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Abstract

For a graph G = (V,E), a double Roman dominating function (or just
DRDF) is a function f : V −→ {0, 1, 2, 3} having the property that if f(v) =
0 for a vertex v, then v has at least two neighbors assigned 2 under f or
one neighbor assigned 3 under f , and if f(v) = 1, then vertex v must have
at least one neighbor w with f(w) ≥ 2. The weight of a DRDF f is the
sum f(V ) =

∑

v∈V
f(v), and the minimum weight of a DRDF on G is

the double Roman domination number of G, denoted by γdR(G). In this
paper, we derive sharp upper and lower bounds on γdR(G) + γdR(G) and
also γdR(G)γdR(G), where G is the complement of graph G. We also show
that the decision problem for the double Roman domination number is NP-
complete even when restricted to bipartite graphs and chordal graphs.
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1. Introduction

For notation and terminology not given here the reader is referred to [8]. Let
G = (V,E) be a graph of order n = |V |. The open neighborhood of a vertex v ∈ V
is the set N(v) = {u|uv ∈ E}, and its closed neighborhood is N [v] = N(v) ∪ {v}.
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The degree of a vertex v is deg(v) = |N(v)|. The maximum and minimum degree
among the vertices of G are denoted by ∆(G) and δ(G), respectively. A vertex
of degree one is referred as a leaf and its unique neighbor as a support vertex.
We refer a vertex of degree n− 1 as a dominating vertex, and a vertex of degree
0 as an isolated vertex. An isolated edge is an edge whose end-vertices are leaves.
The open neighborhood of a set S ⊆ V is N(S) =

⋃

v∈S N(v), and the closed
neighborhood of S is N [S] = N(S) ∪ S =

⋃

v∈S N [v]. We denote by G[S] the
subgraph of G induced by S. A set S ⊆ V in a graph G is called a dominating

set if N [S] = V . The domination number γ(G) of G is the minimum cardinality
of a dominating set in G, and a dominating set of G of cardinality γ(G) is called
a γ-set of G.

Let f : V −→ {0, 1, 2} be a function having the property that for every
vertex v ∈ V with f(v) = 0, there exists a neighbor u ∈ N(v) with f(u) = 2.
Such a function is called a Roman dominating function. The weight of a Roman
dominating function is the sum f(V ) =

∑

v∈V f(v). The minimum weight of a
Roman dominating function on G is called the Roman domination number of G
and is denoted γR(G). A Roman dominating function on G of weight γR(G) is
called a γR(G)-function (or a γR-function of G). The original study of Roman
domination was motivated by the defense strategies used to defend the Roman
Empire during the reign of Emperor Constantine the Great, 274–337 AD. He
decreed that for all cities in the Roman Empire, at most two legions should be
stationed. Further, if a location having no legions was attacked, then it must be
within the vicinity of at least one city at which two legions were stationed, so
that one of the two legions could be sent to defend the attacked city. This part
of the history of the Roman Empire gave rise to the mathematical concept of
Roman domination, as originally defined and discussed by Stewart [13] in 1999,
and ReVelle and Rosing [12] in 2000, and subsequently developed by Cockayne et
al. [7] in 2004. For references on Roman domination, see for example, [4, 5, 6, 9].

Beeler et al. [3] introduced the concept of double Roman domination in
graphs. A function f : V −→ {0, 1, 2, 3} is a double Roman dominating function

(or just DRDF) on a graph G if the following conditions hold, where Vi denotes
the set of vertices assigned i under f , for i = 0, 1, 2, 3: (1) If f(v) = 0, then v must
have at least two neighbors in V2 or one neighbor in V3; (2) If f(v) = 1, then v
must have at least one neighbor in V2 ∪V3. The weight of a DRDF f is the value
w(f) = f(V ) =

∑

v∈V f(v). The double Roman domination number, γdR(G), is
the minimum weight of a DRDF on G, and a DRDF of G with weight γdR(G) is
called a γdR-function of G. Beeler et al. [3] observed that in a DRDF of mini-
mum weight no vertex needs to be assigned the value 1. In fact for every DRDF
f : V −→ {0, 1, 2, 3}, there is a DRDF f ′ : V −→ {0, 2, 3} with w(f ′) ≤ w(f).
Thus, since γdR(G) is the minimum weight among all double Roman dominating
functions on G, without loss of generality, we only consider double Roman domi-
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nating functions with no vertex assigned 1. We use the notation f = (V0, V2, V3)
for a DRDF f : V −→ {0, 2, 3}.

For a graph parameter ρ, bounds on ρ(G) + ρ(G) and ρ(G)ρ(G) in terms of
the number of vertices are called results of “Nordhaus-Gaddum” type, honoring
the paper of Nordhaus and Gaddum [11]. Nordhaus-Gaddum type bounds for
several domination parameters are investigated, see for example [2]. Chambers
et al. [5] investigated Nordhaus-Gaddum type bounds for Roman domination.

In this paper we first present Nordhaus-Gaddum type bounds on the dou-
ble Roman domination number. We then show that the decision problem for
the double Roman domination number is NP-complete even when restricted to
bipartite graphs and chordal graphs.

Let H be the family of connected graphs G of order n that can be built from
n/4 copies of P4 by adding a connected subgraph on the set of centers of n

4P4.
We make use of the following.

Theorem 1 (Beeler, Haynes, Hedetniemi [3]). If G is a connected graph of order

n ≥ 3, then γdR(G) ≤ 5n
4 , with equality if and only if G ∈ H.

2. Nordhaus-Gaddum Inequalities

A good vertex in a graph G is a vertex that belongs to a minimum dominating
set of G. Let good(G) denote the set of all good vertices of G, and G− good(G)
denotes the subgraph of G induced by V (G) − good(G). Given a graph H, we
define an H-partition as follows. An H-partition is a partition of V (H) into k+1
nonempty sets A0, A1, . . . , Ak for some integer k < n such that the following hold:

(1) If k ≥ 2, then for i ≥ 1 the subgraph of H induced by V (H) − Ai has
domination number at least two, or a γ(H[V (H) − Ai])-set is contained in
A0.

(2) If 1 ≤ γ(H) ≤ 2, then the following hold:

(2–1) If γ(H) = 1, then good(H) ⊆ A0; and every γ(H−good(H))-set has at
most one common vertex with

⋃i=k
i=1 Ai whenever γ(H−good(H)) = 2.

(2–2) If γ(H) = 2, then
⋃i=k

i=1 Ai contains at most one vertex of a γ(H)-
set, for i = 1, 2, . . . , k; otherwise a γ(H)-set is contained in Ai for
i ∈ {1, . . . , k} and no γ(H)-set is contained in

⋂

u∈A0
N(u).

Note that for any graph H, A0 = V (H) is an H-partition, and thus we have
the following.

Observation 2. Every graph H has an H-partition.

Now we introduce a family of graphs as follows. Let G be the family of graphs
G that can be obtained from an arbitrary graph H as follows. Let A0, A1, . . . , Ak
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Figure 1. Structure of graphs in the family G.

be an H-partition of H. Then G is obtained from H by adding k+1 new vertices
v, v1, . . . , vk, joining v to all of the vertices of H, and joining vi to all of the
vertices of Ai for i = 1, 2, . . . , k. Figure 1 demonstrates the structure of graphs
in the family G.

Theorem 3. If G is graph of order n, then γdR(G) ≤ 2n − 2∆(G) + 1, with
equality if and only if G ∈ G.

Proof. Let G be a graph of order n and v be a vertex of maximum degree.
Then the function h = (N(v), V (G) − N [v], {v}) is a DRDF for G of weight
2n− 2∆(G) + 1, and thus γdR(G) ≤ 2n− 2∆(G) + 1.

We next prove the equality part. Assume that γdR(G) = 2n − 2∆ + 1. Let
v ∈ V (G) be a vertex of maximum degree. We form a partition P of N(v) as
follows: If V (G) − N [v] = ∅, then P : A0, where A0 = N(v), is the desired
partition. Thus assume that V (G)−N [v] 6= ∅. If N(v) ⊆ N(V (G)−N [v]), then
the function g = (N(v), V (G)−N(v), ∅) is a DRDF for G of weight less than 2n−
2∆(G)+1, a contradiction. Thus N(v)−N(V (G)−N [v]) 6= ∅. Let V (G)−N [v] =
{v1, v2, . . . , vk}. Let A0 = N(v)−N(V (G)−N [v]) and Ai = N(vi), for i = 1, ..k.
Clearly,

⋃i=k
i=0 Ai = N(v). To show that P : A0, A1, . . . , Ak is a partition of N(v),

we need to show that any pair Ai, Aj (i 6= j) are disjoint. We prove a stronger
result by showing that V (G)−N [v] is a 2-packing in G. Assume that there exist
two vertices vi, vj ∈ V (G)−N [v] such that N [vi]∩N [vj ] 6= ∅ and u ∈ N [vi]∩N [vj ].
Then the function g = ((N(v) ∪ {vi, vj}) − {u}, V (G) − (N [v] ∪ {vi, vj}), {v, u})
is a DRDF for G of weight less than 2n− 2∆(G)+1, a contradiction. We deduce
that V (G)−N [v] is a 2-packing. Thus P : A0, A1, . . . , Ak is the desired partition
of N(v).

Let H be the subgraph induced by N(v). We show that P is an H-partition.
To check the first condition for being an H-partition, assume that k ≥ 2 and
suppose there exists i ∈ {1, 2, . . . , k}, such that the subgraph of H induced by
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V (H)− Ai has domination number one. Let {x} be a minimum dominating set
for the subgraph of H induced by V (H) − Ai. If x ∈ Aj for j 6= 0, then the
function g = ((N [v] ∪ {vj}) − {x}, {v1, v2, . . . , vk} − {vi, vj}, {x, vi}) is a DRDF
for G of weight less than 2n − 2∆(G) + 1, a contradiction. Thus x ∈ A0 and
therefore the first condition for being an H-partition holds. Now we investigate
the second condition for being an H-partition. Thus assume that 1 ≤ γ(H) ≤ 2.

Assume that γ(H) = 1. If x ∈ good(H) and x ∈ Ai for some i 6= 0, then
deg(x) = ∆ + 1, a contradiction. Thus good(H) ⊆ A0. Assume that γ(H −
good(H)) = 2. Let {x, y} be a γ(H − good(H))-set. If {x, y} ⊆ Ai for some i ∈
{1, 2, . . . , k}, then the function g = ((N [v]−{x, y})∪{vi}, {x, y}∪V (G)−(N [v]∪
{vi}), ∅) is a DRDF for G of weight less than 2n − 2∆(G) + 1, a contradiction.
If x ∈ Ai and y ∈ Aj for i 6= j, then the function g = ((N [v] − {x, y}) ∪
{vi, vj}, V (G) − (N [v] ∪ {vi, vj}), {x, y}) is a DRDF for G of weight less than
2n− 2∆(G) + 1, a contradiction.

Next assume that γ(H) = 2. We show that
⋃i=k

i=1 Ai contains at most one
vertex of a γ(H)-set, for i = 1, 2, . . . , k, or γ(H) ⊆ Ai for i ∈ {1, . . . , k} and
γ(H) 6⊆

⋂

u∈A0
N(u). Assume that {x, y} ⊆ V (H) is an arbitrary γ(H)-set. If

{x, y} ⊆ Ai for some i = 1, 2, . . . , k and γ(H) ⊆
⋂

u∈A0
N(u), then the function

g = ((N [v] − {x, y}) ∪ {vi}, {x, y} ∪ V (G) − (N [v] ∪ {vi}), ∅) is a DRDF for
G of weight less than w(f), a contradiction. Thus assume that x ∈ Ai and
y ∈ Aj for some i 6= j. Then the function g = ((N [v]− {x, y}) ∪ {vi, vj}, V (G)−
(N [v] ∪ {vi, vj}), {x, y}) is a DRDF for G of weight less than 2n− 2∆(G) + 1, a
contradiction.

We conclude that P is an H-partition. If V (G) − N [v] = ∅, then clearly
G ∈ G. Thus assume that V (G)−N [v] 6= ∅. Since V (G)−N [v] is a 2-packing in
G, it is an independent set in G as well. Consequently, G ∈ G.

Conversely, let G ∈ G and v ∈ V (G) be a vertex with deg(v) = ∆(G).
If deg(v) = n − 1, then γdR(G) = 3 = 2n − 2∆(G) + 1. Thus assume that
deg(v) < n− 1. Let G be obtained from an arbitrary graph H with H-partition
A0, A1, . . . , Ak by adding new vertices v, v1, v2, . . . , vk as described in the con-
struction of the family G. We show that γdR(G) ≥ 2k+3. Let f = (V0, V2, V3) be
a γdR(G)-function. Clearly f(N [vi]) ≥ 2 for i = 1, 2, . . . , k, since f is a γdR(G)-
function. If f(v) = 3, then γdR(G) ≥ 2k + 3. Assume that f(v) = 2. If there
exists a vertex x ∈ A0 with f(x) ≥ 2, then w(f) > 2k + 3, since f(N [vi]) ≥ 2
for i = 1, 2, . . . , k. Thus assume that A0 ⊆ V0. Hence there exists a vertex u ∈
N(v)−A0 with f(u) ≥ 2, and we may assume that u ∈ N [v1]. Then f(N [v1]) ≥ 3
and f(N [vi]) ≥ 2 for i = 2, . . . , k and thus w(f) ≥ 5 + 2(k − 1) = 2k + 3.

Assume next that f(v) = 0. If A0∩V3 6= ∅ or |A0∩V2| ≥ 2, then w(f) ≥ 2k+3,
since f(N [vi]) ≥ 2 for i ≥ 1. Thus assume that A0 ∩ V3 = ∅ and |A0 ∩ V2| ≤ 1.
If |A0 ∩ V2| = 1, then there exists a vertex u ∈ N(v) − A0 with f(u) ≥ 2,
since f(N(v)) ≥ 3. We may assume u ∈ N [v1]. Then f(N [v1]) ≥ 3 and thus
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w(f) ≥ 5 + 2(k − 1) = 2k + 3, since f(N [vi]) ≥ 2 for i = 2, . . . , k. Thus assume
that |A0 ∩ V2| = 0 and so A0 ⊆ V0.

We show that V3 6= ∅. Suppose to the contrary, that V3 = ∅. Then v has
at least two neighbors in V2. Assume that |N(v) ∩ V2| ≥ 3. If vi ∈ V0, for
some i, where 1 ≤ i ≤ k, then |N(vi) ∩ V2| ≥ 2. Hence |{v1, v2, . . . , vk} ∩ V0| ≤
⌊|N(v) ∩ V2|/2⌋. Then w(f) = 2|N(v) ∩ V2| + 2(k − |{v1, v2, . . . , vk} ∩ V0|) ≥
2|N(v) ∩ V2| + 2(k − ⌊|N(v) ∩ V2|/2⌋) > 2k + 3, a contradiction. Thus assume
that vi 6∈ V0, for each i ∈ {1, . . . , k}. Then similarly we obtain a contradiction.
We deduce that |N(v) ∩ V2| = 2. Let N(v) ∩ V2 = {x, y}. Then {x, y} is
a dominating set for H and {x, y} ⊆

⋂

u∈A0
N(u). By the structure of G, if

γ(H) = 1, then good(H) ⊆ A0 and γ(H − good(H)) = 2. Hence {x, y} is a
γ(H−good(H))-set, a contradiction, since every γ(H−good(H))-set has at most
one common vertex with

⋃i=k
i=1 Ai whenever γ(H − good(H)) = 2. Thus we may

assume that γ(H) = 2. Since {x, y} ⊆
⋃i=k

i=1 Ai, there exists i ∈ {1, . . . , k} such
that {x, y} ⊆ Ai and {x, y} 6⊆

⋂

u∈A0
N(u), a contradiction. Hence V3 6= ∅.

We proceed according to the size of V3. Assume that |V3| = 1. Let V3 = {x}.
Assume first that x ∈ {v1, v2, . . . , vk}. Without loss of generality assume that
x = v1. Since f(v) = 0, there are at least two vertices a, b ∈ N(v), with weight 2.
If {a, b} ∩A1 6= ∅, then clearly w(f) ≥ 7+ 2(k− 1) > 2k+ 3. Hence assume that
{a, b}∩A1 = ∅. If {a, b} ⊆ Ai for some 2 ≤ i ≤ k, then for j /∈ {i, 1}, f(N [vj ]) ≥ 2
and so w(f) ≥ 7 + 2(k − 2) ≥ 2k + 3. Assume that a ∈ Ai and b ∈ Aj for i 6= j.
Then f(N [vi]) ≥ 4 and f(N [vj ]) ≥ 4. Since f(N [vr]) ≥ 2 for r 6∈ {1, i, j}, we
have w(f) ≥ 11 + 2(k − 3) > 2k + 3. Thus we may assume x 6∈ {v1, v2, . . . , vk}.
Since A0 ⊆ V0, we have x ∈ Aj , for some integer j, where 1 ≤ j ≤ k. Assume
that γ(H) ≥ 2. Then there exists a vertex w such that w 6∈ N(x). Hence
f(w) = 2 or w has at least two neighbors x, y in V2. By the structure of G,
|{x, y} ∩ {v1, v2, . . . , vk}| ≤ 1. Since A0 ⊆ V0, we have {x, y} ∩

⋃i=k
i=1 Ai 6= ∅.

Therefore there exists at least one vertex u ∈
⋃i=k

i=1 Ai such that f(u) = 2. If
γ(H) = 1, then x 6∈ good(H) and γ(H − good(H)) ≥ 2, and as before, there is a
vertex u ∈

⋃i=k
i=1 Ai such that f(u) = 2. Hence γdR(G) ≥ 2(k−1)+3+2 ≥ 2k+3.

Next assume that |V3| = 2. Let V3 = {x, y}. Assume that {x, y} ⊆ V (G)−N [v].
Then |N(v) ∩ V2| ≥ 2. Clearly |{v1, v2, . . . , vk} ∩ V0| ≤ |N(v) ∩ V2|/2. Thus
w(f) = 6 + 2|N(v) ∩ V2| + 2(k − 2 − |{v1, v2, . . . , vk} ∩ V0|) ≥ 6 + 2|N(v) ∩
V2| + 2(k − 2 − |N(v) ∩ V2|/2) = 2k + |N(v) ∩ V2| + 2 > 2k + 3. Now assume
that |{x, y} ∩ V (G) − N [v]| = 1. We may assume that x = v1. If k = 1, then
γdR(G) ≥ 6 > 2k + 3. Thus assume that k ≥ 2. By the structure of G, there is a
vertex u ∈

⋃i=k
i=2 Ai such that f(u) = 2. Therefore, γdR(G) ≥ 2(k−2)+8 > 2k+3.

Now we assume that |{x, y} ∩ V (G)−N [v]| = 0. If {x, y} ⊆ Aj for some integer
j ∈ {1, 2, . . . , k}, then w(f) ≥ 2(k−1)+6 > 2k+3. Thus assume that {x, y} 6⊆ Aj

for any integer j ∈ {1, 2, . . . , k}. Then there are integers r and s such that x ∈ Ar

and y ∈ As. By the construction of G, {x, y} is not a dominating set for H, and
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so there is a vertex u ∈ V (H) such that u is not dominated by {x, y}. If f(u) = 0
then f(N [u]) ≥ 4, and we obtain that γdR(G) ≥ 2(k − 2) + 6 + 4 > 2k + 3.
Thus assume that f(u) = 2. This time we obtain γdR(G) ≥ 2(k − 2) + 6 + 2 >
2k + 3. It remains to assume that |V3| ≥ 3. Let x, y, z ∈ V3. If {x, y, z} ⊆ N [vi]
for some i ∈ {1, 2, . . . , k} then replacing f(v) by 3, f(vi) by 2, and f(u) by
0 for u ∈ {x, y, z} − {vi} yields a DRDF for G of weight less than γdR(G), a
contradiction. Assume that there are two integers r and s such that x ∈ N [vr]
and {y, z} ⊆ N [vs]. Then replacing f(v) by 3, f(vr) and f(vs) by 2, and f(u) by
0 for u ∈ {x, y, z} − {vr, vs} yields a DRDF for G of weight less than γdR(G), a
contradiction. Thus, without loss of generality, assume that x ∈ N [v1], y ∈ N [v2]
and z ∈ N [v3]. Let g be defined on V (G) by g(v) = 3, g(u) = 2 if u ∈ {v1, v2, v3},
g(u) = 0 if u ∈ {x, y, z} and g(u) = f(u) if u ∈ V (G) − {v, v1, v2, v3, x, y, z}.
Then g is a γdR(G)-function with g(v) = 3, which has been considered formerly.
Hence γdR(G) ≥ 2k+3 = 2n− 2∆+1. Consequently, γdR(G) = 2n− 2∆+1.

We are now ready to state the first result on the Nordhaus-Gaddum type
inequalities of a graph.

Theorem 4. If G is a graph of order n ≥ 2, then 7 ≤ γdR(G)+γdR(G) ≤ 2n+3.
Equality holds for the lower bound if and only if G or G is K2, and equality holds

for the upper bound if and only if G or G is a complete graph.

Proof. Clearly γdR(G) ≥ 3, sinceG has n ≥ 2 vertices. Furthermore, γdR(G) = 3
if and only ifG has a dominating vertex. Since a graph and its complement cannot
both have dominating vertices, γdR(G) + γdR(G) ≥ 7. Assume that the equality
holds. Without loss of generality, assume that γdR(G) = 3 and γdR(G) = 4. As
noted, G has a dominating vertex, say x. Since x is an isolated vertex in G, we
find that n = 2, and consequently, G = K2. For the upper bound, Theorem 3
yields

γdR(G) + γdR(G) ≤ (2n− 2∆(G) + 1) + (2n− 2∆(G) + 1)

= 2n− 2∆(G) + 2δ(G) + 4 ≤ 2n+ 4.

If γdR(G)+γdR(G) = 2n+4, then equality holds throughout the calculation,
and δ(G) = ∆(G). Hence G is k-regular for some k. Moreover, γdR(G) =
2n−2k+1 and γdR(G) = 2k+3. Let v ∈ V (G). If some vertex u outsideN [v] has a
neighbors outside N [v], then the DRDF (N(u)∪N(v), V (G)−N [u]−N [v], {u, v})
has weight at most 2n − 2k, a contradiction. If there is a vertex u such that
u /∈ N [v], then we have N(u) = N(v) and the DRDF (N(u), V (G)−N(v), ∅) has
weight 2n−2k, a contradiction. Hence k = deg(v) = n−1, and so G is a complete
graph. But then γdR(G) + γdR(G) = 2n + 3, a contradiction. We conclude that
γdR(G) + γdR(G) ≤ 2n + 3. We next prove the equality part. Assume that
γdR(G) + γdR(G) = 2n + 3. If ∆(G) ≥ δ(G) + 1, then we can easily see that
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γdR(G) + γdR(G) < 2n + 3, a contradiction. Thus δ(G) = ∆(G), and so G is
k-regular for some integer k. If γdR(G) ≤ 2n−2∆(G) and γdR(G) ≤ 2n−2∆(G),
then we see that γdR(G) + γdR(G) < 2n+ 3, a contradiction. Thus without loss
of generality, assume that γdR(G) = 2n−2∆(G)+1 and so γdR(G) = 2∆(G)+2.
Let v ∈ V (G). If a vertex u outside N [v] has neighbors outside N [v], then the
function f = (N(u) ∪ N(v), V (G) − N [u] − N [v], {u, v}) is a DRDF for graph
G. Hence γdR(G) ≤ w(f) = 6 + 2(n − ∆(G) − 1 − |N [u] ∩ (V (G) − N [v])|) ≤
6 + 2(n − k − 3) = 2n − 2k, a contradiction. If there is a vertex u such that
u /∈ N [v], then we have N(u) = N(v) and the DRDF (N(u), V (G) − N(v), ∅)
has weight 2n − 2k, a contradiction. Hence k = deg(v) = n − 1, and so G is a
complete graph.

As an immediate consequence of Theorem 4, if G is a graph of order n ≥ 2
and G is not complete, then γdR(G) + γdR(G) ≤ 2n+2. We next characterize all
graphs achieving equality for this bound.

Proposition 5. If G is a graph of order n ≥ 2, then γdR(G) + γdR(G) = 2n+ 2
if and only if G is C5, P4 or Kn − e (a complete graph minus an edge).

Proof. Assume first that G ∈ G (described before Theorem 3). Thus G is
obtained from an arbitrary graphH with anH-partition A0, A1, . . . , Ak by adding
new vertices v, v1, . . . , vk, joining v to all of the vertices of H, and joining vi to
all of the vertices of Ai for i = 1, 2, . . . , k.

Assume that n − ∆(G) − 1 ≥ 2. Then the construction of G implies that
∆(G) ≥ 3. If {x, y} ⊆ V (G) − N [v], then {x, y} is a dominating set for G and
so γdR(G) ≤ 6. Thus 2n + 2 = γdR(G) + γdR(G) ≤ (2n − 2∆(G) + 1) + 6 =
2n − 2∆(G) + 7, and so ∆(G) ≤ 2, a contradiction. Thus n − ∆(G) − 1 ≤ 1.
Assume that n−∆(G)− 1 = 0. Then γdR(G) = 3, and so γdR(G) = 2n− 1, and
it can be easily seen that G has one component K2 and |V (G)| − 2 components
K1. This implies that G = Kn − e. Next assume that n − ∆(G) − 1 = 1.
Then γdR(G) = 5. If |A0| ≥ 2, then the function g = (A0 ∪ {v}, V (G) − (A0 ∪
{v, v1}), {v1}) is a DRDF on G, and so γdR(G) ≤ 3 + 2(n − |A0| − 2) ≤ 2n − 5.
Therefore, γdR(G) + γdR(G) ≤ 2n, a contradiction. Thus |A0| = 1. Let A0 =
{v0}. If there are two vertices {x, y} ⊆ A1 such that e = xy ∈ E(G), then
the function g = ({y, v, v0}, V (G) − {y, v, v0, x, v1}), {x, v1}) is a DRDF for G,
and so γdR(G) ≤ 6 + 2(n − 5) = 2n − 4, hence γdR(G) + γdR(G) ≤ 2n + 1, a
contradiction. Hence the subgraph H induced by A1 is a complete graph. If
there is a vertex x ∈ N(v0) ∩ A1, then {x} is a dominating set for G and so
γdR(G) = 3, a contradiction. Thus N(v0) ∩A1 = ∅. If |A1| ≥ 2 and {x, y} ⊆ A1,
then the function g = ({y, v, x, y}, V (G) − {y, v, v0, x, v1}), {v0, v1}) is a DRDF
for G, and so γdR(G) ≤ 6 + 2(n− 5) = 2n− 4, hence γdR(G) + γdR(G) ≤ 2n+ 1,
a contradiction. Hence |A1| = 1 and so G = P4.
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Now assume that G,G /∈ G. By Theorem 3, γdR(G) + γdR(G) ≤ (2n −
2∆(G))+(2n−2∆(G)) = 2n−2∆(G)+2δ(G)+2 ≤ 2n+2. If γdR(G)+γdR(G) =
2n+2, then equality holds throughout the calculation, and δ(G) = ∆(G). Hence
G is k-regular for some k. We may assume that k ≤ (n−1)/2, since the argument
is symmetric in G and G. Since the equality holds, we have γdR(G) = 2n − 2k
and γdR(G) = 2k + 2. Let v ∈ V (G). If a vertex u outside N [v] has at least
two neighbors outside N [v], then the function f = (N(u)∪N(v), V (G)−N [u]−
N [v], {u, v}) is a DRDF for graph G. Hence γdR(G) ≤ w(f) = 6+2(n−∆(G)−1−
|N [u]∩(V (G)−N [v])|) ≤ 6+2(n−k−4) = 2n−2k−2, a contradiction. Therefore,
every vertex outside N [v] has at least k− 1 neighbors in N(v). Now assume that
some vertex w in N(v) has at least three neighbors outside N [v]. Then function
f ′ = (N(u) ∪N(v), V (G)−N [u]−N [v], {w, v}) is a DRDF for graph G, and so
γdR(G) ≤ w(f ′) = 6+2(n−∆(G)−1−|N(w)∩(V (G)−N [v])|) ≤ 6+2(n−k−4) =
2n−2k−2 a contradiction. Thus every vertex in N(v) has at most two neighbors
outside N [v]. Counting the edges joining N(v) and V (G)−N [v] from both sides
yields (k − 1)(n − k − 1) ≤ 2k, implying that n ≤ k + 3 + 2

k−1 for k > 1. Since

n ≥ 2k + 1, we have k2 ≤ 3k, which implies that k ≤ 3. If k = 3, then n = 7, a
contradiction, since there is no 3-regular 7-vertex graph. If k = 0, then the only
graph G is K̄n, and we observe that the equality does not hold, a contradiction.
Thus k = 2. Now we find that 5 = 2k + 1 ≤ n ≤ k + 3 + 2

k−1 = 7. If n = 6, then
we have γdR(G) = 6 < 2n−2k, and if n = 7, then we have γdR(G) = 8 < 2n−2k,
both of which is a contradiction. Thus n = 5 and so G = C5.

The following theorem provides an upper bound for the double Roman dom-
ination number. The method of proof is in similar lines with those presented for
domination number and Roman domination number, [1, 7].

Theorem 6. For a graph G on n vertices,

γdR(G) ≤ 3n
ln 2(1 + δ)− ln 3 + 1

1 + δ
.

Proof. Given a graph G, select a set of vertices A, where each vertex is selected
independently with probability p (with p to be defined later). The expected size
of A is np. Let B = V − N [A]. Clearly f = (V − (A ∪ B), B,A) is an DRDF
for G. We now compute the expected size of B. The probability that v is in
B is equal to the probability that v is not in A and that no vertex in A is the
neighbor of v. This probability is (1 − p)1+deg(v). Since e−x ≥ 1 − x for any
x ≥ 0, and deg(v) ≥ δ(G), we can conclude that Pr(v ∈ B) ≤ e−p(1+δ(G)). Thus,
the expected size of B is at most ne−p(1+δ(G)), and the expected weight of f ,
denoted E[f(V )], is at most 3np+ 2ne−p(1+δ(G)). The upper bound for E[f(V )]
is minimized when p = ln(2(1 + δ(G))/2)/(1 + δ(G)) and substituting this value
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for p gives

(1) E[f(V )] ≤ 3n
ln 2(1 + δ)− ln 3 + 1

1 + δ
.

Since the expected weight of f(V ) is at most 3n ln 2(1+δ)−ln 3+1
1+δ

, there must
be some DRDF with at most this weight.

The technique used in the following theorem is in similar lines to those pre-
sented in [5] for Roman domination.

Theorem 7. If G is a graph of order n ≥ 240 with diam(G) = diam(G) = 2,
then

γdR(G)γdR(G) <
15

2
n.

Proof. Let G be a graph of order n ≥ 240 with diam(G) = diam(G) = 2, and let
v be a vertex of minimum degree in G. If deg(v) ≤ 2, then the diameter constraint
implies that (V (G)−N(v), ∅, N(v)) is a DRDF of G and (V (G)−N [v], ∅, N(v), v)
is a DRDF of G, and so γdR(G)γdR(G) ≤ (3|N(v)|)(3 + 2|N(v)|) ≤ 6× 7 = 42 <
15
2 n. Hence we may assume that deg(v) ≥ 3. Let R = V (G) − NG[v]. We
choose a family of disjoint subsets of NG(v) dominating R as follows. Initialize
B1 = NG(v); note that B1 dominates R, since diam(G) = 2. If Bi dominates R,
then let Ai be a minimal subset of Bi dominating R, and let Bi+1 = Bi − Ai. If
Bi+1 does not dominate R, then stop, setting q = i and A∗ = Bq+1. Otherwise,
increment i. Note that A1, . . . , Aq is a partition of NG(v) − A∗, with each Ai

being a minimal set that dominates R.

Since Ai is a minimal dominating set for R, there is a vertex ri ∈ R having
only one neighbor in Ai. Let ai be this neighbor. Since A∗ does not dominate
R, there exists w ∈ R such that A∗ ⊆ NG(w). Let S = {r1, . . . , rq} ∪ {v, w} and
T = {a1, . . . , aq}. Now (V (G)−(S∪T ), T, S) is a DRDF for G, since v dominates
R, w dominates A∗, and ri dominates Ai − {ai}. Thus γdR(G) ≤ 5q + 6, which
reduces to 5q + 3 if A∗ = ∅.

Let U = Aj ∪{v}, where |Aj | = mini |Ai|. Note that U is a dominating set of
G. If |U | = 2, then γdR(G) ≤ 6. Since G is connected and n ≥ 3, Theorem 1 yields
γdR(G) ≤ 5n

4 . If γdR(G) < 5n
4 , then clearly γdR(G)γdR(G) < 15

2 n. Now assume
that γdR(G) = 5n

4 . Then by Theorem 1, G ∈ H and so γdR(G) ≤ 5. Therefore,
γdR(G)γdR(G) ≤ 25n

4 < 15
2 n. Hence we may assume that |U | > 2, which requires

q ≤ δ(G)/2. If q = 1, then γdR(G) ≤ 11 and γdR(G) ≤ 3|U | ≤ 3(δ(G) + 1),
and so γdR(G)γdR(G) ≤ 33(δ(G) + 1). Hence we may assume in this case that
δ(G) ≥ 5n/22− 1, but now Theorem 6 yields γdR(G) ≤ 66/5

(

ln 5
33n+ 1

)

. Using
Calculus (or MATLAB) it can be seen that 11 · 66/5

(

ln 5
33n+ 1

)

< 15n
2 , when

n ≥ 21, and thus γdR(G)γdR(G) < 15n
2 .
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Hence we may assume that 2 ≤ q ≤ δ(G)/2. Using the DRDF (V (D) − U,

∅, U), we have γdR(G)γdR(G) ≤
(

3δ(G)
q

+ 3
)

· (5q + 6) ≤ (15δ(G) + 12) +
(

10q +

6δ(G)
q

)

≤ 21δ(G) + 21. (Note that since q ≤ δ/2 ≤ 5δ/9, we have 9(q − 1) ≤

5δ(q − 1)/q, and therefore 9q + 5δ/q ≤ 5δ + 9. On the other hand q + δ/q ≤ δ,
hence 10q + 6δ/q ≤ 6δ + 9.)

Since 21δ(G) + 21 < 15n
2 when δ(G) < 15n

42 − 1, we may assume that δ(G) ≥
15n
42 − 1, and similarly δ(G) ≥ 15n

42 − 1. By Theorem 6, max
{

γdR(G), γdR(G)
}

≤
42
5 (ln 5n − ln 21 + 1). Hence γdR(G)γdR(G) ≤

(

42
5 (ln 5n− ln 21 + 1)

)2
. Using

Calculus (or MATLAB) it can be seen that for n ≥ 240, this bound is less than
15n
2 .

Theorem 8. If G is a graph of order n ≥ 3 with diam(G) ≥ 3, then

γdR(G)γdR(G) <
15

2
n.

Proof. If G has an isolated vertex or edge, then it is easily seen that γdR(G) ≤ 5,
and so γdR(G)γdR(G) ≤ 5n < 15

2 n. Thus we may assume that each component of
G has at least three vertices. Applying Theorem 1 to each component now yields
γdR(G) ≤ 5n/4. Since diam(G) ≥ 3, G has two vertices u and v with no common
neighbor. Then {u, v} is a dominating set in G and γdR(G) ≤ 6. If γdR(G) < 5n

4 ,
then clearly γdR(G)γdR(G) < 15

2 n. Now assume that γdR(G) = 5n
4 . By Theorem

1, G ∈ H and so γdR(G) ≤ 5. Hence γdR(G)γdR(G) ≤ 25n
4 < 15

2 n.

We next improve Theorems 7 and 8 for graphs with minimum degree one.

Theorem 9. If G is a graph of order n ≥ 3 with δ(G) = 1, then

γdR(G)γdR(G) ≤
25

4
n,

with equality only if and only if G or G belongs to H.

Proof. If G has an isolated edge, then γdR(G) = 5, and so γdR(G)γdR(G) ≤ 5n <
25n
4 . Thus we may assume that each component of G has at least three vertices.

Applying Theorem 1 to each component now yields that γdR(G) ≤ 5n/4. Assume
that deg(u) = 1 andN(u) = {w}, then the function f = (V (G)−{u,w}, {w}, {u})
is a DRDF on G and so γdR(G) ≤ 5. Thus γdR(G)γdR(G) ≤ 25n

4 . Assume that
γdR(G)γdR(G) = 25n

4 . Then we may assume that γdR(G) = 5 and γdR(G) = 5n
4 .

By Theorem 1, G ∈ H.
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3. Complexity

In this section we show that the double Roman domination problem is NP-
complete for bipartite graphs and chordal graphs. Consider the following decision
problem. Note that a chordal graph is a graph with no induced cycle of length
at least four.

Double Roman domination problem (LRDP).
Instance: Graph G = (V,E), and an integer k.
Question: Does G have a DRDF of weight at most k?

We shall prove the NP-completeness results by reducing the following Roman
domination problem, which is known to be NP-complete.

Roman domination problem (RDP).
Instance: Graph G = (V,E), and an integer k.
Question: Does G have an RDF of weight at most k?

Theorem 10 (Liu and Chang, [10]). The RDP is NP-complete for bipartite

graphs and chordal graphs.

Theorem 11. The DRDP is NP-complete for bipartite graphs and chordal graphs.

Proof. It is clear that DRDP belongs to NP. Let G be a bipartite (or chordal)
graph with V (G) = {v1, . . . , vn}. Form a graph H from G by joining each vertex
vi of G to the central vertex xi3 of a path P5 : x

i
1x

i
2x

i
3x

i
4x

i
5. (Note that |V (H)| =

6|V (G)|.) Any γR(G)-function can be extended to a DRDF for H by assigning
2 to xi1, xi3 and xi5, and 0 to xi2 and xi4 for i = 1, 2, . . . , n. Thus γdR(H) ≤
γR(G) + 6n. Let f be a γdR(H)-function. Clearly for i = 1, 2, . . . , n, 6 ≤ f(xi1) +
f(xi2) + f(xi3) + f(xi4) + f(xi5) ≤ 7. If f(xi1) + f(xi2) + f(xi3) + f(xi4) + f(xi5) = 7
for some integer i then we may assume that f(vi) = 0, and then we replace f(xi1),
f(xi3) and f(xi5) by 2, f(xi2) and f(xi4) by 0, and f(vi) by 1. Thus we may assume
that f(xi1)+ f(xi2)+ f(xi3)+ f(xi4)+ f(xi5) = 6 for each i = 1, 2, . . . , n. It follows
that f(xi1) = f(xi3) = f(xi5) = 2, and f(xi2) = f(xi4) = 0 for each i = 1, 2, . . . , n.
Since f is a DRDF for H, any vertex v ∈ V (G) with f(v) = 0 is adjacent to at
least one vertex u ∈ V (G) with f(u) = 2. Thus f |V (G) is a Roman dominating
function for G of weight γdR(H)− 6n. We conclude that γdR(H) = γR(G) + 6n.
Hence the NP-completeness of the double Roman domination problem in bipartite
graphs or chordal graphs follows from that of the Roman domination problem.
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