
Discussiones Mathematicae
Graph Theory 39 (2019) 183–190
doi:10.7151/dmgt.2075

INDEPENDENCE NUMBER, CONNECTIVITY AND ALL
FRACTIONAL (a, b, k)-CRITICAL GRAPHS

Yuan Yuan and Rong-Xia Hao1

Department of Mathematics

Beijing Jiaotong University

Beijing 100044, China

e-mail: kuailenanshi@126.com
rxhao@bjtu.edu.cn

Abstract

Let G be a graph and a, b and k be nonnegative integers with 1 ≤ a ≤ b.
A graph G is defined as all fractional (a, b, k)-critical if after deleting any
k vertices of G, the remaining graph has all fractional [a, b]-factors. In this

paper, we prove that if κ(G) ≥ max
{

(b+1)2+2k
2 ,

(b+1)2α(G)+4ak
4a

}

, then G

is all fractional (a, b, k)-critical. If k = 0, we improve the result given in
[Filomat 29 (2015) 757–761]. Moreover, we show that this result is best
possible in some sense.
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1. Introduction

All graphs considered here are finite, simple and undirected graphs. Let G be a
graph with vertex set V (G) and edge set E(G). For a vertex x ∈ V (G), we use
dG(x) and NG(x) to denote the degree and neighbourhood of x in G, respectively.
For any S ⊆ V (G), let NG(S) denote the union of NG(x) for each x ∈ S. We
use G[S] and G−S to denote the subgraph of G induced by S and V (G)−S. A
subset I of V (G) is an independent set of G, if no two distinct vertices in I are
adjacent. The cardinality of a maximum independent set in a graph G is called
the independence number of G, denoted by α(G). A vertex-cut of a noncomplete
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graph G is a set of vertices of G such that G − S is disconnected. A vertex-
cut of minimum cardinality in G is called a minimum vertex-cut of G and this
cardinality is called the connectivity of G and is denoted by κ(G).

Let g, f be two integer-valued functions defined on V (G) with 0 ≤ g(x) ≤
f(x) for all x ∈ V (G). A (g, f)-factor of G is a spanning subgraph H of G

satisfying g(x) ≤ dH(x) ≤ f(x) for all x ∈ V (G) . Let a ≤ b be two integers. A
(g, f)-factor is called an [a, b]-factor if g(x) ≡ a and f(x) ≡ b. Let h : E(G) →
[0, 1] be a function. If g(x) ≤

∑

x∈e h(e) ≤ f(x) holds for every x ∈ V (G), then we
call graph F with vertex set V (G) and edge set Eh a fractional (g, f)-factor of G
with indicator function h, where Eh = {e ∈ E(G)|h(e) > 0}. If f(x) = g(x) for all
x ∈ V (G), then a fractional (g, f)-factor is called a fractional f -factor. If g(x) ≡ a

and f(x) ≡ b, then a fractional (g, f)-factor is called a fractional [a, b]-factor. Let
p be an integer-valued function defined on V (G) such that g(x) ≤ p(x) ≤ f(x)
for each x ∈ V (G). We say that G has all fractional (g, f)-factors if G has a
fractional p-factor for every p described above. If g(x) ≡ a and f(x) ≡ b, then
all fractional (g, f)-factors are said to be all fractional [a, b]-factors. A graph G

is called an all fractional (a, b, k)-critical graph if after deleting any k vertices of
G the remaining graph of G has all fractional [a, b]-factors.

Many authors have studied factors and fractional factors of graphs. For
example, see [1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14]. Anstee [1] and Lu [6] gave necessary
and sufficient conditions for a graph to have all fractional (g, f)-factors and all
fractional [a, b]-factors, respectively. Liu et al. [5] proved the necessary and
sufficient conditions for a graph to have a fractional (g, f)-factor. The following
theorem, on the existence of fractional (g, f)-factors of graphs, is well known.

Theorem 1 [2]. Let G be a graph, and let a, b and r be three nonnegative integers

satisfying 1 ≤ a ≤ b − r, and let g, f be two integer-valued functions defined on

V (G) with a ≤ g(x) ≤ f(x)− r ≤ b− r for every x ∈ V (G). If

κ(G) ≥ max

{

(b+ 1)(b− r + 1)

2
,
(b− r + 1)2α(G)

4(a+ r)

}

,

then G contains a fractional (g, f)-factor.

As far as we know, except a sufficient condition for graphs to be all fractional
(a, b, k)-critical in terms of binding number bind(G) in [11], there are few results
for graphs to be all fractional (a, b, k)-critical. This is a motivation of this paper.

In this paper we use independent number and connectivity to obtain a new
sufficient condition for a graph to be all fractional (a, b, k)-critical. The following
theorem is the main result.

Theorem 2. Let G be a graph and let a, b, k be nonnegative integers with 1 ≤ a

< b. If κ(G) ≥ max
{

(b+1)2+2k
2 ,

(b+1)2α(G)+4ak
4a

}

, then G is all fractional (a, b, k)-

critical.
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If k = 0 in Theorem 2, we can get the following corollary.

Corollary 3. Let G be a graph and a, b nonnegative integers with 1 ≤ a<b. If

κ(G) ≥ max
{

(b+1)2

2 ,
(b+1)2α(G)

4a

}

, then G has all fractional [a, b]-factors.

2. The Proof of Theorem 2

Lemma 4 [12]. Let a, b and k be nonnegative integers with 1 ≤ a ≤ b, and let G

be a graph of order n with n ≥ a+k+1. Then G is all fractional (a, b, k)-critical
if and only if for any S ⊆ V (G) with |S| ≥ k

a|S|+
∑

x∈T

dG−S(x)− b|T | ≥ ak,

where T = {x : x ∈ V (G)\S, dG−S(x) < b}.

Proof of Theorem 2. Let G be a graph satisfying the hypothesis of Theorem
2. We prove the theorem by contradiction. Suppose that G is not all fractional
(a, b, k)-critical. Then by Lemma 4, there exists a subset S of V (G) with |S| ≥ k

such that

a|S|+
∑

x∈T

dG−S(x)− b|T | < ak,(1)

where T = {x : x ∈ V (G)\S, dG−S(x) < b}. Obviously, T 6= ∅. Otherwise,

a|S|+
∑

x∈T

dG−S(x)− b|T | = a|S| ≥ ak,

contradicting to (1).

Now we consider the subgraph G[T ] of G induced by T . Set T1 = G[T ].
Choose x1 ∈ T1 with dT1(x1) = δ(T1) and L1 = NT1 [x1]. Furthermore, for i ≥ 2,
choose xi ∈ Ti = T1 −

⋃

1≤j<i Lj with dTi
(xi) = δ(Ti) and Li = NTi

[xi]. Set
|Li| = di. We continue these procedures until we reach the situation in which
Ti = ∅ for some i, say for i = r+ 1. Following the above definition we know that
{x1, x2, . . . , xr} is an independent set of G. Obviously, r ≥ 1 and |T | =

∑

1≤i≤r di.
Let U = V (G) \ (S ∪ T ) and κ(G− S) = t.

Now, we prove the following claims.

Claim 1. r > 1 or U 6= ∅.
Otherwise, we get r = 1 and U = ∅.

First, we prove an inequality (a+b+1)2

4a ≤ (b+1)2

2 , which is used later. In
fact, this inequality is equivalent to 2(a + b + 1)2 − 4a(b + 1)2 ≤ 0. Now, let
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f(a) = 2(a+ b+ 1)2 − 4a(b+ 1)2, and so

f(a) = 12(a2 + b2 + 2a+ 2b+ 2ab+ 1)− 4a(b2 + 2b+ 1)

= 2a2 + 2b2 + 4a+ 4b+ 4ab+ 2− 4ab2 − 8ab− 4a

= 2a2 + 2b2 + 4b− 4ab+ 2− 4ab2.

By differential, we get f ′(a) = 4a−4b−4b2 < 0. So f(a) is decreasing in 2 ≤ a ≤ b

and we obtain

f(a) ≤ f(2) = 2(3 + b)2 − 8(b+ 1)2 = 2(9 + b2 + 6b)− 8(b2 + 1 + 2b)

= 18 + 2b2 + 12b− 8b2 − 8− 16b = 10− 6b2 − 4b

= −2(3b2 + 2b− 5) = −2(b− 1)(3b+ 5) < 0,

which gives a proof of (a+b+1)2

4a ≤ (b+1)2

2 .

By (1), we have

ak > a|S|+
∑

x∈T

dG−S(x)− b|T | = a|S|+ d1(d1 − 1)− bd1,

so |S| <
−d21+d1+bd1+ak

a
. Then,

|V (G)| = |S|+ d1 <
−d21 + d1 + bd1 + ak

a
+ d1 =

−d21 + d1 + bd1 + ad1

a
+ k

=
−d21 + (a+ b+ 1)d1

a
+ k ≤

(a+ b+ 1)2

4a
+ k ≤

(b+ 1)2

2
+ k,

which contradicts the assumption that |V (G)| > κ ≥ (b+1)2+2k
2 . This completes

the proof of Claim 1.

Claim 2.
∑

x∈T dG−S(x) ≥
∑

1≤i≤r(d
2
i − di) +

rt
2 .

In fact, by the choice of xi, we know that every vertex in Li has degree at
least di − 1 in Ti, which implies that

∑

1≤i≤r(
∑

x∈Li
dTi

(x)) ≥
∑

1≤i≤r di(di − 1).
Because an edge joining x ∈ Li and y ∈ Lj (i < j) is counted only once, we

obtain that

∑

x∈T

dG−S(x) ≥
∑

1≤i≤r

(d2i − di) +
∑

1≤i<j≤r

eG(Li, Lj) + eG(T, U).(2)

For each Li(1 ≤ i ≤ r), by κ(G− S) = t, we have

eG(Li,
⋃

j 6=i

Lj) + eG(Li, U) ≥ t.(3)
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Summing up these inequalities for all i (1 ≤ i ≤ r), we get

∑

1≤i≤r

(

eG(Li,
⋃

j 6=i

Lj) + eG(Li, U)
)

= 2
∑

1≤i<j≤r

eG(Li, Lj) + eG(T, U) ≥ rt.(4)

According to (4), it is obvious that

∑

1≤i<j≤r

eG(Li, Lj) + eG(T, U) ≥
rt

2
.(5)

In terms of (2) and (5), we have

∑

x∈T

dG−S(x) ≥
∑

1≤i≤r

(d2i − di) +
rt

2
.(6)

This completes the proof of Claim 2.
Now we continue to prove the main theorem. Combining (1) and (6), obtain

ak > a|S|+
∑

x∈T

dG−S(x)− b|T | ≥ a|S|+
∑

1≤i≤r

(d2i − di) +
rt

2
− b

∑

1≤i≤r

di

= a|S|+
∑

1≤i≤r

(d2i − (b+ 1)di) +
rt

2
≥ a|S| −

(b+ 1)2r

4
+

rt

2
,

which implies that

ak > a|S| −
(b+ 1)2r

4
+

rt

2
.(7)

Since |S| ≥ k, from (7) we get that − (b+1)2r
4 + rt

2 < 0, which implies that

−
(b+ 1)2

4
+

t

2
< 0.(8)

By (7), (8), α(G) ≥ α(G[T ]) ≥ r and the assumption

κ(G) ≥ max
{

(b+1)2+2k
2 ,

(b+1)2α(G)+4ak
4a

}

,

we get

ak > a|S| −
(b+ 1)2r

4
+

rt

2
≥ a (κ(G)− t)−

(b+ 1)2

4
α(G) +

t

2
α(G)

≥ a (κ(G)− t)−
(b+ 1)2

4

4aκ(G)− 4ak

(b+ 1)2
+

t

2

4aκ(G)− 4ak

(b+ 1)2

= at
(2κ(G)− 2k

(b+ 1)2
− 1

)

+ ak ≥ at
((b+ 1)2 + 2k − 2k

(b+ 1)2
− 1

)

+ ak = ak,

which is a contradiction. Therefore, G is all fractional (a, b, k)-critical.
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3. Remarks

Remark 1. Let us know that the condition κ(G) ≥ (b+1)2+2k
2 cannot be replaced

by (b+1)2+2k
2 − 1. In fact, let 1 ≤ a < b and k ≥ 0 be three integers, and let G =

K (b+1)2+2k
2

−1
∨

a((b+1)2−2)+2

2b K1. Let S = K (b+1)2+2k
2

−1
and T =

a((b+1)2−2)+2

2b K1.

Obviously, κ(G) = (b+1)2+2k
2 − 1 > k, |S| = (b+1)2+2k

2 − 1, |T | =
a((b+1)2−2)+2

2b .
So,

a|S|+ dG−S(T )− b|T | = a

(

(b+ 1)2 + 2k

2
− 1

)

− b
a
(

(b+ 1)2 − 2
)

+ 2

2b

= a
(b+ 1)2

2
+ ak − a− b

a
(

(b+ 1)2 − 2
)

+ 2

2b
= ak − 1 < ak,

a contradiction to Lemma 4, which implies that G is not all fractional (a, b, k)-
critical.

Remark 2. The condition κ(G) ≥ (b+1)2α(G)+4ak
4a is equivalent to aκ(G) ≥

(b+1)2α(G)
4 + ak. Now we show that the condition aκ(G) ≥ (b+1)2α(G)

4 + ak is best

possible in the following sense. We cannot replace aκ(G) ≥ (b+1)2α(G)
4 + ak by

aκ(G) ≥ (b+1)2α(G)
4 + ak − 1, which is showed by the following example.

Let b > a ≥ 1, r ≥ 1 and k ≥ 0 be four integers such that b is odd and

( b+1
2 )2r + ak − 1 ≡ 0(mod a). Let G = Kp ∨ rKq, where p =

( b+1
2

)2r+ak−1

a

and q = b+1
2 . It is obvious that α(G) = r and κ(G) = p =

( b+1
2

)2r+ak−1

a
. Let

S = V (Kp) ⊆ V (G) and T = V (rKq) ⊆ V (G), then |S| = p =
( b+1

2
)2r+ak−1

a
≥ k

and |T | = r b+1
2 . So, we have

a|S|+ dG−S(T )− b|T | = a

(

b+1
2

)2
r + ak − 1

a
+ r

(

b+ 1

2

)(

b+ 1

2
− 1

)

− br

(

b+ 1

2

)

=

(

b+ 1

2

)2

r + ak − 1 + r

(

b+ 1

2

)2

− r

(

b+ 1

2

)

− br

(

b+ 1

2

)

=

(

b+ 1

2

)2

r + ak − 1+r

(

b+ 1

2

)2

−r

(

b+ 1

2

)

(

1+b
)
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=

(

b+ 1

2

)2

r + ak − 1 + r

(

b+ 1

2

)2

− 2r

(

b+ 1

2

)2

=

(

b+ 1

2

)2

r + ak − 1− r

(

b+ 1

2

)2

= ak − 1 < ak.

In terms of Lemma 4, G is not all fractional (a, b, k)-critical.
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