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Abstract

An oriented coloring of an oriented graph G is a homomorphism from G

to H such that H is without selfloops and arcs in opposite directions. We
shall say that H is a coloring graph. In this paper, we focus on oriented col-
orings of Cartesian products of two paths, called grids, and strong products
of two paths, called strong-grids. We show that there exists a coloring graph
with nine vertices that can be used to color every orientation of grids with
five columns. We also show that there exists a strong-grid with two columns
and its orientation which requires 11 colors for oriented coloring. Moreover,
we show that every orientation of every strong-grid with three columns can
be colored by 19 colors and that every orientation of every strong-grid with
four columns can be colored by 43 colors. The above statements were proved
with the help of computer programs.
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1. Introduction

Let G = (V (G), E(G)) be a simple undirected graph. An orientation of G is
a directed graph

−→
G = (V (

−→
G), A(

−→
G)) obtained from G by ordering every edge

{u, v} ∈ E(G) either from u to v (resulting in an arc (u, v) ∈ A(
−→
G)), or conversely

(yielding an arc (v, u) ∈ A(
−→
G)). In this paper, we shall deal with undirected

graphs and their orientations. An orientation of a graph is called an oriented
graph. An oriented coloring is a coloring c of the vertices of an oriented graph
−→
G = (V (

−→
G), A(

−→
G)) such that
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(i) no two neighbors have the same color,

(ii) for any two arcs (u, v) and (y, z) ∈ A(
−→
G), if c(u) = c(z) then c(v) 6= c(y).

In other words, if the arc (y, z) goes from color c(y) to c(z), then no other
arc can go in the opposite direction, i.e., from c(z) to c(y).

With every oriented coloring c of
−→
G one can associate a digraph

−→
H c, called

the coloring graph of
−→
G , with set of vertices V (

−→
H c) = {c(x) : x ∈ V (G)} and set

of arcs A(
−→
H c) = {(c(x), c(y)) : (x, y) ∈ A(

−→
G)}. Due to conditions (i) and (ii),

−→
H c

is an oriented graph without loops and opposite arcs. An oriented coloring c can
then be viewed as a homomorphism (that is an arc-preserving vertex mapping)
from

−→
G to

−→
H c. In this case,

−→
G is said to be colored by

−→
H c. Similarly, every

homomorphism from
−→
G to an oriented graph

−→
H can be viewed as a coloring of

−→
G using the vertices of

−→
H as colors. The oriented chromatic number −→χ (

−→
G) of an

oriented graph
−→
G is the smallest number of colors needed for its oriented coloring.

The oriented chromatic number −→χ (G) of an undirected graph G is the maximal
chromatic number over all possible orientations of G. The oriented chromatic
number of a family of graphs is the maximal chromatic number over all possible
graphs of the family.

Oriented coloring has been studied in recent years [2, 5, 7, 8, 9, 11, 13, 14,
15, 17, 18], see [12] for a survey of the main results. Several authors established
or bounded the oriented chromatic number for some families of graphs, such as
oriented planar graphs [11], outerplanar graphs [14, 15], graphs with bounded
degree three [7, 14, 17], k-trees [14], Halin graphs [4, 9], graphs with given excess
[8] or grids [5, 18].

For a pair of undirected graphs G and H, the Cartesian product G�H of
G and H is the graph with vertex set V (G) × V (H) and where two vertices
are adjacent if and only if they are equal in one coordinate and adjacent in the
other. The strong product G⊠H of graphs G and H is the graph with vertex set
V (G)×V (H) and where two vertices are adjacent if and only if they are adjacent
in one coordinate and adjacent or equal in the other. We use Pk to denote the
path on k vertices. In this paper we focus on the oriented chromatic number of
Cartesian products of paths, called grids, and strong products of paths, called
strong-grids.

In [5], Fertin, Raspaud and Roychowdhury have discussed bounds for the
oriented chromatic number of Pm�Pn. They showed that

• −→χ (Pm�Pn) ≤ 11, for every m,n ≥ 1,

• there exists an orientation of P4�P5 that requires 7 colors,

• −→χ (P2�P2) = 4, −→χ (P2�P3) = 5 and −→χ (P2�Pn) = 6, for n ≥ 4,



Oriented Chromatic Number of Cartesian Products and Strong ...213

• −→χ (P3�P3) = −→χ (P3�P4) = −→χ (P3�P5) = 6, and 6 ≤ −→χ (P3�Pn) ≤ 7, for
every n ≥ 6,

• −→χ (P4�P4) = 6.

They also formulated the two following conjectures:

• every orientation of Pm�Pn can be colored by seven colors,

• every orientation of Pm�Pn can be colored by
−→
T 7.

The coloring graph
−→
T 7 is an oriented graph with set of vertices V (

−→
T 7) =

{0, 1, 2, . . . , 6} and set of arcs A(
−→
T 7) = {(x, x + b (mod 7)) : x ∈ V (

−→
T 7), b =

1, 2, or 4}. Szepietowski and Targan [18] disproved the second conjecture by ex-
hibiting an orientation of P5�P33 that cannot be colored by

−→
T 7. By the way,

the oriented graph found in [18] can be colored by another coloring graph with 7
vertices. Furthermore, they showed that

• −→χ (P4�Pn) = 7, for every n ≥ 5,

• −→χ (P3�P6) = 6,

• −→χ (P3�Pn) = 7, for every n ≥ 7.

Dybizbański and Nenca [3] disproved the first conjecture by exhibiting an orien-
tation of P7�P212 that requires 8 colors. However, the bounds for P5�Pn were
still 7 ≤ −→χ (P5�Pn) ≤ 11.

Aravind, Narayanan and Subramanian [1] discussed the oriented chromatic
number of strong products of paths. They showed that

• 8 ≤ −→χ (P2 ⊠ Pn) ≤ 11, for every n ≥ 5,

• 10 ≤ −→χ (P3 ⊠ Pn) ≤ 67, for every n ≥ 5.

Sopena [16] proved that

• −→χ (Pk ⊠ Pn) ≤ 126, for every n, k ≥ 3.

The rest of the paper is organized as follows. In Section 2, we give definitions.
In Section 3, we prove the following theorem.

Theorem 1.1. For every n ≥ 5, −→χ (P5�Pn) ≤ 9.

Moreover, we prove that the family of all orientations of all grids P5�Pn can
be colored with one coloring graph of order 9, which we call

−→
H 9.

In Section 4, we show that there exists an orientation of P2 ⊠ P398 which
cannot be colored by any coloring graph with 10 vertices. This means that the
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lower bound for oriented chromatic number of strong-grids with two columns is
the same as the upper bound obtained by Aravind, Narayanan and Subramanian
in [1]. Moreover, we improve the bounds for the families of all orientations of
the following strong-grids: strong-grids with three columns, denoted by S→

3
, and

strong-grids with four columns denoted by S→

4
. We show that for every n, every

orientation of P3⊠Pn can be colored by 19 colors and that there exists an n and
an orientation of P3⊠Pn which requires 11 colors for oriented coloring. It follows
that

Theorem 1.2. 11 ≤ −→χ (S→

3
) ≤ 19.

Moreover, we prove that for every n, every orientation of P4 ⊠ Pn can be
colored by 43 colors and that there exists an n and an orientation of P4⊠Pn that
requires 11 colors for oriented coloring. This means that

Theorem 1.3. 11 ≤ −→χ (S→

4
) ≤ 43.

2. Definitions

Definition 2.1. Let G1(V1, E1) and G2(V2, E2) be two undirected graphs. Their
Cartesian product, denoted by G1�G2, is the graph where V (G1�G2) = V1 × V2

and (u1, u2), (v1, v2) ∈ E(G1�G2) if either u1 = v1 and (u2, v2) ∈ E2, or u2 = v2
and (u1, v1) ∈ E1. Their strong product, denoted by G1 ⊠G2, is the graph where
V (G1 ⊠ G2) = V1 × V2 and (u1, u2), (v1, v2) ∈ E(G1 ⊠ G2) if either u1 = v1 and
(u2, v2) ∈ E2, or u2 = v2 and (u1, v1) ∈ E1, or (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

The Cartesian product of two paths Pm�Pn is called the m × n grid. The
strong product of two paths Pm ⊠ Pn is called the m× n strong-grid.

We shall say that u ∈ V is a source (respectively a sink) if there is no arc
incoming to u (respectively outgoing from u). A tournament is an orientation of
an undirected complete graph.

Let p be a prime number such that p ≡ 3 (mod 4), d = p−1

2
, and c1, c2, . . . , cd

be the non-zero quadratic residues of p. The directed graph
−→
T p with set of

vertices V (
−→
T p) = {0, 1, . . . , p− 1} and set of arcs A(

−→
T p) = {(x, x+ ci (mod p)) :

x ∈ V (
−→
T p), 1 ≤ i ≤ d} is called the Paley tournament of order p. It is easy

to check that Paley tournaments are arc-transitive, i.e. for any two arcs (u, v),
(x, y) in A(

−→
T p), there exists an automorphism f :

−→
T p →

−→
T p satisfying f(u) = x,

f(v) = y, and self-converse, i.e. Tp is isomorphic to its converse (a graph obtained
by reversing each arc), see [6].

3. Cartesian Product of Paths

In this section we prove Theorem 1.1. First, we define the coloring graph
−→
H 9

which is obtained from
−→
T 7 by adding two vertices, one sink and one source.
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More precisely, V (
−→
H 9) = {0, 1, 2, 3, 4, 5, 6, 7, 8} and (u, v) ∈ A(

−→
H 9) if

• u, v < 7 and v − u ≡ 1, 2, or 4 (mod 7), or

• u = 7, or

• v = 8.

Consider the grid P5�Pn with five columns and n rows. Let us denote by
vi = (1, i), wi = (2, i), xi = (3, i), yi = (4, i), zi = (5, i) the five vertices in the
i-th row, see Figure 1.

vn wn xn yn zn

Figure 1. The grid G(5, n).

Suppose that
−→
G is an orientation of P5�Pn. By S(

−→
G) we denote the set

of reachable colorings of the last row of
−→
G , namely S(

−→
G) = {(c1, c2, c3, c4, c5) :

there exists a coloring γ : V (
−→
G) →

−→
T 7, such that γ(vn) = c1, γ(wn) = c2,

γ(xn) = c3, γ(yn) = c4, γ(zn) = c5}.
Let Φ(

−→
G) be the vector (δ(vn), δ(xn), δ(zn)), where

δ(u) =

{

0, if u is a sink or a source,
1, otherwise.

Let G→ denote the family of all orientations of all grids with five columns.
Let us denote by G′→ the set of orientation in G→ without sinks or sources on
first, third and last columns above the last row, i.e., G′→ =

⋃

∞

n=1
{
−→
G ∈ G→ :

−→
G is an orientation of P5�Pn, where for every 1 ≤ i < n, none of vi, xi, zi is a
sink or a source}. First, we show that every

−→
G ∈ G′→ can be colored by the

Paley tournament
−→
T 7.

Lemma 3.1. For every
−→
G ∈ G′→, there exists a homomorphism γ :

−→
G →

−→
T 7.

Proof. We use an algorithm to check that the family {S(
−→
G) :

−→
G ∈ G′→} does

not contain the empty set, which means that every
−→
G ∈ G′→ can be colored by

−→
T 7. In order to do this, the algorithm looks through all possible pairs (S,Φ) such
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that there exists
−→
G ∈ G′→ for which S(

−→
G) = S and Φ(

−→
G) = Φ. The algorithm

uses a queue to stores such pairs. Since
−→
T 7 is arc-transitive and self-converse,

we can consider only those orientations of
−→
G where (vn, wn) ∈ A(

−→
G) and only

those colorings where c(vn) = 0 and c(wn) = 1 (see [18] for more details). Note
that there are eight possible orientations of the last row with (vn, wn) ∈ A(

−→
G)

and 3 × 3 × 3 = 27 possible colorings of the last row satysfying c(vn) = 0 and
c(wn) = 1.

The algorithm starts with the grid P5�P1. For every orientation
−→
F of P5�P1,

it computes the pair (S(
−→
F ),Φ(

−→
F )) and inserts it to the queue Q. Next, the

algorithm takes one by one a pair (S,Φ) from the queue, which contains the
information for some

−→
G ∈ G′→ and considers every graph

−→
R ∈ G′→ which can

be built from
−→
G by adding one extra row and which does not contain a sink or

a source in the first, the third and the fifth column above the last row. For each
such graph

−→
R , the algorithm computes the pair (S(

−→
R ),Φ(

−→
R )) and, provided it is

a new one, inserts it to the queue Q. In order to compute the pair (S(
−→
R ),Φ(

−→
R )),

the algorithm does not need to reconstruct the whole graph
−→
G in its memory and

build the graph
−→
R .

After running this algorithm, we have found that the algorithm stops with
empty queue Q and no pair of the form (∅,Φ) is reachable. This means that
every

−→
G ∈ G′→ can be colored with

−→
T 7.

Proof of Theorem 1.1. Let
−→
G be an orientation of P5�Pn, n ≥ 5. We show

that there exists a homomorphism γ such that γ :
−→
G →

−→
H 9. First, we construct

a new orientation
−→
G

′

of P5�Pn by reversing some arcs in
−→
G . More precisely, for

every row i we have

• if vi is a sink or a source, then we reverse the arc between vi and wi,

• if xi is a sink or a source, then we reverse the arc between wi and xi,

• if zi is a sink or a source, then we reverse the arc between yi and zi.

Note that every vertical arc remains unchanged. Moreover, for each vertex u in
the first, the third or the fifth column, we reverse at most one arc incident with
u. The other end of each reversed arc is in the second or fourth column thus the
changes of orientation cannot create a new sink or a source in the first, the third

or the fifth column. The graph
−→
G

′

does not have any sources or sinks in the first,

third and fifth column. Hence, by Lemma 3.1, there is a coloring γ′ :
−→
G

′

→
−→
T 7.

We construct the coloring γ :
−→
G →

−→
H 9 in the following way.

• If v is in the second or the fourth column, then γ(v) := γ′(v),

• if v is in the first, the third or the fifth column, and is not a sink or a source
in

−→
G , then γ(v) := γ′(v),
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• if v is in the first, the third or the fifth column, and is a sink or a source in
−→
G , then

* γ(v) := 7 if v is a source in
−→
G ,

* γ(v) := 8 if v is a sink in
−→
G .

In order to show that γ is an oriented coloring of
−→
G , consider an arc uv ∈

−→
G .

There are four possible cases.

• If the arc between u and v has been reversed, then one of its ends, say
u, is a source (or a sink, respectively) in the first, the third, or the fifth
column and receives color 7 (or 8, respectively). The other end v of the
arc is in the second or the fourth column, thus it has a color from

−→
T 7 and

(7, γ(v)) ∈ A(
−→
H 9) (or (γ(v), 8) ∈ A(

−→
H 9), respectively).

• If the arc between u and v has not been reversed and the colors of u and v

have not been changed, then these colors fit in
−→
T 7, and they also fit in

−→
H 9.

• If the arc between u and v has not been reversed but the color of one of
its ends, say u, was changed, then it means that the vertex u is a sink or a
source and has a color that matches the color of the vertex v (γ(v) ∈

−→
T 7).

• If the arc between u and v has not been reversed but the colors of both
its ends were changed, then u and v belong to the same column (the first,
the third or the fifth), and one of them is a sink and the other is a source.
Their colors are 7 and 8, and fit in

−→
H 9.

4. Strong Product of Paths

In this section, we focus on the strong products of paths Sk,n = Pk ⊠ Pn, called
strong-grids. Consider the strong-grid S2,n with 2 columns and n rows. Let us
denote by xi = (1, i) and yi = (2, i) the two vertices in the i-th row.

Let
−→
S 2,n denote the set of orientations of the strong-grid S2,n. Since ev-

ery orientation of a strong-grid S2,n is isomorphic to another orientation with
all horizontal edges going in the same direction, we consider only the later ones

(see Figure 2), i.e.,
−→
S

′

2,n = {
−→
S ∈

−→
S 2,n : (xi, yi) ∈ A(

−→
S ), 1 ≤ i ≤ n}. Sup-

pose that
−→
S ∈

−→
S

′

2,n. By T (
−→
S ,

−→
H ) we denote the set of reachable colorings

on the last row of
−→
S by the coloring graph

−→
H , i.e., T (

−→
S ,

−→
H ) = {(c1, c2) :

there exists a coloring γ : V (
−→
S ) →

−→
H , such that γ(xn) = c1 and γ(yn) = c2}.

We use an algorithm similar to the one used in Lemma 3.1 to prove the
following theorem.
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xn yn

Figure 2. The strong-grid S′

2,n
.

Theorem 4.1. There exists an integer n such that −→χ (P2 ⊠ Pn) = 11.

Proof. Aravind, Narayanan and Subramanian [1] proved that every strong-grid
with two columns can be colored by the Paley tournament

−→
T 11. We show that

there exists an orientation of P2 ⊠ P398 which cannot be colored by any coloring
graph with ten vertices.

In order to construct a strong-grid that needs eleven colors for any oriented
coloring, we use a Extend function. The Extend function for a given oriented
strong-grid

−→
S 1 and a coloring graph

−→
H returns a strong-grid

−→
S 2, such that:

•
−→
S 2 cannot be colored by

−→
H .

•
−→
S 2 is constructed by adding new rows to

−→
S 1.

• If
−→
S 1 cannot be colored by

−→
H , then

−→
S 2 is equal to

−→
S 1.

The Extend function for a given
−→
S 1 and

−→
H looks through all possible sets

T (
−→
S ,

−→
H ), where

−→
S can be built from

−→
S 1 by adding some extra rows. Simi-

larly to the algorithm used in Lemma 3.1, the function uses a queue to stores
such sets.

The function starts by computing the set T (
−→
S 1,

−→
H ) and inserts it to the

queue Q. Next, the algorithm takes one by one a set C from the queue Q and
for every orientation of an extra row computes the set of colorings of the next
row denoted by C ′ (similarly to Lemma 3.1). Then the set C ′ is inserted into
the queue provided it is new one. Moreover, the function puts to an additional
memory the triple consisting of the set C, the orientation of an extra row and
the set C ′. The algorithm stops when an empty set of colorings is reached. After
reaching an empty set of colorings, the procedure reconstructs a grid

−→
S 2, such



Oriented Chromatic Number of Cartesian Products and Strong ...219

that T (
−→
S 2,

−→
H ) = ∅ and

−→
S 2 is an extension of

−→
S 1. To do this the algorithm uses

the information kept in additional memory.
We use the Extend function with all non-isomorphic coloring graphs on ten

vertices (there are 9733056 such tournaments). In the first run, we use a single
arc. In the next run, we use the grid

−→
S returned in the previous run, and so

on. It is easy to see that if
−→
S cannot be colored by

−→
H , then any extension

−→
S

′

of
−→
S cannot be colored by

−→
H . The result of the last run is a strong-grid

−→
S

′′

that

cannot be colored by any of the coloring graphs with ten vertices. The size of
−→
S

′′

may vary depending on the order in which we consider non-isomorphic coloring
graphs. Using nauty [10] to generate the list of all non-isomorphic coloring graphs
of order 10, we found an orientation of P2⊠P398 that admits no oriented coloring
with 10 colors.

4.1. Proof of Theorem 1.2.

The lower bound for −→χ (S→

3
) follows from Theorem 4.1. We use an algorithm

similar to the one used in Section 3 to show that for any n ≥ 1 any orientation
of P3 ⊠ Pn can be colored by the Paley tournament

−→
T 19. Consider now the grid

S3,n with three columns and n rows. Let us denote by xi = (1, i), yi = (2, i),
zi = (3, i) the three vertices in the i-th row, see Figure 3.

xn yn zn

Figure 3. The strong-grid S3,n.

Let S→

3
denote the set of orientations of all strong-grids with three columns.

Let
−→
S be an orientation of P3 ⊠ Pn, for some n ≥ 1, and let T (

−→
S ) be the

set of reachable distinct colorings on the last row of
−→
S by

−→
T 19, i.e., T (

−→
S ) =

{(c1, c2, c3) : there exists a coloring γ : V (
−→
S ) →

−→
T 19 such that γ(xn) = c1,

γ(yn) = c2, γ(zn) = c3}. Once again, since
−→
T 19 is arc-transitive and self-converse,

we can consider only those orientations of
−→
S where (xn, yn) ∈ A(

−→
S ), and only
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those colorings where c(xn) = 0 and c(yn) = 1. Thus, there are only two orien-
tations of the last row with (xn, yn) ∈

−→
S and only nine colorings of the last row

satisfying c(xn) = 0 and c(yn) = 1.

The algorithm starts with the strong-grid P3 ⊠ P1. For every orientation
−→
S

of P3 ⊠ P1 it computes the set T (
−→
S ) and inserts it into the queue Q. Next,

the algorithm takes one by one a set T from the queue. The set T is the set of
colorings of the last row of some

−→
S ∈ S→

3
. The algorithm considers every graph

−→
R ∈ S→

3
which can be built from

−→
S by adding one extra row. For each such

a graph
−→
R the algorithm computes the set T (

−→
R ) and, provided it is new one,

inserts it into the queue Q. Once again the algorithm does not need to reconstruct
the whole graph

−→
R to compute the set T (

−→
R ). After running the algorithm, we

have found that the algorithm stops with the empty queue Q and the empty set
of colorings of the last row is not reached. This means that for every n, every
orientation of P3 ⊠ Pn can be colored by the Paley tournament

−→
T 19.

4.2. Proof of Theorem 1.3.

Consider now the strong-grid S4,2 = P4 ⊠ P2. Let us denote by v = (1, 1),
w = (2, 1), x = (3, 1), y = (4, 1) the vertices of the first row of S4,2 and by
v′ = (1, 2), w′ = (2, 2), x′ = (3, 2), y′ = (4, 2) the vertices of second row, see
Figure 4.

v w x y

v
′

w
′

x
′

y
′

Figure 4. The strong-grid S4,2.

The lower bound for −→χ (S→

4
) follows from Theorem 4.1. To prove the upper

bound we shall use the following property of the Paley tournament
−→
T 43.

Lemma 4.2. For any orientation
−→
S of S4,2, if the first row of

−→
S can be colored

by
−→
T 43 with colors (cv, cw, cx, cy), where cv 6= cx and cw 6= cy, then there is a

coloring γ :
−→
S →

−→
T 43, such that γ(v) = cv, γ(w) = cw, γ(x) = cx, γ(y) = cy,

and moreover γ(v′) 6= γ(x′) and γ(w′) 6= γ(y′).

Proof. We use a computer algorithm to check the above property. Once again,
since

−→
T 43 is arc-transitive and self-converse, we can consider only those orienta-

tions of S4,2 where (u, v) ∈ A(S4,2) and only those colorings where cu = 0 and
cv = 1.
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Let
−→
S be any orientation of P4⊠Pn. Using Lemma 4.2, we can color

−→
S row

by row.

Figure 5. The oriented grid
−→
G5.

5. Conclusion

In this paper, we have proved that every orientation of P5�Pn can be colored by
the coloring graph

−→
H 9, see Section 3. However,

−→
H 9 cannot be used to color every

orientation of every grid Pm�Pn. To prove that, we use an algorithm similar to
the algorithm used in Lemma 3.1 and construct an orientation

−→
G5 of the grid



222 J. Dybizbański and A. Nenca

P5�P28 (see Figure 5) without sink and source vertices on the second, third and
fourth column, which cannot be colored by the Paley tournament

−→
T 7. One can

now easily construct an orientation of P7�P28, by adding two extra columns in
G5: before the first one - column 0, and after the fifth one - column 6. The
arcs incident with all vertices in additional columns are oriented in such a way
that there is no sink and source vertices in the first and the fifth column. The
resulting orientation cannot be colored by

−→
H 9, as we are not able to use color 7

or 8 to color any vertex from column 1–5. We can only use colors from
−→
T 7 but

the oriented grid G5 cannot be colored by
−→
T 7.

On the website https://inf.ug.edu.pl/grids/ we posted the grid
−→
G5, and the

strong-grid P2⊠P398 that requires 11 colors. On the same site we posted sample
C++ programs that can be used to verify those grids and programs that we
have used to prove property of

−→
T 43 (Lemma 4.2),

−→
T 19 (Theorem 1.2), and

−→
T 7

(Lemma 3.1).
Every time when we use Paley tournaments to color certain kind of grids we

check that no Paley tournament of smaller order has the expected property. For
example

−→
T 43 is the smallest Paley tournament with the property described in

Lemma 4.2. The fact that this property is not true for
−→
T 31 does not mean that

any orientation of P4 ⊠ Pn cannot be colored by
−→
T 31.
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[3] J. Dybizbański and A. Nenca, Oriented chromatic number of grids is greater than

7, Inform. Process. Lett. 112 (2012) 113–117.
doi:10.1016/j.ipl.2011.10.019
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