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Abstract

Let ar(G,H) be the largest number of colors such that there exists an
edge coloring of G with ar(G,H) colors such that each subgraph isomorphic
to H has at least two edges in the same color. We call ar(G,H) the anti-

Ramsey number for a pair of graphs (G,H). This notion was introduced by
Erdős, Simonovits and Sós in 1973 and studied in numerous papers.

Hanoi graphs were introduced by Scorer, Grundy and Smith in 1944 as
the model of the well known Tower of Hanoi puzzle.

In the paper we study the anti-Ramsey number of Hanoi graphs and con-
sider them both as the graph G and H. Among others we present the exact
value of the anti-Ramsey number in case when both graphs are constructed
for the same number of pegs.
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1. Introduction

The graphs considered below will always be simple. Throughout the paper we
use the standard graph theory notation (see, e.g., [8]). In particular, Kn is a
complete graph on n vertices. The graph K3 redis called a triangle. Let t be a
positive integer and F be a graph. By the symbol tF we mean a graph consisting
of t disjoint copies of the graph F . For two graphs F and G by F ∪G we denote
a sum of graphs, i.e., a graph with a vertex set V (F ) ∪ V (G) and an edge set
E(F ) ∪ E(G). For a set S by |S| we denote the cardinality of S and S(n, k) is
the Stirling number of the second kind. In the following subsections we give only
a short overview on both anti-Ramsey numbers and Hanoi graphs. We provide
also references for an interested reader.

http://dx.doi.org/10.7151/dmgt.2078
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1.1. Anti-Ramsey numbers

A subgraph of an edge-coloured graph is called rainbow if all of its edges have
different colors. For graphs G and H the anti-Ramsey number ar(G,H) is the
maximum number of colors which can be used in such an edge-colouring of G
which avoids any rainbow copy of H. It means, equivalently, that in each edge-
coloring of G with ar(G,H) + 1 colors a rainbow copy of H must appear. Anti-
Ramsey numbers were introduced by Erdős et al. [9] and considered there in
a classical case when G = Kn. Since then numerous results were established
for a variety of graphs H, including among others, cycles [1, 19, 24], matchings
[10, 13, 27] and trees [18, 20]. Later on different graphs were considered as a graph
G, for instance bipartite graphs [4, 5, 23], hypercubes and a product of cycles [25]
or complete split graphs [12]. Apart from a fixed graph, a set of triangulations
played role of G [17, 21]. The paper of Fujita, Magnant and Ozeki [11] presents
a survey of results in classical and nonclassical cases. From our point of view the
results of Axenovich et al. [3] and Bode et al. [6] are the most similar in spirit to
ours. In the mentioned papers host graphs and the graphs which we would like
to avoid as a rainbow copy belong to the same class, namely hypercubes. Hanoi
graphs, which we describe in the next paragraph, have a similar property. Larger
Hanoi graphs can be recursively constructed from the smaller ones. Their fractal
structure suits very well to the anti-Ramsey topic.

1.2. Hanoi graphs

Let n and p be integers. The famous Tower of Hanoi puzzle consists of p ≥ 1
pegs and n ≥ 0 discs of pairwise different diameters. At the beginning all discs
are placed on the first peg ordered from the largest on the bottom to the smallest
on the top. We call such a position a perfect state. The goal is to move all discs
to the last peg and place them in the perfect state in such a way that in each
move we can change the position of exactly one disc following the divine rule: one
must not place a disc on a smaller one. Such a move is called a legal one. The
question is about the minimal number of moves necessary to solve the puzzle. It
is well-known that for the original puzzle with three pegs it is 2n − 1, where n is
the number of discs. Later on the puzzle was generalized to four (Reve’s puzzle),
and then to more pegs. Recently Bousch has shown that the Frame-Stewart
algorithm is optimal for p = 4 [7].

In 1941 Scorer et al. [26] proposed a graph model of the Tower of Hanoi
puzzle for the original puzzle with three pegs. It was generalized around the turn
of millenium when the puzzle with more pegs became more and more popular
(see, e.g., [15]). We describe the model in the general case. Firstly we label the
pegs 0, 1, . . . , p−1 and the discs 1, 2, . . . , n. Each state which can be obtained by
legal moves we call a regular state. To each regular state we assign a sequence
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Figure 1. A regular state in Tower of Hanoi.

(r1, r2, . . . , rn), where ri is a label of the peg i-th disc is placed on. Each such a
sequaence is a vertex of the Hanoi graph. For instance the sequence (2, 2, 1, 0, 0)
represents the state in Figure 1. Two vertices are adjacent if there is a legal
move between the respective regular states. Considering the state in Figure 1
we have N((2, 2, 1, 0, 0)) = {(0, 2, 1, 0, 0), (1, 2, 1, 0, 0), (2, 2, 0, 0, 0)}. The vertex
set is denoted by V n

p , the edge set by En
p and the Hanoi graph built that way

by Hn
p . As we mentioned Hanoi graphs were introduced to model the Tower of

Hanoi puzzle and therefore, the length and uniqueness of the shortest path was
widely considered, firstly between two perfect states and afterwards between two
arbitrarily chosen regular states. We refer the readers interested in this aspect
to the book of Hinz et al. [16] and the references therein. Since then different
properties of Hanoi graphs have been studied which are not strictly connected
with solving the puzzle, but rather with the structure of the graph. We quote
here only some of them. For instance it has been shown by Arett and Doree
[2] that the chromatic number of Hanoi graphs is equal to the number of pegs,
by Hinz and Parisse [14] that they are first class graphs, that means that the
chromatic index of Hanoi graphs is equal to its maximum degree. Due to Hinz
and Parisse [15] we know that all Hanoi graphs are Hamiltonian, but only H0

p ,
Hn

3
, H1

4
and H2

4
, n, p ∈ N0 are planar. Again we refer to [16] for some other

properties, as well as the detailed history of the Tower of Hanoi puzzle and its
graph model.

Theorem 1 [16, p. 190 and Proposition 5.23]. Let n ≥ 0, p ≥ 3. Then

| V n
p |= pn, | En

p |=
1

2

(

p

2

)

(pn − (p− 2)n) .

2. Anti-Ramsey Numbers for Hanoi Graphs

As we mentioned in the introduction the structure of Hanoi graphs fits very well to
the anti-Ramsey number problem. Below we describe the recursive construction
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of them according to the number of discs. To avoid trivial situations in the
following we always assume that p ≥ 3 and n ≥ 1. At the beginning, it is easy to
observe that if we have only one disc then all moves are legal and therefore H1

p

is isomorphic to Kp. Now consider the tower with n − 1 discs and assume that
we add the n-th disc (the largest). We can place it on any peg and then repeat
any state from the smaller tower. It is equivalent that we can add any label from
{0, 1, . . . , p− 1} at the end of any sequence (r1, r2, . . . , rn−1) forming a sequence
(r1, r2, . . . , rn). Note that all moves which were legal in a smaller tower are also
legal in that with n-th disc. Hence Hn

p consists of p copies of Hn−1
p . We add

edges among these copies to represent the legal moves of the largest disc. See e.g.
Figure 2 to see the construction of H2

3
and H2

4
.

Figure 2. Construction of H2

3
and H2

4
.

2.1. The exact value of ar
(

Hn

p
,Hm

p

)

The recursive construction of Hanoi graphs allows us to fix p and consider
ar(Hn

p , H
m
p ). It is quite natural from the puzzle point of view when we have

a fixed number of pegs and can add discs. It occurs that in this case we can
easily determine the exact value of the anti-Ramsey number.

Theorem 2. For a pair of Hanoi graphs Hn
p and Hm

p with n ≥ m > 0, p ≥ 3 we

have

ar(Hn
p , H

m
p ) =

1

2

(

p

2

)

(pn − (p− 2)n)− pn−m.

Proof. Firstly, by the recursive construction, we observe that the graph Hn
p

contains pn−m copies of Hm
p . We construct the edge-coloring of Hn

p as follows.
In each copy of Hm

p we color two arbitrarly chosen edges with the same color,
but we use different colors in different copies. To each of remaining edges we use
a new color. In such a coloring we do not obtain any rainbow Hm

p and we use
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(

| Em
p | −1

)

pn−m colors on the edges of the copies Hm
p and | En

p | −pn−m | Em
p |

colors on the edges linking them. Hence, altogether we use

(

| Em
p | −1

)

pn−m+ | En
p | −pn−m | Em

p | = | En
p | −pn−m

colors. So
ar
(

Hn
p , H

m
p

)

≥ | En
p | −pn−m.

Let us consider an arbitrary edge-coloring of Hn
p with | En

p | −pn−m + 1
colors. Note that we can use at most | En

p | −pn−m | Em
p | colors to color edges

linking copies Hm
p . So we use at least

| En
p | −pn−m− | En

p | +pn−m | Em
p | +1 = pn−m

(

| Em
p | −1

)

+ 1

colors which we use on the copies of Hm
p . Hence, by a strong version of the

pigeonhole principle, we use

⌈

pn−m
(

| Em
p | −1

)

+ 1

pn−m

⌉

=| Em
p |

colors on at least one of these copies. This copy is rainbow, which by Theorem 1
completes the proof.

2.2. Towards ar
(

Hn

p
,Hm

q

)

for p ≥ q and n ≥ m

Let us forget about the strict connection between Hanoi graphs and the Tower of
Hanoi puzzle and look only on their stucture. Then we can change the number of
pegs. Let us fix the number of discs n for a moment. It is not difficult to notice
that Hn

q is a subgraph of Hn
p for q ≤ p. It is enough to consider only vertices

(and edges among them) which avoid some labels. It means that the pegs with
these labels remain empty and can be ignored. In Figure 3 we see H2

3
contained

in H2
4
. Its vertices are marked with diamonds and the edges with dashed lines.

Unfortunately not all copies of H2
3
are obtained that way. We can for instance

replace the vertex (1, 1) with the edges {(1, 1), (0, 1)}, {(1, 1), (3, 1)} by the vertex
(2, 1) with the edges {(2, 1), (0, 1)}, {(2, 1), (3, 1)} to obtain another copy of H2

3
,

but now all labels of pegs are present. Recalling a previous subsection we also
note that Hn

p contains Hm
q for p ≥ q and n ≥ m, so considering ar

(

Hn
p , H

m
q

)

is
also a reasonable task but far more challenging. Below we make the first step in
that direction.

Examining the structure of Hanoi graphs in more detailed way we can deter-
mine ar

(

Hn
p , H

1
3

)

.

Lemma 3. Let n ≥ 2, p ≥ 3 be integers. The edges of Hanoi graph Hn
p obtained

by the moves of the largest disc induce a union of edge disjoint complete graphs,

which can be expressed as
⋃p−2

s=1

(

p
s

)

s!S(n− 1, s)Kp−s.
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Figure 3. H2

3
in H2

4
.

Proof. Consider the legal move of the largest disc from the vertex (r1, . . . ,
rn−1, i1) to the vertex (r1, . . . , rn−1, i2). It is possible only in case when none of
r1, . . . , rn−1 is equal either to i1 or to i2. It means that in the state (r1, . . . , rn−1,

i1) the peg i2 is empty and reversely. Assume now that none of r1, . . . , rn−1 is
equal to any of i1, . . . , is, s ≥ 2, and consider the vertices (r1, . . . , rn−1, ij), where
j ∈ {1, . . . , s} and (r1, . . . , rn−1) is fixed. The largest disc can be moved to any
of (r1, . . . , rn−1, ik), where k 6= j and k ∈ {1, . . . , s}. It means that edges among
these vertices form a complete graph Ks. It is easy to note that for different
choices of indices i1, . . . , is we obtain vertex disjoint copies ofKs. It is not difficult
to observe that for a fixed choice of i1, . . . , is we have (p−s)!S(n−1, p−s) different
sequences (r1, . . . , rn−1). Hence we have

(

p
s

)

(p−s)!S(n−1, p−s) copies of vertex
disjoint Ks. It is obvious that 2 ≤ s ≤ p− 1. Therefore the graph induced by the
moves of the largest disc can be described as

⋃p−1

s=2

(

p
s

)

(p − s)!S(n − 1, p − s)Ks.

Since
(

p
s

)

=
(

p
p−s

)

we can also express it as
⋃p−2

s=1

(

p
s

)

s!S(n− 1, s)Kp−s.

Remark 4. Using Lemma 3 we can express the number of edges of Hanoi graphs
in a recursive way as follows.

∣

∣E
(

Hn
p

)
∣

∣ = p
∣

∣E
(

Hn−1

p

)
∣

∣+

p−2
∑

s=1

(

p

s

)

s!S(n− 1, s)

(

p− s

2

)

.

It is shown in [22] that
∣

∣E
(

Hn
p

)∣

∣ = p
∣

∣E
(

Hn−1
p

)∣

∣+
(

p
2

)

(p− 2)n−1.
Hence we obtain the following formula

(

p

2

)

(p− 2)n−1 =

p−2
∑

s=1

(

p

s

)

s!S(n− 1, s)

(

p− s

2

)

.
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For a similar formula expressing the number of edges of the whole Hanoi
graph using Stirling numbers see also [22] and [16, Exercise 5.6].

We will also apply the theorem of Erdős, Simonovits and Sós about the anti-
Ramsey number of a triangle in complete graphs.

Theorem 5 [9]. Let m ≥ 3. Then ar(Km,K3) = m− 1.

Now we are able to give a recursion formula for ar(Hn
p , H

1
3
).

Theorem 6. Let n ≥ 2 and p ≥ 3 be integers. Then

ar
(

Hn
p , H

1

3

)

= p · ar
(

Hn−1

p , H1

3

)

+

p−2
∑

s=1

(

p

s

)

s!S(n− 1, s)(p− s− 1).

Proof. At the begining we remind the reader that H1
3
is a triangle and the H1

p

is a Kp. Hence, by Theorem 5, ar(H1
p , H

1
3
) = ar(Kp,K3) = p − 1 so H1

p can be
colored with p− 1 colors without any rainbow triangle. We construct recursively
the edge-coloring of Hn

p as follows. We color the edges for each of the p copies of
Hn−1

p with ar(Hn−1
p , H1

3
) different colors without rainbow triangle (cf. recursive

construction of Hanoi graphs). Now, by Lemma 3 and Theorem 5, to each of
the

(

p
s

)

s!S(n − 1, s) copies of Kp−s we use ar(Kp−s,K3) = p − s − 1 new colors
avoiding rainbow triangle (in case s = p − 2 the Kp−s is an edge which is not
contained in any triangle, so each of these K2s can contribute a new color to the
coloring). Similarly to the proof of Theorem 2 we can conclude that we cannot use
more then p · ar(Hn−1

p , H1
3
)+

∑p−2

s=1

(

p
s

)

s!S(n− 1, s)(p− s− 1) colors on the edges
of Hn

p without producing a rainbow triangle. Assume we use one color more.

When we partition
∑p−2

s=1

(

p
s

)

s!S(n−1, s)(p−s−1)+1 colors on the edges among
copies of Hn−1

p then on at least one of complete graphs Kp−s we use more then
ar (Kp−s,K3) colors so a rainbow triangle appears. If we use p ·ar

(

Hn−1
p , H1

3

)

+1
on the copies of Hn−1

p then on at least one of them we use ar
(

Hn−1
p , H1

3

)

+ 1
colors so we obtain a rainbow triangle as well. A contradiction.

It is not so easy to determine the exact value of the anti-Ramsey number for
Hanoi graphs with different number of pegs even if the number of discs is equal,
but greater than one. Below we consider the smallest such a case and show that
29 ≤ ar(H2

4
, H2

3
) < 34. We need the following lemma first. Note that the graph

H2
3
contains three vertex disjoint triangles. Moreover each pair of these triangles

is joined by exactly one edge and these three edges form a matching. We say
that these three triangles are joined cyclically (cf. Figure 2). Additionally, as we
mentioned, the graph H2

4
is planar. It is easy to check that Figure 4(a) presents

the graph H2
4
as a plane graph.
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(a) H2

4 as a plane graph (b) A subgraph G of H2

4 and its coloring

Figure 4. The graph H2

4
and its subgraph G.

Lemma 7. Let G be a subgraph of H2
4
presented in Figure 4(b) obtained from

H2
4
by deleting the vertices (i, i), i = 1, 2, 3, 4. Then

ar
(

G,H2

3

)

= 21.

Proof. In Figure 4(b) grey edges represent the same color, all remaining ones
form a rainbow subgraph without grey edges. There are 21 colors used in this
coloring. Note that at most two triangles without grey edges can be chosen to
construct the H2

3
. Hence, exactly one triangle with a grey edge must be chosen

for constructing the rainbow H2
3
. For each such a triangle T there is exactly

one pair of triangles with ”black” edges which form the H2
3
with T . But both

edges joining these triangles are grey. So there is no rainbow H2
3
in the presented

coloring.

Consider now an arbitrary edge-coloring of G with 22 colors. It is easy to
note that at least six triangles from among eight must be rainbow. All possible
positions of these triangles are presented in Figure 5 and noted by black lines.
Two other triangles are represented by grey lines. It is easy to check that there
is a rainbow H2

3
in all three cases. The chosen triangles are marked by crosses

and the edges joining them are dashed. It is obvious in the first two cases. In the
last one firstly a grey dashed edge was chosen as the edge of color not appearing
on these six triangles (there are at least four such edges) and then the rest of H2

3

was constructed.

Note that we need almost as many colors as the number of edges of the graph
G to obtain a rainbow copy of H2

3
. It means that although we have eight different

copies of H2
3
it is not so easy to have a rainbow one.
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Figure 5. Positions of six rainbow triangles.

Theorem 8. 29 ≤ ar
(

H2
4
, H2

3

)

< 34.

Proof. Let us consider the coloring presented in Figure 6. We mean that all
grey edges have the same color and the rest of the graph is rainbow without grey
edges. So we use exactly 29 colors. To see that there is no rainbow H2

3
in the

presented coloring of H2
4
, consider the latter as consisting of four vertex-disjoint

K3s and four vertex-disjoint K4s. Note that none of K3s can be a triangle T of
rainbow H2

3
, since (apart from exactly two triangles) any other triangle T ′ we

choose has one of the following properties: T and T ′ have a vertex in common, T ′

has a grey edge, the only edge joining T and T ′ is grey, there is no edge joining
T and T ′. These two particular triangles are joined by a grey edge. Similar
situation appears if we choose any triangle with the grey edge contained in K4.
Finally observe that no three triangles without grey edge are joined cyclically.

Now let us color the edges of H2
4
with 34 colors. As we can use at most 12

colors on edges of 4-cliques with one end-vertex of degree 3, we must use at least
22 colors on the subgraph G and therefore by Lemma 7 a rainbow H2

3
exists.

Figure 6. Coloring of H2

4
without rainbow H2

3
.
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We strongly believe that after a careful and complicated case consideration
the upper bound might be decreased down to the lower bound. We also hope in
possibility of elaborating at least a recursive formula for ar(Hn

p , H
m
q ) for p ≥ q

and n ≥ m.
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