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Abstract

Let G be a graph and a,b and k be nonnegative integers with 1 < a < b.
A graph G is defined as all fractional (a,b, k)-critical if after deleting any
k vertices of G, the remaining graph has all fractional [a, b]-factors. In this

paper, we prove that if x(G) > max{(b+1)22+2k, (bH)Qofl(aGHMk}, then G
is all fractional (a,b, k)-critical. If & = 0, we improve the result given in

[Filomat 29 (2015) 757-761]. Moreover, we show that this result is best
possible in some sense.
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1. INTRODUCTION

All graphs considered here are finite, simple and undirected graphs. Let G be a
graph with vertex set V(G) and edge set F(G). For a vertex x € V(G), we use
dg(z) and Ng(z) to denote the degree and neighbourhood of z in G, respectively.
For any S C V(G), let Ng(S) denote the union of Ng(x) for each x € S. We
use G[S] and G — S to denote the subgraph of G induced by S and V(G) — S. A
subset I of V(G) is an independent set of G, if no two distinct vertices in I are
adjacent. The cardinality of a maximum independent set in a graph G is called
the independence number of G, denoted by a(G). A vertex-cut of a noncomplete
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graph G is a set of vertices of G such that G — S is disconnected. A vertex-
cut of minimum cardinality in G is called a minimum vertex-cut of G and this
cardinality is called the connectivity of G and is denoted by k(G).

Let g, f be two integer-valued functions defined on V(G) with 0 < g(x) <
f(z) for all x € V(G). A (g, f)-factor of G is a spanning subgraph H of G
satisfying g(z) < dp(z) < f(z) for all z € V(G) . Let a < b be two integers. A
(g, f)-factor is called an [a, b]-factor if g(x) = a and f(x) =b. Let h: E(G) —
[0, 1] be a function. If g(x) < > .. h(e) < f(x) holds for every x € V(G), then we
call graph F with vertex set V(G) and edge set Ej, a fractional (g, f)-factor of G
with indicator function h, where Ej, = {e € E(G)|h(e) > 0}. If f(z) = g(x) for all
x € V(G), then a fractional (g, f)-factor is called a fractional f-factor. If g(x) = a
and f(z) = b, then a fractional (g, f)-factor is called a fractional |a, b]-factor. Let
p be an integer-valued function defined on V(G) such that g(z) < p(z) < f(x)
for each = € V(G). We say that G has all fractional (g, f)-factors if G has a
fractional p-factor for every p described above. If g(x) = a and f(z) = b, then
all fractional (g, f)-factors are said to be all fractional [a,b]-factors. A graph G
is called an all fractional (a,b, k)-critical graph if after deleting any k vertices of
G the remaining graph of G has all fractional [a, b]-factors.

Many authors have studied factors and fractional factors of graphs. For
example, see [1, 3,4, 5,6, 7, 8,9, 10, 13, 14]. Anstee [1] and Lu [6] gave necessary
and sufficient conditions for a graph to have all fractional (g, f)-factors and all
fractional [a,b]-factors, respectively. Liu et al. [5] proved the necessary and
sufficient conditions for a graph to have a fractional (g, f)-factor. The following
theorem, on the existence of fractional (g, f)-factors of graphs, is well known.

Theorem 1 [2]|. Let G be a graph, and let a,b and r be three nonnegative integers
satisfying 1 < a < b—r, and let g, f be two integer-valued functions defined on
V(G) with a < g(x) < f(x) —r < b—r for every x € V(G). If

b+1)b—r+1) (b—7r+1)%a(G)
k(G) > max{ 7 ; Lat 1) } ;

then G contains a fractional (g, f)-factor.

As far as we know, except a sufficient condition for graphs to be all fractional
(a, b, k)-critical in terms of binding number bind(G) in [11], there are few results
for graphs to be all fractional (a, b, k)-critical. This is a motivation of this paper.

In this paper we use independent number and connectivity to obtain a new
sufficient condition for a graph to be all fractional (a, b, k)-critical. The following
theorem is the main result.

Theorem 2. Let G be a graph and let a,b, k be nonnegative integers with 1 < a

<b. If K(G) > max { (b+1)22+2k, (bH)QO:l(aG)Hak}, then G is all fractional (a,b, k)-

critical.
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If £k =0 in Theorem 2, we can get the following corollary.

Corollary 3. Let G be a graph and a,b nonnegative integers with 1 < a<b. If

k(G) > max { (b+21)2’ (b+13;a(G) }, then G has all fractional |a,b]-factors.

2. THE PROOF OF THEOREM 2

Lemma 4 [12]. Let a,b and k be nonnegative integers with 1 < a <b, and let G
be a graph of order n with n > a+k~+1. Then G is all fractional (a, b, k)-critical
if and only if for any S C V(G) with |S| > k

alS|+ > dg-s(x) = b|T| > ak,
zeT

where T'={z:x € V(G)\S,dg-gs(z) < b}.

Proof of Theorem 2. Let G be a graph satisfying the hypothesis of Theorem
2. We prove the theorem by contradiction. Suppose that G is not all fractional
(a, b, k)-critical. Then by Lemma 4, there exists a subset S of V(G) with |S| > k
such that

(1) alS|+>  da_s(x) — bT| < ak,
zeT

where T' = {x : x € V(G)\S,dg—s(x) < b}. Obviously, T' # (. Otherwise,

alS|+ Y dg-s(x) = bT| = alS| > ak,
z€eT

contradicting to (1).

Now we consider the subgraph G[T] of G induced by T. Set T = G[T].
Choose x; € Ty with dp, (1) = 6(Th) and Ly = Np[z1]. Furthermore, for ¢ > 2,
choose xz; € T; = T1 — U1§j<i L; with dr,(x;) = 6(T;) and L; = Np[z;]. Set
|L;| = d;. We continue these procedures until we reach the situation in which
T; = () for some 1, say for i = r + 1. Following the above definition we know that
{z1,22,...,2,} is an independent set of G. Obviously, r > 1 and |T'| =, ,, d;.
Let U=V (G)\ (SUT) and k(G — S) =t. o

Now, we prove the following claims.

Claim 1. r > 1 or U # ).

Otherwise, we get r = 1 and U = ().
(a+b+1)2 (b+1)2
4a < 2

First, we prove an inequality < , which is used later. In
fact, this inequality is equivalent to 2(a + b+ 1)? — 4a(b + 1) < 0. Now, let
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fla) =2(a+b+1)? —4a(b+1)2, and so

f(a) =12(a® + b* + 2a + 2b + 2ab + 1) — 4a(b? +2b + 1)
=2a? 4 2b® 4 4a + 4b + 4ab + 2 — 4ab? — 8ab — 4a
=2a? + 2b% + 4b — dab + 2 — 4ab’.
By differential, we get f’(a) = 4a—4b—4b? < 0. So f(a) is decreasingin2 < a < b
and we obtain
fla) < f(2) =2(3+b)2 —8(b+1)% =2(9 + b* + 6b) — 8(b> + 1 + 2b)
=18+ 2b% + 12b — 8> — 8 — 16b = 10 — 6b* — 4b
=—2(3b*4+2b—5) = —2(b—1)(3b+5) < 0,

. . (a+b+1)2 _ (b+1)2
which gives a proof of ==~ < *=-~.

By (1), we have

ak > a|S|+ > da_s(x) = b|T| = alS| + di(dy — 1) — bdy,
xzeT

—d3+dy +bdy+ak
a

so |S] < . Then,

—d? + dy + bdy + ak _ —d}+dy +bdy + ady

V(G)|=1|S|+d < +dy . +k
_ g2 1 12 12
_ —dif(a+b+ )d1+k§(a—|—:—|— ) +k:§(b+2) s
a a

which contradicts the assumption that |[V(G)| > k > W

the proof of Claim 1.

Claim 2. ZzET dg_s(z) > Zlgigr(d? —d;) + %t
In fact, by the choice of z;, we know that every vertex in L; has degree at
least d; — 1 in T;, which implies that >y, (3 ,cr, 3 (%)) > D014, di(di — 1).
Because an edge joining « € L; and y € L; (i<yj)is counted only once, we
obtain that

(2) Y oda-s@)= Y (dF—di)+ Y eq(Li,Lyj) +eq(T,U).

zeT 1<i<r 1<i<j<r

. This completes

For each L;(1 <i <r), by k(G — §) = t, we have

(3) ea(Li, | J Lj) + ea(Li,U) > t.
J#i
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Summing up these inequalities for all 7 (1 <i <7), we get

@ > <€G(LiaULj)+eG(LiaU)) =2 ) ea(LiLy) +eq(T.U) = rt.

1<i<r i 1<i<j<r

According to (4), it is obvious that

t
(5) 3" ea(Li Lj) + ec(T,U) > %
1<i<j<r
In terms of (2) and (5), we have
rt
(6) > do-s(@)> ) (df —di) + 5.

zeT 1<i<r

This completes the proof of Claim 2.
Now we continue to prove the main theorem. Combining (1) and (6), obtain

ak > alS|+ Y dg_g(x) = bT| > alS|+ Y (d - +——b S d;

zeT 1<ilr 1<i<r
(b+1)2%r 1t

t
=a|S|+ 3 (@~ (b+1)d )—l—%zalS]— —+ 5

1<i<r

which implies that

(b+1)2%r 1t
k -+ —.
(7) ak > alS| 1 + 5
Since |S| > k, from (7) we get that —% + L < 0, which implies that

(8) —(“41)2 oo

By (7), (8), @(G) > a(G[T]) > r and the assumption

k(G) > max { (b+1)22+2k7 (b+1)20;(aG)+4ak }7

we get

2,r r 2
OXUT L s awia) -1 - P2 06 + Lat)

2
(b+1)24ak(G) — dak  t 4ar(G) — dak
Za(W@) =) -1z T3 et

26(G) — 2k (b+1)% + 2k — 2k
g _— > — e
at( b+1) 1) + ak > at( bE1) 1) + ak = ak,

which is a contradiction. Therefore, G is all fractional (a, b, k)-critical. [

ak > a|S| —
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3. REMARKS

Remark 1. Let us know that the condition x(G) > W

by W — 1. In fact, let 1 < a < b and k > 0 be three integers, and let G =
a((b+1)2-2)+2

cannot be replaced

b+1)2-2)+2
K(b+1)2+2k71 V TKL Let S = K(b+1)2+2k71 and T' = %Kl'
R 2
2_
Obviously, #(G) = W — 1>k |S| = W —1, |T| = W

So,

a 2 _
alS| + dg—s(T) — b|T| :a<(b+1)2+2k_1> e+ -2) 42

2 2b

2 b+1)2-2)+2
—a(b+1) +ak—a—ba((+ ) )+
2 2b
=ak — 1 < ak,

a contradiction to Lemma 4, which implies that G is not all fractional (a, b, k)-
critical.

Remark 2. The condition x(G) > Wlw is equivalent to ax(G) >
% + ak. Now we show that the condition ax(G) > w + ak is best
possible in the following sense. We cannot replace ax(G) > %%‘(G) + ak by
ark(G) > w + ak — 1, which is showed by the following example.

Let b >a > 1,r > 1 and k£ > 0 be four integers such that b is odd and
(%)% + ak — 1 = O(mod a). Let G = K, V rK,, where p = w
and ¢ = L. Tt is obvious that a(G) = r and k(G) = p = W%H Let
S = V(K,) CV(G) and T = V(rk,) C V(G), then |S| = p — Lz rrak=t
and |T| = r®L. So, we have

LS R A | 1 1
alS| + dg—s(T) — b|T| :a( 2] rte +r<b; >(b—; _1)

>k

a

b+1\2 b+1\2 b+1
:<;> r+ak—1+7’(;> —r(é)
b+1
— b =
("5

b+1)2 b+1)2 b+ 1
= (;) r+ak —1+r <—i2_> —r <—i2_) (14b)
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b+1)\?2 b+1\2 b+1\2
— (= —1 LI Y)Y i M
< 5 >r+ak +r< > ) r< 5 )

b1\’ b+1)°
:(2 ) r+ak;—1—r<—g> =ak —1 < ak.

In terms of Lemma 4, G is not all fractional (a, b, k)-critical.
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