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Abstract

A vertex subset S of a digraph D is called a dominating set of D if every
vertex not in S is adjacent from at least one vertex in S. The domination
number of a digraph D, denoted by γ(D), is the minimum cardinality of a
dominating set of D. A Roman dominating function (RDF) on a digraph D
is a function f : V (D) → {0, 1, 2} satisfying the condition that every vertex
v with f(v) = 0 has an in-neighbor u with f(u) = 2. The weight of an RDF
f is the value ω(f) =

∑
v∈V (D) f(v). The Roman domination number of a

digraph D, denoted by γR(D), is the minimum weight of an RDF on D. In
this paper, for any integer k with 2 ≤ k ≤ γ(D), we characterize the digraphs
D of order n ≥ 4 with δ−(D) ≥ 1 for which γR(D) = γ(D) + k holds. We
also characterize the digraphs D of order n ≥ k with γR(D) = k for any
positive integer k. In addition, we present a Nordhaus-Gaddum bound on
the Roman domination number of digraphs.
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1. Introduction

Domination in graphs, with its many variations, has become an important re-
search topic in graph theory, see, e.g., [10]. Among the variations of domination,
so called Roman domination plays an important role in graph theory and its
applications. Many results on Roman domination in (undirected) graphs can be
found in [1, 4, 5, 7, 12, 13, 16, 18]. Nowadays, also closely related concepts on
digraphs have been investigated, for example, signed total Roman domination in
digraphs [17] and signed Roman domination in digraphs [15]. By contrast, results
on Roman domination in digraphs seldom appear in literature. Our aim in this
paper is to study the Roman domination in digraphs.

We would follow Bondy and Murty [2] for graph-theoretical terminology and
notation not defined here. Throughout this paper, D = (V,A) denotes a finite di-
graph with neither loops nor multiple arcs (but pairs of opposite arcs are allowed).
For two vertices u, v ∈ V (D), we use (u, v) to denote the arc with direction from
u to v, that is, u is adjacent to v, or equivalently, v is adjacent from u, and we also
call v an out-neighbor of u and u an in-neighbor of v. For a vertex v ∈ V (D), the
out-neighborhood and in-neighborhood of v, denoted by N+(v) and N−(v), are
the sets of out-neighbors and in-neighbors of v, respectively. Also, the closed out-

neighborhood of v is the set N+[v] = N+(v)∪{v}. In general, for a set X ⊆ V (D),
we denote N+(X) =

⋃
v∈X N+(v) and N+[X] = N+(X) ∪ X. The out-degree

and in-degree of a vertex v ∈ V (D) are defined by d+(v) = d+D(v) = |N+(v)| and
d−(v) = d−D(v) = |N−(v)|, respectively. The maximum out-degree, minimum out-

degree, maximum in-degree and minimum in-degree among the vertices of D are
denoted by ∆+(D), δ+(D), ∆−(D) and δ−(D), respectively. For a setX ⊆ V (D),
the subdigraph induced by X is denoted by D[X]. The complement D of a di-
graph D is the digraph defined on the vertex set V (D), where (u, v) ∈ A(D) if
and only if (u, v) /∈ A(D). The complete digraph K∗

n is the digraph obtained from
the complete graph Kn when each edge e of Kn is replaced by two oppositely
oriented arcs with the same ends as e.

A vertex subset S of a digraph D is called a dominating set of D if N+[S] =
V (D). The domination number of a digraphD, denoted by γ(D), is the minimum
cardinality of a dominating set of D. A dominating set of D of cardinality γ(D)
is called a γ(D)-set. The domination number of digraphs was introduced by Fu
[6], which have been well studied now (see, for example, [3, 8, 9]).

A Roman dominating function (RDF) on a digraph D is a function f :
V (D) → {0, 1, 2} satisfying the condition that every vertex v with f(v) = 0
has an in-neighbor u with f(u) = 2. The weight of an RDF f is the value
ω(f) =

∑
v∈V (D) f(v). The Roman domination number of a digraph D, denoted

by γR(D), is the minimum weight of an RDF on D. A γR(D)-function is a Roman
dominating function onD with weight γR(D). An RDF f onD can be represented
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by the ordered partition (V0, V1, V2), where Vi = {v ∈ V (D) : f(v) = i} for
i ∈ {0, 1, 2}. The Roman domination of a digraph was introduced by Kamaraj
and Jakkammal [11].

In this note, we characterize the digraphs D of order n ≥ 4 with δ−(D) ≥ 1
for which γR(D) = γ(D) + k holds for any integer k with 2 ≤ k ≤ γ(D). We
also characterize the digraphs D of order n ≥ k with γR(D) = k for any positive
integer k. These two results extend some recent results of Sheikholeslami and
Volkmann [14]. In addition, we present a Nordhaus-Gaddum inequality for the
Roman domination number of digraphs.

2. Main Results

In [14], Sheikholeslami and Volkmann characterized the digraphs D with δ−(D)
≥ 1 for which γR(D) = γ(D)+k holds, where k ∈ {0, 1, 2}. Here we would extend
their result to an arbitrary integer k with 2 ≤ k ≤ γ(D). For this purpose, we
first give some needed results.

Proposition 1 [14]. For any digraph D, γ(D) ≤ γR(D) ≤ 2γ(D).

For any digraph D, it follows from Proposition 1 that if γR(D) = γ(D) + k,
then 0 ≤ k ≤ γ(D).

Proposition 2 [11]. Let f = (V0, V1, V2) be any γR(D)-function on a digraph D.

Then

(a) ∆+(D[V1]) ≤ 1,

(b) if u ∈ V1, then N−(u) ∩ V2 = ∅,

(c) V2 is a γ(D[V0 ∪ V2])-set.

Sheikholeslami and Volkmann [14] obtained the exact value of the Roman
domination number of directed cycles.

Proposition 3 [14]. If D is a directed cycle of order n, then γR(D) = n.

Proposition 4 [14]. Let D be a digraph of order n. Then γR(D) = γ(D) if and
only if ∆+(D) = 0.

Proposition 5 [14]. Let D be a digraph of order n ≥ 2 with δ−(D) ≥ 1. Then

γR(D) = γ(D) + 1 if and only if there is a vertex v ∈ V (D) such that d+(v) =
n− γ(D).

Proposition 6 [14]. Let D be a digraph of order n ≥ 7 with δ−(D) ≥ 1. Then

γR(D) = γ(D) + 2 if and only if

(a) D does not have a vertex of out-degree n− γ(D),
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(b) either D has a vertex of out-degree n− γ(D)− 1 or D contains two vertices

v, w such that |N+[v] ∪N+[w]| = n− γ(D) + 2.

In fact, Proposition 6 holds for n ≥ 4 as the following result shows.

Proposition 7. Let D be a digraph of order n ≥ 4 with δ−(D) ≥ 1. Then

γR(D) = γ(D) + 2 if and only if

(a) D does not have a vertex of out-degree n− γ(D),

(b) either D has a vertex of out-degree n− γ(D)− 1 or D contains two vertices

v, w such that |N+[v] ∪N+[w]| = n− γ(D) + 2.

Proof. Here we just show the necessity. The proof for the sufficiency is the same
as that of Proposition 4 in [14].

Let γR(D) = γ(D)+2. Clearly, (a) follows trivially from Proposition 5. Now,
let f = (V0, V1, V2) be a γR(D)-function such that |V2| is maximum. Since V1∪V2

is a dominating set of D, if |V1| ≤ γ(D)− 3, then

γ(D) ≤|V1|+ |V2| = |V1|+
γR(D)− |V1|

2
=

γR(D) + |V1|

2

≤
γR(D) + γ(D)− 3

2
=

(γ(D) + 2) + γ(D)− 3

2
< γ(D),

a contradiction. Therefore, we may deduce that one of the following conditions
is satisfied.

(i) |V1| = γ(D) + 2 and |V2| = 0,

(ii) |V1| = γ(D) and |V2| = 1, and

(iii) |V1| = γ(D)− 2 and |V2| = 2.

Suppose first that (i) holds. Clearly, we have |V0| = 0, and then V1 = V (D).
This implies that D is empty (otherwise, there exists at least an arc in D and
hence by the choice of |V2|, we have |V2| ≥ 1, a contradiction). So in this case,
we have γR(D) = n 6= n+ 2 = γ(D) + 2.

We now suppose that (ii) holds. Let V2 = {u}. Since u has no out-neighbors
in V1, by the definition of γR(D)-function, we have d+(u) = |V0| = n−|V1|−|V2| =
n− γ(D)− 1, as desired.

Finally, suppose that (iii) holds. Let V2 = {v, w}. Since neither v nor w has
out-neighbors in V1, by the definition of γR(D)-function, we get |N+[v]∪N+[w]| =
n− |V1| = n− γ(D) + 2, as required.

This completes the proof.

Now we are able to characterize the digraphs D with δ−(D) ≥ 1 for which
γR(D) = γ(D) + k holds for any integer k with 2 ≤ k ≤ γ(D). It should be
mentioned that a similar result for (undirected) graphs has already been given
by Xing et al. [18].
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Theorem 8. Let D be a digraph of order n ≥ 4 with δ−(D) ≥ 1 and let k be an

integer with 2 ≤ k ≤ γ(D). Then γR(D) = γ(D) + k if and only if

(a) for any integer s with 1 ≤ s ≤ k−1, D does not have a set Ut of t (1 ≤ t ≤ s)
vertices satisfying

|N+[Ut]| = n− γ(D)− s+ 2t;

(b) there exists an integer l with 1 ≤ l ≤ k such that D has a set Wl of l vertices
satisfying

|N+[Wl]| = n− γ(D)− k + 2l.

Proof. We proceed by induction on k. If k = 2, then by Proposition 7, the
assertion is trivial. Hence, in the following we may assume that k ≥ 3.

To prove the necessity, suppose that γR(D) = γ(D) + k. Let f = (V0, V1, V2)
be a γR(D)-function.

First we prove that (a) holds. Suppose, to the contrary, that s0 (1 ≤ s0 ≤
k−1) is the minimum integer such that D has a set Ut0 of t0 (1 ≤ t0 ≤ s0) vertices
satisfying |N+[Ut0 ]| = n−γ(D)−s0+2t0. If s0 = 1, then t0 = 1. This implies that
there exists a vertex v ∈ Ut0 such that |N+[v]| = n−γ(D)−s0+2t0 = n−γ(D)+1
and hence d+(v) = n−γ(D). Thus, by Proposition 5, we have γR(D) = γ(D)+1,
contradicting our assumption that γR(D) = γ(D) + k. Consequently, we have
s0 ≥ 2, which implies that for any integer s with 1 ≤ s ≤ s0− 1, D does not have
a set Ut of t (1 ≤ t ≤ s) vertices satisfying |N+[Ut]| = n− γ(D)− s+2t. Since D
has a set Ut0 of t0 (1 ≤ t0 ≤ s0) vertices satisfying |N+[Ut0 ]| = n−γ(D)−s0+2t0,
by the induction hypotheses, we have γR(D) = γ(D) + s0, again contradicting
our assumption that γR(D) = γ(D) + k. Therefore, (a) holds.

Next we prove that (b) holds. Suppose first that |V2| = 0. By the definition
of γR(D)-function, we have |V0| = 0 and hence V1 = V (D). Also, by condition
(a) of Proposition 2, we have ∆+(D) = ∆+(D[V1]) ≤ 1. Now, since δ−(D) ≥ 1,

n ≤
∑

v∈V (D)

δ−(D) ≤
∑

v∈V (D)

d−(v) =
∑

v∈V (D)

d+(v) ≤
∑

v∈V (D)

∆+(D) ≤ n,

which implies that d+(v) = d−(v) = 1 for any vertex v ∈ V (D), and hence
D is a disjoint union of p ≥ 1 directed cycles. Let Di = vi1v

i
2 · · · v

i
ni

be the
connected component of D for i = 1, 2, . . . , p. Clearly, γ(D) =

∑p
i=1⌈ni/2⌉ and

by Proposition 3, we have γR(D) =
∑p

i=1 ni = n. Thus, k = γR(D) − γ(D) =∑p
i=1⌊ni/2⌋. Let Wl =

⋃p
i=1{v

i
2j−1 : j = 1, 2, . . . , ⌊ni/2⌋}, where l =

∑p
i=1⌊ni/2⌋.

It is easy to see that |N+[Wl]| = 2l = n− γ(D)− k+2l, implying that (b) holds.

We now suppose that |V2| 6= 0. By condition (c) of Proposition 2, V2 is a
γ(D[V0 ∪ V2])-set and hence V1 ∪ V2 is a dominating set of D. This implies that
|V1| + |V2| ≥ γ(D). Moreover, since |V1| + 2|V2| = γR(D) = γ(D) + k, |V2| ≤ k.
Let |V2| = l, where 1 ≤ l ≤ k. Then |V1| = γ(D) + k − 2|V2| = γ(D) + k − 2l.
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By conditions (b) and (c) of Proposition 2, we have V1 ∩N+(V2) = ∅ and V0 ⊆
N+(V2). Thus, there exists a set Wl = V2 of l (1 ≤ l ≤ k) vertices such that

|N+[Wl]| = n− |V1| = n− (γ(D) + k − 2l) = n− γ(D)− k + 2l,

also implying that (b) holds.

To show the sufficiency, suppose that the conditions (a) and (b) in the state-
ment of the theorem hold. We first claim that γR(D) ≥ γ(D)+k. Suppose, to the
contrary, that γR(D) = γ(D)+m, where m ≤ k−1. By the induction hypothesis
and condition (b) of the theorem, there exists an integer l with 1 ≤ l ≤ m ≤ k−1
such that D has a set Wl of l vertices satisfying |N+[Wl]| = n− γ(D)−m+ 2l,
contradicting condition (a). Our claim follows.

Now it remains to show that γR(D) ≤ γ(D) + k. Let V0 = N+[Wl] − Wl,
V1 = V (D) − N+[Wl] and V2 = Wl. It is easy to see that g = (V0, V1, V2) is an
RDF on D with weight

ω(g) = |V1|+ 2|V2| = |V (D)| − |N+[Wl]|+ 2|Wl|

=n− (n− γ(D)− k + 2l) + 2l = γ(D) + k.

Consequently, we have γR(D) ≤ ω(g) = γ(D) + k, as desired.

The proof is completed.

Sheikholeslami and Volkmann [14] also characterized the digraphs D with
γR(D) = k, where k ∈ {2, 3, 4, 5}. Here, we would extend their result to arbitrary
positive integer k.

Theorem 9. For any positive integer k and digraph D of order n ≥ k, γR(D) = k
if and only if one of the following conditions holds:

(a) n = k and ∆+(D) ≤ 1,

(b) for any proper subset X ⊂ V (D) with 1 ≤ |X| ≤ ⌊k/2⌋, |N+[X]| ≤ n+2|X|−
k. In addition, there exists some proper subset Y ⊂ V (D) with 1 ≤ |Y | ≤
⌊k/2⌋ such that |N+[Y ]| = n+ 2|Y | − k and ∆+(D[V (D)−N+[Y ]]) ≤ 1.

Proof. Let f = (V0, V1, V2) be a γR(D)-function. By conditions (b) and (c)
of Proposition 2, we have V1 ∩ N+[V2] = ∅ and V0 ⊂ N+[V2], implying that
V (D)−N+[V2] = V1 and |N+[V2]| = |V0|+ |V2|.

First we prove the sufficiency. Clearly, the assertion holds for n = k and
∆+(D) ≤ 1. Now we consider condition (b). If γR(D) = |V1| + 2|V2| ≤ k − 1,
then |V2| ≤ (k − 1 − |V1|)/2 ≤ ⌊k/2⌋, and by condition (b), we have |N+[V2]| ≤
n+ 2|V2| − k. Thus,

k − 1− 2|V2| ≥ |V1| = n− (|V0|+ |V2|) = n− |N+[V2]| ≥ k − 2|V2|,
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a contradiction. Therefore, we obtain γR(D) ≥ k. On the other hand, it is easy
to see that f ′ = (N+[Y ]− Y, V (D)−N+[Y ], Y ) is an RDF on D with

ω(f ′) = |V (D)−N+[Y ]|+ 2|Y | = n− (n+ 2|Y | − k) + 2|Y | = k.

Consequently, we have γR(D) ≤ ω(f ′) = k and hence γR(D) = k, as desired.

Conversely, suppose that γR(D) = k. If V2 = ∅, then by the definition of
γR(D)-function, we have V0 = ∅ and hence V1 = V (D). Thus, k = γR(D) =
|V1| + 2|V2| = |V (D)| = n. Furthermore, by Proposition 2, we have ∆+(D) =
∆+(D[V1]) ≤ 1. Condition (a) follows.

We now assume that |V2| ≥ 1. Suppose that there exists some set X ⊂ V (D)
with 1 ≤ |X| ≤ ⌊k/2⌋ such that |N+[X]| ≥ n + 2|X| + 1 − k. It is easy to see
that f ′′ = (N+[X]−X,V (D)−N+[X], X) is an RDF on D and thus,

γR(D) ≤ω(f ′′) = |V (D)−N+[X]|+ 2|X|

≤n− (n+ 2|X|+ 1− k) + 2|X| = k − 1,

a contradiction. Hence, for any set X ⊂ V (D) with 1 ≤ |X| ≤ ⌊k/2⌋, we have
|N+[X]| ≤ n+ 2|X| − k.

It remains to show that there exists some set Y ⊂ V (D) with 1 ≤ |Y | ≤ ⌊k/2⌋
such that |N+[Y ]| = n+ 2|Y | − k and ∆+(D[V (D)−N+[Y ]]) ≤ 1. Let Y = V2.
It is easy to see that |V1| + 2|Y | = γ(D) = k and hence |Y | = (k − |V1|)/2 ≤
⌊k/2⌋. From the assumptions, we have |Y | ≥ 1. And as proven above, we get
|N+[Y ]| ≤ n+ 2|Y | − k. Thus, it follows that

|V1| = n− (|V0|+ |Y |) = n− |N+[Y ]| ≥ k − 2|Y | = |V1|,

which implies that |N+[Y ]| = n + 2|Y | − k. Consequently, by condition (a) of
Proposition 2, we have ∆+(D[V (D)−N+[Y ]]) = ∆+(D[V1]) ≤ 1.

This completes the proof.

Finally, we give a Nordhaus-Gaddum bound on the Roman domination num-
ber of digraphs. First we need a result of Sheikholeslami and Volkmann [14].

Proposition 10 [14]. If D is a digraph of order n, then

γR(D) ≤ n−∆+(D) + 1.

Theorem 11. If D is a digraph of order n ≥ 3, then

γR(D) + γR(D) ≤ n+ 3,

and this bound is sharp.
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Proof. Noting that d+D(v) + d+
D
(v) = n − 1 holds for any vertex v ∈ V (D), we

have ∆+(D) = n− 1− δ+(D). Now by Proposition 10, we have

γR(D) + γR(D) ≤ (n−∆+(D) + 1) + (n−∆+(D) + 1)

=n−∆+(D) + δ+(D) + 3 ≤ n+ 3,
as desired.

To see the sharpness of this bound, consider the digraph D which is obtained
from the complete digraphK∗

n−1 by adding a new vertex u and n−2 new arcs from
u to any vertex in V (K∗

n−1) \ {v}, where v is a vertex of K∗

n−1. It is easy to see
that (V (D) \ {u, v}, {u}, {v}) and ({v}, V (D) \ {u, v}, {u}) are a γR(D)-function
and a γR(D)-function, respectively, and hence

γR(D) + γR(D) = (1 + 2) + (n− 2 + 2) = n+ 3,

which implies that the bound in this theorem is sharp, completing the proof.
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