

(1− αn) · · · (1− αj).

A block of a graph is a maximal connected subgraph that has no cut-vertex. A
block is trivial if it has only one edge. A block graph is a connected graph in which
each block induces a complete subgraph. In the next theorem, we determine the
b-domatic number of any block graph G such that each of its blocks contains at
least one vertex that is non-cut for G.

Theorem 19. Let G be a block graph and B1, . . . , Br (r ≥ 2) be the blocks of G.

For i ∈ {1, . . . , r}, let |V (Bi)| = ni, and let ki denote the number of cut vertices

in Bi. If l = min{ni − ki : 1 ≤ i ≤ r} ≥ 1, then bd(G) = l + 1.

Proof. Let r ≥ 2. For i ∈ {1, . . . , r}, denote by δi the minimum degree in Bi and
let li = ni − ki. As l = min{li : 1 ≤ i ≤ r} ≥ 1, it follows that δ = min δi ≥ 1 and
1 ≤ li ≤ δi. Thus, l ≤ δi and in particular, we have

(3) l ≤ δ.

If r = 2, then G has exactly one cut vertex, say w. Hence,

(4) li = ni − 1 = δ
i
for each i in {1, 2}.

Observe that w is a universal vertex in G, and G \w = Kδ1 ∪Kδ2 is the union of
two complete subgraphs of G. Hence, by Theorem 4, bd(G \ w) = min

{

bd(Kδ1),
bd(Kδ2)

}

= min{δ1, δ2}, and by (4), we get bd(G\w) = min{l1, l2} = l. Therefore,
Proposition 16 implies that bd(G) = bd(G \w) + 1 = l+ 1. Hence, the statement
is true. Assume now that r ≥ 3. Denote by

V (Bi) =
{

vi1, v
i
2, . . . , v

i
li
, ui1, u

i
2, . . . , u

i
ki

}

,

the set of the vertices of the block Bi such that vi1, v
i
2, . . . , v

i
li
and ui1, u

i
2, . . . , u

i
ki

are respectively the non-cut vertices and the cut vertices of G in Bi.
We first show that bd(G) ≥ l+1. Let k = bd(G) and suppose to the contrary

that k ≤ l. Hence, by (3), we obtain

(5) k ≤ l ≤ δ.

Let P = {U1, U2, . . . , Uk} be a b-domatic partition of G of cardinality k. Notice
that |Bi| = δi + 1 ≥ δ + 1 for each i ∈ {1, . . . , r}; so by (5), we have

(6) |Bi| ≥ l + 1 ≥ k + 1.
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As each block Bi contains at least l vertices that are non-cut for G, (6) implies
that for each i ∈ {1, . . . , r} there is a class of P that intersects Bi in at least
two vertices such that at least one of them is a non-cut-vertex, say vi1. Let
X =

{

v11, v
2
1, . . . , v

r
1

}

and consider a partition π of V (G) of cardinality k + 1
obtained from P by collecting vertices v11, v

2
1, . . . , v

r
1 of some classes of P to form

a new class. Partition π with classes π1, π2, . . . , πk, πk+1 is constructed as follows.
For each i ∈ {1, . . . , r}, let πi = Ui \Xi where Xi = X ∩ Ui (Xi may be empty
for some integers i), and πk+1 = X. It is a routine exercise to verify that π =
{π1, π2, . . . , πk, πk+1} is a domatic partition of G, contradicting the assumption
that P is a b-domatic partition of G. Thus

(7) bd(G) ≥ l + 1.

Now, we shall show that bd(G) = k ≤ l + 1. When l = δ, the last inequality
is clearly true, and therefore by (7), we have k = l+1 = δ+1. Now, assume that
l ≤ δ − 1, and suppose without loss of generality that B1 contains the smallest
number of non-cut vertices in G. Then

(8) l1 = l and so V (B1) =
{

v11, v
1
2, . . . , v

1
l , u

1
1, u

1
2, . . . , u

1
k1

}

,

where u11, u
1
2, . . . , u

1
k1

are the cut vertices of B1. It is known that a vertex is a
cut vertex if and only if it belongs to at least two blocks. Hence, without loss of
generality, we may suppose that

for i ∈ {1, . . . , k1}, u
1
i ∈ V (B1) ∩ V (Bi+1).

Let s ≥ 0 be the number of blocks of G, that do not intersect B1. Clearly s < r

and, if s = 0, each block Bj (j 6= 1) of G intersect B1. If s ≥ 1 we may suppose,
without loss of generality, that

V (B1) ∩ V (Bj) = ∅ for j ∈ {r − s+ 1, . . . , r}.

Let P = {U1, U2, . . . , Ul+1} be a partition of G of cardinality l+1 ≤ δ defined
according to the value of l as follows.

Case 1. l ≥ 2.

• If s ≥ 1, then Ul+1 =
{

u1i : 1 ≤ i ≤ k1
}

∪
{

v
j
1
: r − s + 1 ≤ j ≤ r

}

; otherwise
Ul+1 =

{

u1i : 1 ≤ i ≤ k1
}

.

• Ui =
{

v
j
i : 1 ≤ j ≤ r

}

, 2 ≤ i ≤ l.

• U1 = V (G) \
(

⋃l+1

i=2
Ui

)

.

Case 2. l = 1.

• If s ≥ 1, then U2 =
{

u1i : 1 ≤ i ≤ k1
}

∪
{

v
j
1
: r − s + 1 ≤ j ≤ r

}

; otherwise
U2 =

{

u1i : 1 ≤ i ≤ k1
}

.
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• U1 = V (G) \ U2.

Remark that in either cases, each class of P intersect each block of G in at
least one vertex. This means that P is a domatic partition of G. Observe also
that for i ∈ {1, . . . , k1}, v

i+1

l is a private neighbor of u1i with respect to Ul+1.
In addition, each class Ui (i = 1, . . . , l) has a vertex v1i that is adjacent to no
vertex of its own class and to exactly one vertex from each of the classes Uj ,

j ∈ {1, . . . , l} \ {i}. So, we conclude that v11 is an isolated vertex in U1 such that
each of its neighbor is either isolated in its class or has a private neighbor with
respect to Ul+1. Thus, in view of Theorem 7, P is a b-domatic partition of G,
which means that k ≤ l + 1. Hence, by (7), we get k = l + 1.

A cactus graph is a connected graph in which each block is either an edge or
a cycle. A friendship graph Fn (n ≥ 2) is a cactus graph of order 2n+1 in which
any two vertices have exactly one common neighbor.

In the following proposition, we prove that the b-domatic number of a cactus
graph G in which every block has at least one vertex that is non-cut for G is
equal to 2, except for K3 and Fn (n ≥ 2).

Proposition 20. Let G be a cactus graph such that each block has at least one

vertex that is non-cut for G. Then bd(G) = 2 unless G is K3 or Fn (n ≥ 2). In
these cases, bd(K3) = bd(Fn) = 3.

Proof. Clearly δ(G) ≤ 2. Thus, by Proposition 3, bd(G) = 2 when δ(G) = 1.
So, assume that δ(G) = 2. If G has a cycle of length at least 4, then G contains
a non-cut vertex of degree 2 such that its neighbors form an independent set.
Therefore, Theorem 9 yields bd(G) = 2. Now, assume that any cycle of G has
length 3. Let l be as defined in Theorem 19 and let r ≥ 1 be the number of blocks
of G. If r = 1, then G = K3 and so bd(K3) = 3 by Proposition 6. Assume that
r ≥ 2. If G = Fn, then l = 2 and so bd(Fn) = 3 by Theorem 19. Otherwise l = 1
implying that bd(G) = 2 by Theorem 19 again.

4. Conclusion

In this paper, we have formulated and proved a sufficient condition for a given
domatic partition of a graph to be b-domatic, however, we have shown that the
converse is not true. Therefore, the necessary condition remains still an open
problem.

We have also presented some infinite classes of graphs having b-domatic num-
ber equal to two and δ+1. In particular, we have determined the b-domatic num-
ber of block graph (cactus graph) G in which every block has at least one vertex
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that is non-cut for G. So it would be interesting to determine the b-domatic num-
ber for cacti and block graphs that contain at least one block whose vertices are
all cut-vertices for G.
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