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André Raspaud

LaBRI UMR CNRS 5800
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Abstract

Brualdi and Quinn Massey [6] defined incidence colouring while study-
ing the strong edge chromatic index of bipartite graphs. Here we introduce
a similar concept for digraphs and define the oriented incidence chromatic
number. Using digraph homomorphisms, we show that the oriented inci-
dence chromatic number of a digraph is closely related to the chromatic
number of the underlying simple graph. This motivates our study of the ori-
ented incidence chromatic number of symmetric complete digraphs. We give
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upper and lower bounds for the oriented incidence chromatic number of these
graphs, as well as digraphs arising from common graph constructions and
decompositions. Additionally we construct, for all k > 2, a target digraph
Hk for which oriented incidence k colouring is equivalent to homomorphism
to Hk.

Keywords: digraph homomorpism, graph colouring, incidence colouring,
computational complexity.
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1. Introduction and Preliminaries

Let G be a simple graph. We obtain an orientation of G by assigning to each of
the edges of G a direction to form a digraph. If a digraph is an orientation of a
simple graph we refer to it as an oriented graph. A digraph is called semicomplete

if it has a spanning tournament. Herein we assume that digraphs do not contain
loops or parallel arcs. Since we are dealing primarily with digraphs, we will omit
the over arrow (

−→
G is written as G and −→uv is written as uv) unless there is the

possibility for confusion. For all other notation we refer to [5].

Let G and H be digraphs. We say that G admits a homomorphism to H
if there exists φ:V (G) → V (H) such that if uv is an arc in G, then φ(u)φ(v)
is an arc in H. If G admits a homomorphism to H, we write G → H. If φ is
a homomorphism of G to H we write φ:G → H. Two directed graphs G and
H are called homomorphically equivalent if there are homomorphisms G → H
and H → G. If G and H are homomorphically equivalent, then a given digraph
D has a homomorphism to G if and only if it has a homomorphism to H. A
directed graph is called a core if it is not homomorphically equivalent to any of
its proper subgraphs. We note that every directed graph contains a unique core,
up to isomorphism [8, 21], to which it is homomorphically equivalent. If F is a
class of digraphs so that there exists a digraph H such that F → H for every
F ∈ F , then we say that H is a universal target for F . The oriented chromatic

number of the oriented graph G is the least k such that there exists an oriented
graph H on k vertices such that G → H. We use χo(G) to denote this parameter.

In recent years the study of homomorphisms of oriented graphs has received
particular attention (for examples see [16, 12, 19]), as homomorphisms allow for
a definition of vertex colouring of an oriented graph that respects the orientation
of the arcs [7].

In this paper we study a colouring parameter for digraphs based on incidence.
Two arcs are said to be related if the head vertex of one of the arcs is the tail
vertex of the other arc. For every arc uv in a digraph, we define two incidences;
the tail incidence of uv is the ordered pair (u, uv) and the head incidence of uv
is the ordered pair (v, uv).
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Two distinct incidences in a digraph G are adjacent if and only if they cor-
respond to one the following four cases.

For every arc uv,

• the incidences (u, uv) and (v, uv) are adjacent.

For every two related arcs uv and vw,

• the incidences (v, uv) and (v, vw) are adjacent,

• the incidences (u, uv) and (v, vw) are adjacent,

• the incidences (v, uv) and (w, vw) are adjacent.

Let IG be the simple graph such that every vertex corresponds to an inci-
dence of G and every edge corresponds to two adjacent incidences. An oriented

incidence colouring of G assigns a colour to every incidence of G such that ad-
jacent incidences receive different colours. An oriented incidence colouring of G
is thus a proper vertex colouring of IG. If c:V (IG) → {1, 2, . . . , k} is an oriented
incidence k-colouring of G, then the colour of (xi, x1x2) is denoted c(xi, x1x2),
instead of c((xi, x1x2)) (i ∈ {1, 2}).

For a digraph G, we define the oriented incidence chromatic number −→χi(G)
as the least k such that G has an oriented incidence k-colouring. For a class
C of digraphs, we define −→χi(C) as the least k such that −→χi(G) 6 k for every
G ∈ C. Figures 1, 2, and 4 give examples of oriented incidence colourings of some
digraphs with few vertices.

Incidence colouring arose in 1993 when Brualdi and Quinn Massey first de-
fined the incidence chromatic number of a simple graph (then called the incidence
colouring number), denoted χi(G) [6]. They gave upper and lower bounds for
χi(G) based on the maximum degree of the graph and they used their results as
a method to improve a bound for the strong chromatic index of bipartite graphs.
Since then, bounds have been investigated for a variety of graph classes, including
planar graphs, k-trees, k-regular graphs and k-degenerate graphs [11, 20, 22].

In this paper our main goal is to study the relationship between oriented
incidence colouring and digraph homomorphisms. Using this relationship we find
a connection between the oriented incidence chromatic number of a digraph and
the chromatic number of its underlying simple graph. Subsequently, we find upper
and lower bounds for the oriented incidence chromatic number of the symmetric
complete loopless digraph

−→
Kk obtained by replacing every edge xy of the complete

graph Kk by the arcs xy and yx.

Using an appropriate definition of half arc, oriented incidence colouring can
be viewed as a colouring of half arcs. We can then examine this colouring pa-
rameter through the lens of arc colouring by first subdividing each of the arcs.
By taking a directed line graph of this subdivided graph, an oriented incidence
colouring can be viewed as a vertex colouring in which adjacent vertices and
vertices at the end of a directed path of length two (a 2-dipath) must receive
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different colours. The oriented incidence chromatic number is the 2-dipath chro-
matic number of the digraph resulting from first subdividing each arc and then
taking the directed line graph.

The study of 2-dipath colourings of oriented graphs in Sherk’s (née Young)
thesis [23] contains a result that provides an upper bound on the oriented chro-
matic number as a function of the 2-dipath chromatic number. We consider the
possibility of a result relating the oriented chromatic number and the oriented
incidence chromatic number. This idea is explored in Section 2.

Figure 1. An oriented incidence colouring of the 2-cycle.

We begin our study of the oriented incidence chromatic number by relating
the oriented incidence chromatic number of an oriented graph to the incidence
chromatic number of the underlying simple graph. To do so, we observe that the
set of incidences of an oriented graph is exactly equal to the set of incidences of
the underlying graph, as defined in [6]. As χi(Kk) = k for every k > 2 [6], we
thus obtain.

Proposition 1. If
−→
G is an orientation of the graph G, then

−→χi(
−→
G) 6 χi(G) 6 |V (G)|.

We improve this bound in Section 3 by observing that any oriented graph G
is a subgraph of the symmetric complete digraph (without loops) on the same
number of vertices and applying our bound for the oriented incidence chromatic
number of these digraphs.

2. Oriented Incidence Colouring and Homomorphism

A useful observation regarding oriented incidence colouring is the following gen-
eral result relating oriented incidence colouring and digraph homomorphism.

Theorem 2. If G and H are digraphs such that G → H, then −→χi(G) 6 −→χi(H).

Proof. Let f be an oriented incidence colouring of H using −→χi(H) colours and
let φ be a homomorphism of G to H. We show that the mapping c such that
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c(xi, x1x2) = f (φ(xi), φ(x1)φ(x2)) , (i ∈ {1, 2}) for every x1x2 ∈ A(G) is an
oriented incidence colouring.

If uv ∈ A(G), then

• c(u, uv) = f (φ(u), φ(u)φ(v)) 6= f (φ(v), φ(u)φ(v)) = c(v, uv).

If uv ∈ A(G) and vw ∈ A(G), then

• c(v, uv) = f (φ(v), φ(u)φ(v)) 6= f (φ(v), φ(v)φ(w)) = c(v, vw),

• c(u, uv) = f (φ(u), φ(u)φ(v)) 6= f (φ(v), φ(v)φ(w)) = c(v, vw),

• c(v, uv) = f (φ(v), φ(u)φ(v)) 6= f (φ(w), φ(v)φ(w)) = c(w, vw).

Therefore, c is an oriented incidence colouring of G using at most −→χi(H) colours.

Corollary 3. If G is an oriented graph, then −→χi(G) 6 χo(G).

Proof. By the definition of χo(G), there exists an oriented graph H such that
G → H and χo(G) = |V (H)|. By Theorem 2 and Proposition 1, we have

−→χi(G) 6 −→χi(H) 6 |V (H)| = χo(G),

as required.

The corollary allows us to give an upper bound for the oriented incidence
chromatic number of any class of oriented graphs that has bounded oriented
chromatic number.

Proposition 4. If G is an oriented forest, then −→χi(G) 6 3.

Proof. Every oriented forest admits a homomorphism to the directed cycle on
three vertices. The result now follows directly from Corollary 3.

Proposition 5. If
−→
G is a digraph and G is the underlying simple graph of

−→
G ,

then
−→χi(

−→
G) 6 −→χi(

−→
Kχ(G)).

Proof. Observe that if χ(G) = k, then
−→
G admits a homomorphism to

−→
Kk. Thus,

we have −→χi(
−→
G) 6 −→χi(

−→
Kk) by Theorem 2.

By viewing oriented incidence colouring as a problem on sets, we arrive at
the following characterisation of the oriented incidence chromatic number. Let
c be an oriented incidence colouring of a digraph G. For a vertex u, let Au =
⋃

uv∈A(G) c(u, uv) and let Bu =
⋃

vu∈A(G) c(u, vu). Informally, Au is the set of
colours that are assigned to the tail incidences (u, uv) and Bu is the set of colours
that are assigned to the head incidences (u, vu). We observe the following result.
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Theorem 6. For a digraph G with n vertices, −→χi(G) is the least k such that

there exist sets Xu1
, Xu2

, . . . , Xun ⊆ {1, 2, 3, . . . , k} and sets Yu1
, Yu2

, . . . , Yun ⊆
{1, 2, 3, . . . , k} so that each of the following hold.

(1) For every vertex v, Xv ∩ Yv = ∅.

(2) For every arc uv, Xu \Xv 6= ∅ and Yv \ Yu 6= ∅.

(3) For every arc uv, if Xu \Xv = Yv \ Yu, then |Xu \Xv| 6= 1.

Proof. It is easily checked that if c is an oriented incidence colouring of G, then
(1), (2) and (3) are satisfied by setting Xu = Au and Yu = Bu for every u ∈ V (G).

Assume now that there exist sets Xu1
, Xu2

, . . . , Xun ⊆ {1, 2, 3, . . . , k} and
sets Yu1

, Yu2
, . . . , Yun ⊆ {1, 2, 3, . . . , k} that satisfy the hypotheses. We construct

an oriented incidence colouring c by assigning to each incidence (u, uv) a colour
from the set Xu \Xv and to each incidence (v, uv) a colour from the set Yv \ Yu
such that c(u, uv) 6= c(v, uv).

Since homomorphism to the complete digraph is useful in finding an up-
per bound on the oriented incidence chromatic number, we study the oriented
incidence chromatic number of a complete digraph in the next section.

3. Symmetric Complete Digraphs

In this section, we give upper and lower bounds for −→χi(
−→
Kn).

Table 1 gives the oriented incidence chromatic number of
−→
Kn for 0 6 n 6 8.

These values are found by computer search and are best possible. Figures 1 and
2 give oriented incidence colourings of

−→
K2 and

−→
K3, respectively, using the fewest

number of colours. Appendix gives the explicit colourings that verify Table 1 for
n = 4, 5, 6, 7, 8.

n 0 1 2 3 4 5 6 7 8
−→χi

(

−→
Kn

)

0 0 4 4 5 5 6 6 6

Table 1. Oriented incidence chromatic number of complete symmetric digraphs for n ≤ 8.

Theorem 7. If k and n are integers such that n >
(

k
⌊k/2⌋

)

, then −→χi(
−→
Kn) > k.

Proof. We prove the contrapositive, so we suppose that
−→
Kn admits an oriented

incidence k-colouring c.

It follows directly from Theorem 6 that the sets A1, A2, . . . , An (with respect
to c) form an antichain in the inclusion order for subsets of {1, 2, . . . , k}. By
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Figure 2. An oriented incidence colouring of the complete digraph on three vertices
−→
K3.

Sperner’s Theorem, the size of such an antichain is at most
(

k
⌊k/2⌋

)

[5]. This

implies that n 6
(

k
⌊k/2⌋

)

.

The Johnson graph J(r, s) is the simple graph whose vertices are the s-
element subsets of an r-element set such that two vertices are adjacent if and
only if their intersection has s− 1 elements. In coding theory, the independence
number of J(r, s) is known as the maximum size, A(r, 4, s), of a set of binary words
of length r and Hamming weight s such that the Hamming distance between every
two distinct words is at least 4.

Theorem 8. If k, n are integers such that n 6 A(k, 4, ⌊k/2⌋), then −→χi(
−→
Kn) 6 k.

Proof. If Ik is an independent set of J(k, ⌊k/2⌋) and n 6 |Ik|, then we assign a
set Si ∈ Ik to every vertex vi ∈ V (

−→
Kn). For every arc vivj ∈ A(

−→
Kn), we have

that |Si \ Sj | > 2. So we assign two distinct colours from Si \ Sj to (vi, vivj) and

(vj , vivj). This way, the four incidences of two related arcs of
−→
Kn get distinct

colours and we have an oriented incidence k-colouring of
−→
Kn.

Theorems 7 and 8 imply the following bounds on −→χi(
−→
Kn).

Corollary 9. If n > 8, then

log2(n) +
1

2
log2(log2(n)) 6

−→χi(
−→
Kn) 6 log2(n) +

3

2
log2(log2(n)) + 2.

Proof. Theorem 7 gives −→χi(
−→
Kn) > log2(n) +

1
2 log2(log2(n)). By Theorem 8, a

lower bound on A(k, 4, ⌊k/2⌋) provides an upper bound on −→χi(
−→
Kn). Graham and

Sloane [9] obtained that A(k, 4, r) >
(kr)
k , so we have A(k, 4, ⌊k/2⌋) >

( k
⌊k/2⌋)
k .

Using this and the better lower bounds on A(k, 4, ⌊k/2⌋) for k 6 30 gath-
ered at win.tue.nl/ aeb/codes/Andw.html#d4, we obtain −→χi(

−→
Kn) 6 log2(n) +

3
2 log2(log2(n)) + 2.
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This result confirms the computational results given in Table 3 for n = 8.
For the case n = 9, this result implies −→χi(

−→
K9) = 6. Using Theorem 2, we obtain

upper bounds for other digraphs.

Corollary 10. If G is a digraph, then −→χi(G) 6 (1 + o(1)) log2 (χ(G)).

Proof. Since G →
−→
Kχ(G), by Theorem 2 we have −→χi(G) 6 −→χi(

−→
Kχ(G)). The

result follows by observing

3
2 log2 (log2(χ(G))) + 2

log2 (χ(G))
→ 0 as n → ∞.

Corollary 11. If T is a tournament on n vertices, then −→χi(T )6(1+o(1)) log2(n).

Proof. This follows similarly to the proof of Corollary 10 by noting that T →
−→
Kn

and applying Theorem 2.

4. Constructions and Decompositions

In this section, we consider oriented incidence colourings of digraph decompo-
sitions and products. We begin with upper bounds for digraphs that can be
realized as the union of digraphs.

Proposition 12. If G is a digraph such that G = G1∪G2 and V (G1)∩V (G2) = ∅,
then

−→χi(G) = max {−→χi(G1),−→χi(G2)} .

Proposition 13. If G is a digraph such that G = G1 ∪G2 and V (G1) = V (G2),
then

−→χi(G) 6 −→χi(G1) +−→χi(G2).

Proof. Using disjoint sets of colours on G1 and G2 ensures that two incidences
that do not belong to the same Gi have distinct colours.

We consider now a graph operation that arises in the study of oriented colour-
ings and oriented cliques (for an example see [18, 4]). Let G and H be digraphs
on disjoint vertex sets. We define the digraph G ⋆ H as follows.

V (G ⋆ H) = V (G) ∪ V (H) ∪ {z},
A(G ⋆ H) = A(G) ∪A(H) ∪ {uz | u ∈ V (G)} ∪ {zv | v ∈ V (H)}.

Theorem 14. Let G and H be digraphs such that A(G) ∪A(H) 6= ∅ and let

k = max {−→χi(G),−→χi(H)}. Then k 6 −→χi(G ⋆ H) 6 k + 2.

Proof. The conditionA(G)∪A(H) 6= ∅ implies k > 2. Thus {1, 2}∩{k + 1, k + 2}
= ∅. We construct an oriented incidence colouring c of G ⋆ H using the colours
{1, 2, . . . , k + 2} as follows.
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• We colour the incidences of G using the colours {1, 2, . . . , k}.

• We colour the incidences of H using the colours {3, 4, . . . , k + 2}.

• c(u, uz) = k + 1 and c(z, uz) = k + 2 for every u ∈ V (G).

• c(v, zv) = 1 and c(v, vz) = 2 for every v ∈ V (H).

The upper bound in Theorem 14 is not always achieved with equality.
For example, −→χi(

−→
P2) = 2 and −→χi(

−→
P2 ⋆

−→
P2) = 3. We also have −→χi(

−→
P3) = 3 and

−→χi(
−→
P3 ⋆

−→
P3) = 4.

Finally we consider the oriented incidence chromatic number of the symmet-
ric join of digraphs. Let G and H be digraphs. The join of G and H, denoted
G+H, is the digraph with

V (G+H) = V (G) ∪ V (H),
A(G+H) = A(G) ∪A(H) ∪ {uGvH | uG ∈ V (G), vH ∈ V (H)}
∪ {uHvG | uH ∈ V (H), vG ∈ V (G)}.
Informally, the join of digraphs is the disjoint union of the digraphs together

with all possible arcs between vertices of different digraphs. We give a pair of
bounds for the oriented incidence chromatic number of the join of digraphs.

Theorem 15. If G1, G2, and G3 are digraphs, then

−→χi(G1 +G2 +G3) 6 max
16j63

{−→χi(Gj)}+ 4.

Proof. We split A(G1 +G2 +G3) into the set X of arcs in the disjoint union of
G1, G2, and G3 and the set Y = A(G1 + G2 + G3) \ X. Using Proposition 12,
we colour the incidences of X with max16j63 {−→χi(Gj)} colours. Since the graph
induced by Y is 3-colourable, we can colour the incidences of Y with 4 colours
by Proposition 5. Then we obtain

−→χi(G1 +G2 +G3) 6 max
16j63

{−→χi(Gj)}+ 4,

by Proposition 13.

In the case that each vertex of G has both an in-neighbour and an out-
neighbour, this bound may be slightly improved.

Theorem 16. If G1 and G2 are digraphs with minimum out-degree at least one

and minimum in-degree at least one, then −→χi(G1 +G2) 6 −→χi(G1) +−→χi(G2).

Proof. We consider an oriented incidence colouring c of the disjoint union G1

and G2 using −→χi(G1) + −→χi(G2) colours and such that no colour appears both in
G1 and G2. Then we extend c to the uncoloured arcs of G1 +G2 as follows. For
every arc uv such that u ∈ V (Gj) and v ∈ V (G3−j), we set c(u, uv) = c(u, uw)
and c(v, uv) = c(w, uw), where uw ∈ A(Gj).
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5. Homomorphisms and Complexity

In her Masters thesis [23] (more recently published as [14]), Sherk explores the
relationship between oriented graph homomorphism and 2-dipath colouring. One
of the main results of this work is to define a family of graphs, Gk (k ≥ 1), with
the property that an oriented graph H has a 2-dipath colouring using k colours
if and only if H admits a homomorphism to Gk. Here we consider the possibility
of a similarly-styled result for the oriented incidence chromatic number. For the
case −→χi(G) = 2 a fairly straightforward characterisation exists.

Theorem 17. Let G be a digraph with at least one arc, then −→χi(G) = 2 if and

only if G admits a homomorphism to
−→
P2.

To construct a homomorphism model we utilize Theorem 6. Consider the
directed graph, Hk with vertex set

V (Hk) = {(X,Y )|X,Y ∈ P({1, 2, 3, . . . , k}), X ∩ Y = ∅} .

Using the characterisation of oriented incidence colouring given in Theorem
6 we construct A(Hk). For (Xu, Yu) 6= (Xv, Yv) ∈ V (HK), (Xu, Yu)(Xv, Yv) ∈
A(Hk) provided the following conditions are met:

1. Xu \ Yv 6= ∅;

2. Yv \Xu 6= ∅;

3. if Xu \Xv = Yv \ Yu, then |Xu \Xv| 6= 1.

It follows directly from Theorem 6 that −→χi(Hk) = k.

Theorem 18. A digraph G has −→χi(G) 6 k if and only if G → Hk.

Proof. Let G be a digraph such that G → Hk. Since
−→χi(Hk) = k, by Theorem 2

−→χi(G) 6 k. Assume now that −→χi(G) 6 k. The mapping φ:V (G) → V (Hk) given
by φ(u) = (Au, Bu) is a homomorphism.

For the case k = 3 the core of H3 is the tournament, T5, given in Figure 3.
From this we arrive at the following result.

Proposition 19. If G is an oriented graph with −→χi(G) 6 3, then χo(G) 6 5.

This bound is tight since −→χi(T5) = 3 and χo(T5) = 5.
Proposition 19 bounds χo for oriented graphs such that −→χi 6 3. However, no

such bound for χo can be obtained in this way for any case k > 3, as Hk, in these
cases, is a digraph that is not an orientation. We further observe that the class
of orientations of bipartite graphs has oriented incidence chromatic number four,
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Figure 3. The tournament T5.

but unbounded oriented chromatic number and conclude that no such bound can
exist.

Using the homomorphism model of oriented incidence colouring, we can dis-
cuss the complexity of oriented incidence colouring. Let H be a fixed directed
graph. We use HomH to denote the problem of deciding whether a given digraph
D has a homomorphism to H. If G and H are homomorphically equivalent, then
the complexity of HomG is the same as the complexity of HomH .

We will make use of the following theorems.

Theorem 20 [2]. Let T be a semicomplete digraph. If T has at most one directed

cycle, then HomT is Polynomial. If T has at least two directed cycles, then HomT

is NP-complete.

Theorem 21 [3]. Let H be a directed graph in which each vertex has positive

in-degree and positive out-degree. If every component of the core of H is a cycle,

then HomH is Polynomial. Otherwise, HomH is NP-complete.

Let S be a fixed directed graph with specified vertex s. The subindicator

construction with respect to (S, s) transforms a given directed graph H into its
subgraph H ′ induced by the set of all vertices x such that there is a homomor-
phism f :S → H with f(s) = x.

Theorem 22 [10], also see [2]. Let H be a fixed core and H ′ be the result of

applying the subindicator construction with respect to (S, s) to H. If HomH′ is

NP-complete, then so is HomH .

Let k be a fixed integer. We use OICk to denote the problem of deciding
whether a given directed graph D has an oriented incidence k-colouring. Let Hk

be the homomorphism model for oriented incidence k-colouring. Note that Hk

has no loops.
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Theorem 23. The problems OIC2 and OIC3 are Polynomial. For all fixed inte-

gers k > 4, the problem OICk is NP-complete.

Proof. The first statement follows from Theorem 20 as each of
−→
P2 and T5 have

at most one directed cycle.

Let k > 4. We show that HomHk
is NP-complete.

Let M be the subgraph of Hk induced by the pairs (A,B) belonging to
{({1}, {2}), ({2}, {3}), ({3}, {4})} .

By definition of Hk, the digraph M consists of the directed 3-cycle ({1}, {2}),
({2}, {3}), ({3}, {4}), ({1}, {2}), and the arc ({1}, {2})({3}, {4}).

Let Gk be the core of Hk. Then there is a homomorphism of M to Gk. Since
Gk has no loops, it follows that Gk has a subgraph isomorphic to M .

Let G′
k be the result of applying the subindicator construction with respect

to (P3, s) to Gk, where s is the middle vertex of the directed 3-path P3. Then
every vertex of G′

k has positive in-degree and positive out-degree. Further, G′
k

has a subdigraph isomorphic to M . By Theorem 21 we have that HomG′
k
is

NP-complete. Consequently, using Theorem 22, HomGk
and HomHk

are both
NP-complete.

Using our homomorphism models it is possible to determine the configu-
rations which prevent a directed graph from having an oriented incidence 2-
colouring, or an oriented incidence 3-colouring. Since the core ofH2 is a transitive
tournament on 2 vertices, we know that a directed graph D has a homomorphism
to H2 if and only if there is no homomorphism of P3, the directed path on 3 ver-
tices, to D [17]. It follows that the minimal digraphs that do not have an oriented
incidence 2-colouring are P3 and C2. The core of H3 is a unicyclic tournament
T5 on 5 vertices with one vertex of in-degree 0 and one vertex of out-degree 0
(see Figure 3). It is shown in [15] that a directed graph D has a homomorphism
to T5 if and only if there is no digraph F in the family F described below to
D. Let U3 be the collection of oriented cycles such that the number of forwards
arcs minus the number of backwards arcs is not a multiple of 3. To each oriented
cycle U ∈ U3 there corresponds a digraph F ∈ F which is obtained from U in
two steps:

(i) for each vertex u of U with out-degree 0, add a new vertex u′ and the arc
uu′; and

(ii) for each vertex v of U with in-degree 0, add a new vertex v′ and the arc
v′v.

Since a homomorphic image of an element of U3 contains another element of
U3 as an induced subgraph, it follows that the minimal digraphs which do not have
an oriented incidence 3-colouring are the homomorphic images of elements F ∈ F
in which all vertices of the oriented cycle U ∈ U3 from which F is constructed
have different images.
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6. Planar Graphs and Outerplanar Graphs

Using results from the previous section we derive tight bounds for the classes of
oriented outerplanar graphs and oriented planar graphs, respectively. By observ-
ing that every orientation of a planar graph admits a homomorphism to

−→
K4 and

by applying Proposition 5, we have directly that the oriented incidence chromatic
number of the class of oriented planar graphs is at most 5. Similarly, as every
orientation of an outerplanar graph admits a homomorphism to

−→
K3, we have

directly that the oriented incidence chromatic number of the class of oriented
outerplanar planar graphs is at most 4. We show that both of these bounds are
tight.

Consider the oriented graph L given in Figure 4. Since L contains a directed
cycle of length 4, we have that −→χi(L) > 4. Moreover, Figure 4 gives an oriented
incidence 4-colouring of L. We thus have.

Property 1. −→χi(L) = 4.

Figure 4. An oriented incidence 4-colouring of L.

Property 2. If c is an oriented incidence 4-colouring of L, then it is not the

case that c(q) = c(r) = c(k) = c(m) = c(n) = c(p).

Proof. Consider the partial colouring of L given in Figure 5. Colouring the
remaining incidences is equivalent to finding a list-colouring for the graph in
Figure 5. We show that no such list colouring exists.

If e is assigned 1, then the triangle b, c, d cannot be coloured. Therefore e is
assigned 4. This implies f is assigned 2. Since e is assigned 4, the vertices c and
d are assigned 1 and 2, in some order. Therefore b is assigned 4 and a is assigned
1. Since f is assigned 2, the vertices g and h are assigned 1 and 4, in some order.
But g is adjacent to c and d, so g can not be assigned 1. Therefore g is assigned
4 and h is assigned 1. There is now no colour available for i.
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Figure 5. A partial oriented incidence colouring of L and a corresponding list colouring.

Lemma 24. If G is a digraph with −→χi(G) = 5 that contains a 2-cycle, uv, then
the digraph obtained by removing the arcs of the 2-cycle and identifying u with s
and v with t in a copy of L has oriented incidence chromatic number at least 5.

Proof. Let uv be a 2-cycle in G and let Guv be the digraph obtained by removing
the arcs of the 2-cycle and identifying u with s and v with t in a copy of L.
Assume, for a contradiction, that −→χi(Guv) < 5. Since Guv contains L and −→χi(L) =
4, it must be that −→χi(Guv) = 4. Let c be an oriented incidence 4-colouring of
Guv. Without loss of generality, assume that c(s, st) = 1, and c(t, st) = 2. By
Property 2 we may assume that at least one of incidences q, r, or k receives colour
4 and at least one of incidences m,n, or p receives colour 3.

Consider an arc having its tail at s in Guv. It cannot be that 4 is assigned
to an incidence of such an arc. Similarly, it cannot be that 1 is assigned to an
incidence of an arc having its head at s and 2 cannot be assigned to a head
incidence of such an arc. Further, 3 cannot appear on an incidence of any arc
having its tail at t and 2 cannot appear on an incidence of any arc having its
head at t and 1 cannot be assigned to a tail incidence of such an arc. Using these
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facts we can construct an oriented incidence 4-colouring of G, as follows

c′(a) =























c(a), a ∈ V (IG) ∩ V (IGuv),
1, a = (u, uv),
2, a = (v, uv),
3, a = (v, uv),
4, a = (u, uv).

This contradicts that −→χi(G) = 5. Therefore −→χi(Guv) > 5.

Theorem 25. The class of oriented planar graphs has oriented incidence chro-

matic number 5.

Proof. Consider the oriented graph formed by replacing each 2-cycle of
−→
K4 with

a copy of L, as in Lemma 24. The resulting oriented graph is planar. By Table
1 and Lemma 24, this oriented planar graph has oriented incidence chromatic
number at least 5. Proposition 5 implies directly that the class of oriented planar
graphs has oriented incidence chromatic number at most 5, as every orientation
of a planar graph admits a homomorphism to

−→
K4 [1]. Therefore the class of

oriented planar graphs has oriented incidence chromatic number 5.

Theorem 26. The class of oriented outerplanar graphs has oriented incidence

chromatic number 4.

Proof. Every oriented cycle of length 6≡ 0 (mod 3) has oriented incidence chro-
matic number at least four. Every simple outerplanar graph has chromatic num-
ber at most 3, and so every oriented outerplanar graph has oriented incidence
chromatic number at most 4 by Proposition 5.

7. Conclusions and Future Directions

The definition of oriented colouring enforces that if there is an arc with its tail
coloured i and its head coloured j, then there is no arc with its tail coloured j
and its head coloured i [7]. To enforce this constraint with respect to the colours
of the incidences would not drastically change the analysis given above. This
extra constraint would increase the oriented incidence chromatic number, but
the methods used above may still be utilized. By considering a colour on an
in-incidence to be a distinct colour from the identical colour on an out-incidence,
our upper bounds are all increased by only a factor of two.

Some of the ideas in this paper can be extended for use in incidence colour-
ing of simple graphs. The ideas contained in Theorem 6 can be used to give a
set-based definition of incidence colouring of simple graphs. Essentially, we can
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consider the set of colours appearing at each vertex to be a set of distinct rep-
resentatives of a collection of sets formed by considering the colours available at
each incidence. Further using homomorphisms to construct incidence colourings
is possible, provided that the homomorphisms are injective. If a simple graph
G admits an injective homomorphism to a simple graph H, then any incidence
colouring of H can be lifted back to be an incidence colouring of G.

As strong edge colouring was the genesis for incidence colouring, it would
be reasonable to consider a definition of strong arc colouring of digraphs. By
considering a strong arc colouring of a digraph to be an arc colouring in which
a colour class does not induce a 2-dipath, we arrive at the same relationship
between oriented incidence colouring and strong arc colouring as exists between
incidence colouring and strong edge colouring. Though this type of colouring is
unstudied, it seems as if oriented incidence colouring would be useful in its study.
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Appendix

Colour Class Vertex List

1 (1, (7, 1)), (3, (3, 2)), (2, (4, 2)), (3, (4, 3)), (3, (3, 5)),
(5, (4, 5)), (5, (6, 5)), (3, (3, 7)), (2, (7, 2)), (5, (7, 5)),
(6, (7, 6)), (1, (6, 1)), (6, (6, 4)), (6, (6, 2))

2 (6, (1, 6)), (7, (1, 7)), (2, (3, 2)), (4, (3, 4)), (4, (4, 1)),
(4, (4, 2)), (2, (5, 2)), (4, (4, 5)), (6, (5, 6)), (4, (4, 7)),
(7, (3, 7)), (7, (5, 7)), (6, (6, 7)), (6, (6, 3))

3 (1, (1, 2)), (1, (1, 3)), (1, (1, 4)), (1, (1, 5)), (1, (1, 6)),
(1, (1, 7)), (3, (2, 3)), (4, (2, 4)), (5, (2, 5)), (6, (2, 6)),
(7, (2, 7))

4 (1, (2, 1)), (1, (3, 1)), (1, (4, 1)), (5, (3, 5)), (5, (5, 4)),
(5, (5, 1)), (5, (5, 2)), (7, (4, 7)), (7, (7, 2)), (7, (7, 3)),
(6, (3, 6)), (5, (5, 6)), (6, (4, 6)), (7, (7, 6)), (7, (7, 1))

5 (2, (2, 1)), (1, (5, 1)), (1, (6, 1)), (1, (3, 1)), (2, (2, 4)),
(2, (2, 5)), (3, (3, 4)), (3, (5, 3)), (4, (5, 4)), (3, (3, 6)),
(2, (6, 2)), (7, (7, 4)), (7, (7, 5)), (4, (6, 4)), (7, (6, 7))

6 (2, (1, 2)), (3, (1, 3)), (4, (1, 4)), (5, (1, 5)), (2, (2, 3)),
(4, (4, 3)), (2, (2, 6)), (2, (2, 7)), (5, (5, 3)), (3, (6, 3)),
(3, (7, 3)), (4, (7, 4)), (5, (5, 7)), (4, (4, 6)), (5, (6, 5))

Table 2. An oriented incidence colouring
−→
K7 with six colours.
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Colour Class Vertex List

1 (6, (6, 8)), (1, (2, 1)), (3, (3, 1)), (3, (3, 2)), (2, (2, 4)),
(3, (3, 4)), (4, (5, 4)), (6, (2, 6)), (6, (6, 1)), (6, (6, 4)),
(6, (6, 5)), (4, (7, 4)), (8, (5, 8)), (3, (5, 3)), (1, (7, 1)),
(6, (7, 6)), (3, (7, 3)), (1, (5, 1))

2 (8, (8, 5)), (8, (8, 6)), (2, (2, 1)), (2, (2, 3)), (8, (3, 8)),
(1, (3, 1)), (4, (4, 1)), (4, (3, 4)), (4, (4, 5)), (4, (4, 7)),
(6, (3, 6)), (2, (2, 6)), (4, (4, 6)), (6, (5, 6)), (2, (5, 2)),
(7, (5, 7)), (2, (2, 7))

3 (1, (8, 1)), (2, (8, 2)), (3, (8, 3)), (4, (8, 4)), (5, (8, 5)),
(6, (8, 6)), (7, (8, 7)), (1, (1, 2)), (1, (1, 3)), (1, (1, 4)),
(1, (1, 5)), (1, (1, 6)), (7, (7, 2)), (7, (7, 4)), (7, (7, 5)),
(7, (7, 6)), (7, (7, 3))

4 (1, (1, 8)), (1, (1, 7)), (2, (2, 8)), (3, (3, 8)), (2, (2, 4)),
(3, (4, 3)), (8, (4, 8)), (1, (4, 1)), (3, (3, 6)), (1, (6, 1)),
(2, (6, 2)), (5, (7, 5)), (2, (2, 5)), (3, (3, 5)), (5, (4, 5)),
(5, (6, 5)), (2, (7, 2)), (3, (3, 7)), (8, (6, 8)), (8, (7, 8))

5 (8, (1, 8)), (4, (4, 8)), (5, (5, 8)), (7, (7, 8)), (8, (2, 8)),
(3, (1, 3)), (4, (1, 4)), (3, (2, 3)), (4, (4, 2)), (4, (4, 3)),
(5, (2, 5)), (5, (5, 1)), (3, (6, 3)), (4, (6, 4)), (5, (5, 3)),
(7, (2, 7)), (7, (7, 1)), (5, (5, 6)), (7, (6, 7))

6 (8, (8, 1)), (8, (8, 2)), (8, (8, 3)), (8, (8, 4)), (8, (8, 7)),
(2, (1, 2)), (2, (3, 2)), (5, (1, 5)), (6, (1, 6)), (7, (1, 7)),
(2, (4, 2)), (5, (5, 2)), (6, (6, 2)), (6, (6, 3)), (6, (4, 6)),
(5, (3, 5)), (7, (4, 7)), (5, (5, 4)), (5, (5, 7)), (6, (6, 7)),
(7, (3, 7))

Table 3. An oriented incidence colouring
−→
K8 with six colours.
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Figure 6. Oriented incidence colourings of
−→
K4,

−→
K5,

−→
K6 with the minimum number of

colours. The colouring of
−→
K4 is obtained by deleting any vertex in the colouring of

−→
K5.
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