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Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge
is crossed by at most one other edge. In this paper, it is proved that every
1-planar graph with maximum degree ∆ ≥ 8 is edge-colorable with ∆ colors
if each of its 5-cycles contains at most one chord.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we
follow [1] for the terminology and notation not defined here. Let G be a graph
with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), NG(v) denotes
the set of vertices adjacent to v, dG(v) = |NG(v)| denotes the degree of v, δG(v) =
min{dG(u) : u ∈ NG(v)}. The minimum degree of G is δ(G) = min{dG(v) : v ∈
V (G)} and the maximum degree of G is ∆(G) = max{dG(v) : v ∈ V (G)}. A k-,
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k+- and k−-vertex is a vertex of degree k, at least k and at most k, respectively.
A vertex u is called a k-neighbor (respectively, k−-neighbor, k+-neighbor) of a
vertex v if uv ∈ E(G) and dG(u) = k (respectively, dG(u) ≤ k, dG(u) ≥ k). Let
nk(v) (respectively, n≤k(v), n≥k(v)) be the number of k-neighbors (respectively,
k−-neighbors, k+-neighbors) of a vertex v in G. We use Vi to denote the set of all
i-vertices in G. For x, y ∈ V (G), NG(x, y) = NG(x) ∪NG(y) and in general, for
any set S ⊆ V (G), let NG(S) =

⋃

v∈S NG(v). A k-cycle is a cycle of length k. For
a k-cycle C in G, an edge xy ∈ E(G)\E(C) is called a chord of C if x, y ∈ V (C).
If there is no confusion in the context, sometimes we write V (G), E(G), δ(G)
and ∆(G) simply as V , E, δ and ∆.

A proper k-edge coloring of a graph G is an assignment of k colors to the
edges of G so that no two adjacent edges have the same color. The smallest
number of colors needed in a proper edge coloring of G is the chromatic index,
denoted by χ′(G). G is called k-edge colorable or edge colorable with k colors if
G has a proper k-edge coloring. Edge colorings have some real-life applications
in optimization and network design, such as file transfer in a computer network.
In this model, we construct a graph H in which a vertex represents a computer,
and an edge uv in H represents a file which one wishes to transfer between u and
v. Each computer has only one available communication ports. Edges with the
same color represent files that can be transferred in the network simultaneously.
Thus a proper edge coloring of H using χ′(H) colors corresponds to a scheduling
of file transfers with the minimum completion time.

The well-known Vizing’s theorem tells us that χ′(G) equals ∆(G) or ∆(G)+1.
This theorem divides all graphs into two classes: Class 1 graphs have χ′(G) =
∆(G); Class 2 graphs have χ′(G) = ∆(G) + 1. A graph G is ∆-critical if G is a
graph with maximum degree ∆ and G is of Class 2, but G − e is of Class 1 for
every edge e ∈ E(G). It is clear that every critical graph is 2-connected. The
exposition of critical graphs can be seen in [5]. Erdős and Wilson [3] proved that
almost all graphs are of Class 1, that is, if pn is the probability that a random
graph of order n is of Class 1, then pn → 1 as n → ∞.

So far there have been many results about classification of planar graphs in
terms of proper edge colorings. For planar graphs, Vizing [9] presented examples
of planar graphs of Class 2 with maximum degree ∆ for each ∆ ∈ {2, 3, 4, 5}, and
proved that every planar graph with maximum degree at least 8 is of Class 1. At
the same time, he posed the following conjecture.

Conjecture 1 [9]. Every planar graph with maximum degree 6 or 7 is of Class 1.

Conjecture 1 is known as Vizing’s Planar Graph Conjecture. It was confirmed
for ∆ = 7 by Sanders and Zhao [8] and Zhang [13], independently. Conjecture
1 remains open for ∆ = 6. However, the case ∆ = 6 has been proved for
some restricted families. Bu and Wang [2] proved that every planar graph with
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maximum degree at least 6 is of Class 1 if it has no chordal 5-cycles and chordal
6-cycles. Ni [6] extended the above result by removing one of the conditions
that every planar graph has no chordal 6-cycles. Later Xue and Wu obtained
a further extension in which they proved that a planar graph with maximum
degree at least 6 is of Class 1 if any 6-cycle contains at most one chord [11] or
any 5-cycle contains at most one chord [12].

In this paper, we consider the proper edge coloring of 1-planar graphs. A
graph is 1-planar if it can be drawn on the plane so that each edge is crossed by
at most one other edge. This notion of 1-planar graphs was introduced by Ringel
[7] while trying to simultaneously color the vertices and faces of a planar graph
such that any pair of adjacent or incident elements receive different colors. The
first result concerning proper edge colorings of 1-planar graphs is due to Zhang
and Wu [15] who proved that every 1-planar graph with maximum degree at least
10 is of Class 1. Recently, Zhang [14] constructed 1-planar graphs of Class 2 with
maximum degree 6 or 7. Later, in [16] Zhang and Liu proved that every 1-planar
graph with maximum degree at least 8 is of Class 1 if G does not contain adjacent
triangles and proposed the following conjecture.

Conjecture 2 [16]. Every 1-planar graph with maximum degree at least 8 is of

Class 1.

Recently, Zhang and Liu [17] proved that if G is a 1-planar graph with ∆ ≥ 9
and has no chordal 5-cycles, then G is of Class 1. In this paper, we will improve
the result by proving that if G is a 1-planar graph with ∆ ≥ 8 and has no 5-cycles
with two chords, then G is of Class 1.

2. Main Results and Their Proofs

First, we introduce some useful lemmas on ∆-critical graphs.

Lemma 3 [10]. Let G be a ∆-critical graph and let v, w be adjacent vertices of

G with dG(v) = k.

(1) If k < ∆, then w is adjacent to at least (∆− k + 1) ∆-vertices.

(2) If k = ∆, then w is adjacent to at least two ∆-vertices.

The lemma is referred to as Vizing’s Adjacency Lemma (VAL for short). By
VAL, it is easy to get the following corollary.

Corollary 4. Let G be a ∆-critical graph. Then

(1) every vertex is adjacent to at most one 2-vertex and at least two ∆-vertices,

(2) the sum of the degree of any two adjacent vertices is at least ∆+ 2, and
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(3) if uv ∈ E(G) with d(u) + d(v) = ∆+ 2, then all vertices in NG(u, v) \ {u, v}
are ∆-vertices.

Lemma 5 [8, 13]. Let G be a ∆-critical graph and let xy be an edge in G
with dG(x) + dG(y) = ∆ + 2. If max{dG(x), dG(y)} < ∆, then every vertex

of NG(NG(x, y))\{x, y} is a ∆-vertex.

Lemma 6 [4]. Let G be a ∆-critical graph with ∆ ≥ 6 and let x be a 4-vertex.
Then the following holds.

(1) If x is adjacent to a (∆− 2)-vertex, say y, then every vertex of NG(NG(x))\
{x, y} is a ∆-vertex.

(2) If x is not adjacent to any (∆− 2)-vertex and if one of the neighbors y of x
is adjacent to dG(y)− (∆− 3) (∆− 2)−-vertices, then each of the other three

neighbors of x is adjacent to only one (∆− 2)−-vertex, which is x.

(3) If x is adjacent to a (∆ − 1)-vertex, then there are at least two ∆-vertices

in NG(x) which are adjacent to at most two (∆ − 2)−-vertices. Moreover,

if x is adjacent to two (∆− 1)-vertices, then each of the two ∆-neighbors is

adjacent to exactly one (∆− 2)−-vertex, which is x.

In the following, we always assume that all planar graphs have been embedded
on the plane such that edges meet only at points corresponding to their common
ends, and all 1-planar graphs have been embedded on the plane such that every
edge is crossed by at most one other edge and the number of crossings is as
small as possible. Let G be a planar graph and F (G) be the face set of G. A
face f ∈ F (G) is said to be incident with all edges and vertices in its boundary
and f is usually denoted by f = [u1u2 · · ·un] if u1, u2, . . . , un are the boundary
vertices of f in a cyclic order. For convenience, f = [u1u2 · · ·un] is called an
(a1, a2, . . . , an)-face if the degree of the vertex ui is ai for i = 1, 2, . . . , n. The
degree of f , denoted by dG(f), is the number of edges incident with f where each
cut edge is counted twice. A k-, k−-, k+-face is a face of degree k, at most k and
at least k, respectively.

Let G be a 1-planar graph. The associated plane graph G× of G is the graph
obtained from G by turning all crossings of G into new 4-vertices. A vertex in
G× is called false if it is not a vertex of G and true otherwise. Note that every
3-face in G× is incident with at most one false vertex, so we call a 3-face in G×

false or true according to whether it is incident with a false vertex or not. In
[15], Zhang and Wu showed some basic properties between a 1-planar graph and
its associated plane graph.

Lemma 7 [15]. Let G be a 1-planar graph and let G× be its associated plane

graph. Then the following results hold.

(1) In G×, any two false vertices are not adjacent.
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(2) If there is a 3-face [uvw] in G× such that dG(v) = 2, then u and w are both

true vertices.

(3) If a 3-vertex u in G is adjacent to a false vertex v in G×, then uv is not

incident with two 3-faces.

(4) If a 3-vertex v in G is incident with two 3-faces and adjacent to two false

vertices in G×, then v must also be incident with a 5+-face.

(5) For any 4-vertex u in G, u is incident with at most three false 3-faces.

Now we pay our attention to 1-planar graphs satisfying that each 5-cycle
contains at most one chord and prove the following lemma.

Lemma 8. Let G be a 1-planar graph in which each 5-cycle has at most one

chord and let G× be its associated plane graph. Then every 7+-vertex v ∈ V (G)
is incident with at most

⌊

6
7dG(v)

⌋

3-faces in G×.

Proof. It suffices to prove that there are no seven consecutive 3-faces incident
with v in G×. Suppose to the contrary that there are consecutive seven 3-faces
fi = [vvivi+1] in G×, i = 1, 2, . . . , 7 and v1 = v8 if dG(v) = 7. If f3 is a true 3-face,
then f2 is a true 3-face or v, v1, v3 form a 3-cycle of G. At the same time, f4 is
a true 3-face or v, v4, v6 form a 3-cycle. Now a 5-cycle with two chords appears.
So f3 is a false 3-face. Without loss of generality, assume that v3 is false and v4
is true. Then v, v2, v4 form at least one 3-cycle in G, that is, f4 is a true 3-face
or v, v4, v6 form a 3-cycle of G. If f4 is a true 3-face, then f5, f6 can construct at
least one 3-cycle in G, which implies that there is a 5-cycle with two chords, a
contradiction. If v, v4, v6 form a 3-cycle of G, then f6, f7 form at least one 3-cycle
in G, which implies that there is a 5-cycle with two chords, a contradiction.

Theorem 9. Let G be a 1-planar graph. If ∆(G) ≥ 8 and every 5-cycle in G
contains at most one chord, then χ′(G) = ∆(G).

Proof. Since it is proved in [15] that every 1-planar graph with maximum degree
at least 10 has chromatic index ∆, we assume that 8 ≤ ∆(G) = ∆ ≤ 9 in the
following proof. Suppose that G is a counterexample to the theorem with the
smallest number of edges. Then G is a ∆-critical 1-planar graph. By VAL,
δ(G) ≥ 2. Let G× be the associated plane graph of G. By Euler’s formula
|V (G×)| − |E(G×)|+ |F (G×)| = 2 and

∑

v∈V (G×) dG×(v) =
∑

f∈F (G×) dG×(f) =

2|E(G×)|, we can easily deduce that

∑

v∈V (G×)

(dG×(v)− 4) +
∑

f∈F (G×)

(dG×(f)− 4) = −8 < 0.(1)

Now we assign an initial charge c on V (G×) ∪ F (G×) by letting c(v) =
dG(v) − 4 for every vertex v ∈ V (G×) and c(f) = dG×(f) − 4 for every face
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f ∈ F (G×). So
∑

x∈V (G×)∪F (G×) c(x) < 0. In the following, we will devise a set of

discharging rules for redistributing charges among the elements of V (G×)∪F (G×)
so that the final charge on each vertex and each face becomes nonnegative while
the total charge is preserved. Finally, there is a contradiction to (1), completing
our proof.

We use τ(x1 → x2) to denote the charge move from x1 to x2. For any vertex
v ∈ V (G), we denote by fk(v) the number of k-faces in G× incident with v. In
the following, we should state that nk(v) (respectively, n≤k(v), n≥k(v))denotes
the number of k-neighbors (respectively, k−-neighbors, k+-neighbors) of a vertex
v in G rather than in G×. The discharging rules are given as follows.

R1. Let f be a 3-face in G×. If f is false, then f receives 1
2 from each of its

incident true vertices. Otherwise, let f = [x, y, z] such that dG(x) ≤ dG(y) ≤
dG(z). If dG(x) ≥ 5, then τ(x → f) = τ(y → f) = τ(z → f) = 1

3 . Otherwise,
τ(y → f) = τ(z → f) = 1

2 .

R2. Every 2-vertex in G receives 1 from each of its neighbors in G.

R3. Every 3-vertex in G receives 1
2 from each of neighbors in G.

R4. Every 5+-face in G× sends 1
2 to each of its incident 3-vertices.

R5. Let v be a 4-vertex in G and uv ∈ E(G). Then

R5.1. Suppose n∆−2(v) = 1. Then τ(u → v) = 1
2 if dG(u) = ∆.

R5.2. Suppose n∆−1(v) = 2. Then τ(u → v) =

{

2
3 , dG(u) = ∆;
1
12 , dG(u) = ∆− 1.

R5.3. Suppose that n∆−2(v) = 0 and n∆−1(v) = 1. If some ∆-neighbor y of v is
adjacent to three (∆− 2)−-vertices, then

τ(u → v) =

{

1
3 , u = y;
2
3 , u ∈ V∆ \ {y}.

Otherwise, τ(u → v) =

{

5
12 , dG(u) = ∆;
1
4 , dG(u) = ∆− 1.

R5.4. Suppose n∆(v) = 4. If some ∆-neighbor y of v is adjacent to three
(∆− 2)−-vertices, then τ(u → v) = 2

3 if u ∈ V∆ \ {y}. Otherwise, τ(u → v) = 5
12 .

R6. Suppose dG(v) = 5 and uv ∈ E(G). Then

R6.1. τ(u → v) = 2
9 if f3(v) ≤ 4, dG(u) = 7;

R6.2. τ(u → v) = 1
3 if f3(v) = 5, dG(u) = 7 and f3(u) ≤ 5;

R6.3. τ(u → v) = 3
20 if f3(v) = 4, dG(u) = 6;

R6.4. τ(u → v) = 1
3 if f3(v) = 5, dG(u) = 6 and f3(u) ≤ 4;

R6.5. If 8 ≤ dG(u) ≤ ∆, then

R6.5.1. τ(u → v) = 1
3 if f3(v) = 5, δG(v) = ∆− 3;

R6.5.2. τ(u → v) = 7
24 if f3(v) = 5, δG(v) ≥ 8 and the edge uv is incident with

a (5, 8+, 8+)-face;
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R6.5.3. τ(u → v) = 1
4 otherwise.

R7. Suppose dG(v) = 6 and uv ∈ E(G). Then

R7.1. τ(u → v) = 1
5 if 8 ≤ dG(u) ≤ ∆;

R7.2. τ(u → v) = 1
10 if f3(v) ≤ 5 and dG(u) = 7;

R7.3. τ(u → v) = 1
6 if f3(v) = 6, dG(u) = 7 and f3(u) ≤ 5;

R7.4. τ(u → v) = 1
6 if f3(v) = 6, dG(u) = 6 and f3(u) ≤ 4;

R7.5. τ(u → v) = 1
8 if f3(v) = 6, dG(u) = 5 and f3(u) ≤ 3.

R8. Suppose dG(v) = 7 and uv ∈ E(G). Then τ(u → v) = 1
6 if 8 ≤ dG(u) ≤ ∆.

Let f ∈ F (G×). Suppose that f is a 5+-face. Then the number of 3-vertices

incident with f is at most
⌊

d
G× (f)
2

⌋

by VAL, and it follows that c′(f) ≥ (dG×(f)−

4)−
⌊

d
G× (f)
2

⌋

× 1
2 ≥ 0 by R4. Suppose that f is a 4-face. Then c′(f) = c(f) = 0.

Suppose that f is a 3-face in G×. If f is a false 3-face, then f is incident with two
true vertices by (1) of Lemma 7, and it follows that c′(f) ≥ (3−4)+2× 1

2 = 0 by
R1. Otherwise, c′(v) ≥ (3− 4) + min

{

2× 1
2 , 3×

1
3

}

= 0 by R1. Hence c′(f) ≥ 0
for every face f ∈ F (G×).

Let v ∈ V (G×). Note that if dG×(v) ≤ 3 or dG×(v) ≥ 5, then the vertex
v is true and it is easy to check that dG×(v) = dG(v). Hence, in the following,
except for 4-vertices in G×, we will not distinguish between true and false vertices.
Suppose that dG×(v) = 2. Then v is incident with no false 3-faces in G× by (2)
of Lemma 7, and it follows that c′(v) = (2− 4) + 2× 1 = 0 by R2. Suppose that
dG×(v) = 3. If v is incident with two false 3-faces in G×, then v is incident with
a 5+-face by (4) of Lemma 7, and we have c′(v) ≥ (3− 4)− 2× 1

2 +
1
2 +3× 1

2 = 0
by R1, R3 and R4. Otherwise, c′(v) ≥ (3 − 4) − 1

2 + 3 × 1
2 = 0. Suppose that v

is a 4-vertex in G×. If v is a false vertex, then c′(v) = 4− 4 = 0. Otherwise, v is
incident with at most three false 3-faces by (5) of Lemma 7, and by R5 v receives
at least 3

2 from its neighbors in G, so c′(v) ≥ (4− 4)− 3× 1
2 + 3× 1

2 = 0.

Now assume that dG×(v) = k ≥ 5. Let v1, v2, . . . , vk be its neighbors in G×

in a clockwise order. We denote by fi the face incident with vvi and vvi+1 in G×,
i = 1, . . . , k, where the addition on subscripts are taken modulo k.

Suppose that dG×(v) = 5. Let v be a 5-vertex in G with f3(v) ≤ 3. By VAL,
v is adjacent to at least two 8-vertices in G. If v is adjacent to no 6-vertex incident
with six 3-faces in G×, by R1 and R6.5.3, c′(v) ≥ (5 − 4) − 3 × 1

2 + 2 × 1
4 = 0.

Otherwise, by VAL, v is adjacent to at most two 6-vertices and at least three
∆-vertices in G, since ∆ ≥ 8. So by R1, R6.5.3 and R7.5, c′(v) ≥ (5 − 4) −
3 × 1

2 + 3 × 1
4 − 2 × 1

8 = 0. Let v be a 5-vertex in G with f3(v) = 4. If
δG(v) = 5, by VAL, R1 and R6.5.3, c′(v) ≥ (5 − 4) − 4 × 1

2 + 4 × 1
4 = 0. If

δG(v) ≥ 6, then by VAL, R1, R6.1, R6.3 and R6.5.3, c′(v) ≥ (5 − 4) − 4 × 1
2 +

min
{

3× 1
4 + 2× 3

20 , 2×
1
4 + 3× 2

9 , 5×
1
4

}

= 1
20 > 0. Let v be a 5-vertex in G
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with f3(v) = 5. Since f3(v) = 5, v is incident with at least one true 3-faces, and
by VAL, the degree of every vertex incident with such true 3-faces is at least 5.
So v sends at most 7

3 to its incident faces by R1. Suppose that v1, v3, v5 are
true vertices, v2, v4 are false vertices. Let v′i (i = 2, 4) be a vertex such that
vv′i is an edge in G that goes through the false vertex vi in G×. We will show
that f3(u) ≤ dG(u) − 2 for each neighbor u of v in G. Firstly, v1v

′
2 /∈ E(G),

for otherwise there is a 5-cycle vv′2v1v5v3 with three chords vv1, vv5 and v1v3 in
G. Similarly, v3v

′
2 /∈ E(G), v3v

′
4 /∈ E(G) and v5v

′
4 /∈ E(G). Hence, we get that

f3(v
′
2) ≤ dG(v

′
2) − 2, f3(v3) ≤ dG(v3) − 2, f3(v

′
4) ≤ dG(v

′
4) − 2. Next, let x, y

be two neighbors of v1 in G× such that x, y, v5, v, v2 are consecutive neighbors
in an anticlockwise order of v1 in G×. Since v5 is a true vertex, the case that
xy ∈ E(G×) and yv5 ∈ E(G×) will result in at least one 3-cycle containing the
edge vv5, which will lead to a 5-cycle with at least two chords in G, a contradiction
to the assumption of the theorem. So we can get that f3(v1) ≤ dG(v1) − 2.
Similarly, then we can have f3(v5) ≤ dG(v5)− 2. If δG(v) = 5, then by VAL, R1
and R6.5.1, c′(v) ≥ (5− 4)− 7

3 +4× 1
3 = 0. If δG(v) = 6, then v is adjacent to at

least three ∆-vertices in G by VAL. Hence, by VAL, R1, R6.2, R6.4 and R6.5.3,
c′(v) ≥ (5−4)− 7

3 +3× 1
4 +min

{

2× 1
3 , 2×

1
3 ,

1
3 + 1

4

}

= 0. If δG(v) = 7, then v is
adjacent to at least two ∆-vertices in G by VAL. Hence, by VAL, R1, R6.2 and
R6.5, c′(v) ≥ (5− 4)− 7

3 +4× 1
4 +

1
3 = 0. If δG(v) ≥ 8, then v is incident with at

least one true 3-face in G×, and there are at least two 8+-neighbors incident with
such 3-faces. So by R1, R6.5.2 and R6.5.3, c′(v) ≥ (5−4)− 7

3 +3× 1
4 +2× 7

24 = 0.

Suppose that dG×(v) = 6. By VAL, δG(v) ≥ 4 and v is adjacent to at least 9−
δG(v) ∆-vertices in G, since ∆ ≥ 8. Suppose that f3(v) ≤ 4. By VAL, R1, R6.3,
R6.4, R7.1, R7.2 and R7.4, c′(v) ≥ (6− 4)− 4× 1

2 +min
{

5× 1
5 , 4×

1
5 − 2× 1

3 ,
3× 1

5 − 3× 1
6 , 4×

1
10 + 2× 1

5 , 6×
1
5

}

= 1
10 > 0. If f3(v) = 5, then by VAL, R1,

R6.3, R7.1 and R7.2, c′(v) ≥ (6− 4)− 5× 1
2 +min

{

5× 1
5 , 4×

1
5 − 2× 3

20 , 3×
1
5 ,

2× 1
5+ 4× 1

10

}

= 0. Let v be a 6-vertex in G with f3(v) = 6. Suppose that
v1, v3, v5 are false vertices and v2, v4, v6 are true vertices. Let v′i (i = 1, 3, 5) be a
vertex such that vv′i is an edge in G that goes through the false vertex vi in G×.
If δG(v) = 4, then by VAL, R1 and R7.1, c′(v) ≥ (6− 4)− 6× 1

2 + 5× 1
5 = 0. If

δG(v) ≥ 5, then we shall show that f3(v
′
i) ≤ dG(v

′
i) − 2, i = 1, 3, 5 and f3(vj) ≤

dG(vj)−2, j = 2, 4, 6. We claim that v′1v2 /∈ E(G), for otherwise there is a 5-cycle
vv′1v2v4v6 with three chords vv2, vv4 and v2v6 in G. Similarly, we can get that
v′1v6 /∈ E(G). So f3(v

′
1) ≤ dG(v

′
1) − 2. By the same argument, the above results

hold. Hence, as for every 5-neighbor r, 6-neighbor s and 7-neighbor t of v in G,
we have f3(r) ≤ 3, f3(s) ≤ 4 and f3(t) ≤ 5. Therefore, by VAL, R1 and R7,
c′(v) ≥ (6−4)−6× 1

2 +min
{

2× 1
8 ,

1
8 + 1

6 ,
1
8 + 1

6

}

+4× 1
5 = 1

20 > 0 for δG(v) = 5;
c′(v) ≥ (6 − 4) − 6 × 1

2 +min
{

3× 1
5 + 3× 1

6 , 2×
1
5 + 4× 1

6 , 6×
1
5

}

= 1
15 > 0 for

δG(v) ≥ 6.

Suppose that dG×(v) = 7. By Lemma 8, v is incident with at most six 3-faces
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in G×. If f3(v) ≤ 5, then by VAL, R1, R3, R5, R6.2, R7.3 and R8, we have c′(v) ≥
(7− 4)− 5× 1

2 +min
{

−1
2 + 6× 1

6 , 2× (−1
4) + 5× 1

6 ,−
1
4 − 1

3 + 5× 1
6 , 3× (−1

3)+
4× 1

6 , 4× (−1
6) + 3× 1

6 , 2×
1
6 , 7×

1
6

}

= 1
6 . If f3(v) = 6, then by VAL, R1, R3,

R5, R6.1, R7.2 and R8, c′(v) ≥ (7− 4)− 6× 1
2 +min

{

6× 1
6 − 1

2 , 5×
1
6 − 2× 1

4 ,
4× 1

6 − 3× 2
9 , 3×

1
6 − 4× 1

10 , 2×
1
6

}

= 0.

Now we consider two cases.

Case 1. ∆ = 8. Suppose that v is an 8-vertex. By Lemma 8, v is incident
with at most six 3-faces in G×. Assume that δG(v) ≥ 5. If v is adjacent to a
5-vertex w with n5(w) = 1, then by Lemma 5, v has at least six 8-neighbors. So
by R1 and R6.5.1, c′(v) ≥ (8 − 4) − 6 × 1

2 − 2 × 1
3 = 1

3 > 0. If v is adjacent
to at least one 5-vertex which has the special case in R6.5.2, then n5(v) ≤ 4
by VAL, and it follows that c′(v) ≥ (8 − 4) − 5 × 1

2 − 1
3 − 4 × 7

24 = 0 by R1
and R6.5.2. If δG(v) 6∈ {3, 4} and the above cases are excluded, then c′(v) ≥ (8−
4)−6× 1

2−max
{

1, 4× 1
4 , 5×

1
5 , 6×

1
6

}

= 0 by VAL, R1, R2, R6.5.3, R7.1 and R8.
Let δG(v) = 3. By VAL, v is adjacent to at least six 8-vertices in G. If

n3(v) = 2, then by VAL, R1 and R3, c′(v) ≥ (8 − 4) − 6 × 1
2 − 2 × 1

2 = 0. If
n3(v) = n4(v) = 1 and let u be the 4-neighbor of v in G, by Lemma 6, only when
every 8-neighbor of u is adjacent to at most two (∆− 2)−-vertices in G, v sends
out at most 5

12 to u by R5.3 and R5.4. So c′(v) ≥ (8 − 4) − 6 × 1
2 − 1

2 − 5
12 =

1
12 > 0. If n3(v) = 1 and n5+(v) = 7, then by VAL, R1, R6.5, R7.1 and R8,
c′(v) ≥ (8− 4)− 6× 1

2 −
1
2 −max

{

7
24 ,

1
5 ,

1
6

}

= 5
24 > 0. Let δG(v) = 4. By VAL, v

is adjacent to at least five 8-vertices in G. Assume that u is a 4-neighbor of v in
G. If v sends some charge to u by R5.1, then by (1) of Lemma 6, VAL, R1 and
R7, c′(v) ≥ (8−4)−6× 1

2 −
1
2 −

1
5 = 3

10 > 0. If v sends some charge to u by R5.2,
then by (3) of Lemma 6, R1 and R8, c′(v) ≥ (8− 4)− 6× 1

2 −
2
3 − 2× 1

6 = 0. If v
sends some charge to u by R5.3, then we will consider three cases. The first case
is that v is adjacent to three (∆ − 2)−-vertices in G. Then v will send at most
3× 1

3 to its (∆−2)−-neighbors in G. So we have c′(v) ≥ (8−4)−6× 1
2−3× 1

3 = 0
by R1 and R5-R7. The second case is that there is another 8-neighbor of u, not
v, which is adjacent to three (∆ − 2)−-vertices in G. Then by (2) of Lemma 6,
R1 and R8, we shall have c′(v) ≥ (8 − 4) − 6 × 1

2 − 2
3 − 2 × 1

6 = 0. The third
case is that every 8-neighbor of u is adjacent to at most two (∆ − 2)−-vertices
in G, then v will send 5

12 to u. Suppose that v is also adjacent to another 4-
vertex w in G. Then by R5.3 and R5.4, v can send at most 5

12 to w only when
every 8-neighbor of w is adjacent to at most two (∆ − 2)−-vertices in G. This
implies that c′(v) ≥ (8 − 4) − 6 × 1

2 − max
{

2× 5
12 + 1

6 ,
5
12 + 7

24 + 1
6

}

= 0 by
Lemma 5, VAL, R1, R5.3, R5.4, R6.5 and R8. If v sends some charge to u by
R5.4, then we divide this problem into cases similar to the above. If some 8-
neighbor of u is adjacent to three (∆− 2)−-vertices in G, the argument of which
is the same to those of the first and second cases above, so we have c′(v) ≥
(8− 4)− 6× 1

2 −max
{

2× 7
24 ,

2
3 + 2× 1

6

}

= 0 by VAL, Lemma 5, Lemma 6, R1,
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R5.4, R6.5 and R8. Otherwise, c′(v) ≥ (8− 4)− 6× 1
2 − 2× 5

12 −
1
6 = 0 by VAL,

R1, R5.3, R5.4, R6.5 and R8.

Case 2. ∆ = 9. Suppose that v is a 8-vertex. By Lemma 8, v is incident
with at most six 3-faces in G×. If v is incident with at least one 5-vertex which
has the special case in R6.5.2, then n5(v) ≤ 3 by VAL, and it follows that c′(v) ≥
(8−4)−6× 1

2 −3× 7
24 = 1

8 by R1 and R6.5.2. If the above case is excluded, then
c′(v) ≥ (8− 4)− 6× 1

2 −max
{

1
2 , 2×

1
4 , 3×

1
4 , 4×

1
5 , 5×

1
6

}

= 1
6 by VAL, R1, R2,

R6.5.3, R7.1 and R8.

Suppose that v is a 9-vertex. By Lemma 8, v is incident with at most
seven 3-faces in G×. Assume that δG(v) ≥ 5. If v is adjacent to a 5-vertex w
with n5(w) = 1 in G, then by Lemma 5, v has at least seven 9-neighbors in
G. So by R1 and R6.5.1, c′(v) ≥ (9 − 4) − 7 × 1

2 − 2 × 1
3 = 5

6 > 0. If v is
incident with at least one 5-vertex which has the special case in R6.5.2, then
n5(v) ≤ 4 by VAL, and it follows that c′(v) ≥ (9 − 4) − 6 × 1

2 − 1
3 − 4 × 7

24 = 1
2

by R1 and R6.5.2. If δG(v) 6∈ {3, 4} and the above cases are excluded, then
c′(v) ≥ (9−4)−7× 1

2 −max
{

1, 4× 1
4 , 5×

1
5 , 6×

1
6

}

= 1
2 by VAL, R1, R2, R6.5.3,

R7.1 and R8.

Let δG(v) = 3. If n3(v) = 2, then by VAL, R1 and R3, c′(v) ≥ (9 − 4) −
7 × 1

2 − 2 × 1
2 = 1

2 . If v has a 4-neighbor u in G, by Lemma 6, only when every
9-neighbor of u is adjacent to at most two (∆− 2)−-vertices in G, v sends out at
most 5

12 to u by R5.3 and R5.4. So by R1, R3, R5.3, R5.4, R6.5, R7.1 and R8,
if n3(v) = 1, then c′(v) ≥ (9− 4)− 7× 1

2 − 1
2 − 5

12 = 7
12 > 0. Let δG(v) = 4. By

VAL, v is adjacent to at least six 9-vertices in G. Assume that u is a 4-neighbor
of v in G. If v sends some charge to u by R5.1, then by (1) of Lemma 6, VAL, R1
and R8, c′(v) ≥ (9− 4)− 7× 1

2 −
1
2 −

1
6 = 5

6 > 0. If v sends some charge to u by
R5.2, then by (3) of Lemma 6 and R1, c′(v) ≥ (9− 4)− 7× 1

2 −
2
3 = 5

6 . If v sends
some charge to u by R5.3, then we will consider three cases. The first case is that
v is adjacent to three (∆ − 2)−-vertices in G. Then v will send at most 3 × 1

3
to its (∆ − 2)−-neighbors in G. So we have c′(v) ≥ (9 − 4) − 7 × 1

2 − 3 × 1
3 = 1

2
by R1 and R5-R7. The second case is that there is another 9-neighbor of u, not
v, which is adjacent to three (∆ − 2)−-vertices in G. Then by (2) of Lemma 6,
R1 and R8, we shall have c′(v) ≥ (9 − 4) − 7 × 1

2 − 2
3 = 5

6 . The third case is
that every 9-neighbor of u is adjacent to at most two (∆ − 2)−-vertices in G,
then v will send 5

12 to u. Suppose that v is also adjacent to another 4-vertex
w in G. Then by R5.3 and R5.4, v can send at most 5

12 to w only when every
9-neighbor of w is adjacent to at most two (∆− 2)−-vertices in G. This implies
that c′(v) ≥ (9− 4)− 7× 1

2 −max
{

2× 5
12 ,

5
12 + 7

24

}

= 2
3 by VAL, R1, R5.3, R5.4

and R6.5. If v sends some charge to u by R5.4, then we divide this problem into
cases similarly. If some 9-neighbor of u is adjacent to three (∆− 2)−-vertices in
G, then c′(v) ≥ (9 − 4) − 7 × 1

2 − max
{

2× 7
24 ,

2
3

}

= 5
6 by VAL, R1, R5.4 and

R6.5. Otherwise, c′(v) ≥ (9 − 4) − 7 × 1
2 − 2 × 5

12 = 2
3 by VAL, R1, R5.3, R5.4
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and R6.5.
Now, we have checked that c′(x) ≥ 0 for all x ∈ V (G×)∪ F (G×). Therefore,

the proof of this theorem is completed.
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