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Abstract

The Cartesian product of n cycles is a 2n-regular, 2n-connected and bi-
pancyclic graph. Let G be the Cartesian product of n even cycles and let
2n = n1 + n2 + · · · + nk with k ≥ 2 and ni ≥ 2 for each i. We prove that
if k = 2, then G can be decomposed into two spanning subgraphs G1 and
G2 such that each Gi is ni-regular, ni-connected, and bipancyclic or nearly
bipancyclic. For k > 2, we establish that if all ni in the partition of 2n are
even, then G can be decomposed into k spanning subgraphs G1, G2, . . . , Gk

such that each Gi is ni-regular and ni-connected. These results are analo-
gous to the corresponding results for hypercubes.
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1. Introduction

The graphs considered in this paper are simple, undirected and finite. The
Cartesian product of two graphs G1 and G2 is the graph G1�G2 with vertex
set V (G1) × V (G2) in which (u1, u2) is adjacent to (v1, v2) if and only if u1 is
adjacent to v1 in G1 and u2 = v2, or u2 is adjacent to v2 in G2 and u1 = v1.
The n-dimensional hypercube Qn is the Cartesian product of n copies the com-
plete graph K2. Therefore Qn is the Cartesian product of n/2 copies of a cycle
of length 4 when n is even. The Cartesian product of cycles and hypercubes are
popular interconnection network topologies (see [6, 11]). The hypercube Qn is
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an n-regular and n-connected graph whereas the Cartesian product of n cycles is
a 2n-regular and 2n-connected graph (see [16]).

Unless mentioned otherwise, in the remainder of this paper product means
the Cartesian product of graphs.

A cycle is even if its length is a positive even integer. A bipartite graph
G is bipancyclic if G is either a cycle or has cycles of every even length from 4
to |V (G)|. A 3-regular graph is nearly bipancyclic if it has cycles of every even
length from 4 to |V (G)| except possibly for 4 and 8. The bipancyclicity property
of a given network is an important factor in determining whether the network
topology can simulate rings of various lengths.

Alspach et al. [1] proved that the product of cycles can be decomposed into
Hamiltonian cycles. This result subsumes earlier results due to Kotzig [10] and
Foregger [8] on Hamiltonian decomposition of the product of cycles. El-Zanati
and Eynden [7] studied the decomposition of the product of cycles, each of length
a power of 2, into non-spanning cycles. Borse et al. [4] proved that if m ≥ 2
and m divides n, then the product of n even cycles can be decomposed into
isomorphic, spanning, m-regular, m-connected subgraphs which are bipancyclic
or nearly bipancyclic also. The analogous results for the class of hypercubes are
obtained in [1, 4, 7].

Motivated by applications in parallel computing, Borse and Kandekar [3]
considered the decomposition of the hypercube Qn into two regular spanning
subgraphs according to the partition of n into two parts and obtained the follow-
ing result.

Theorem 1.1. Let n, n1, n2 ≥ 2 be integers such that n = n1 + n2. Then the

hypercube Qn can be decomposed into two spanning subgraphs G1 and G2 such

that Gi is ni-regular and ni-connected for i = 1, 2. Moreover, Gi is bipancyclic if

ni 6= 3 and nearly bipancyclic if ni = 3.

We extend this result to the class of the product of even cycles as follows.

Theorem 1.2. Let n, n1, n2 ≥ 2 be integers such that 2n = n1 + n2 and let G
be the product of n even cycles. Then G can be decomposed into two spanning

subgraphs G1 and G2 such that Gi is ni-regular and ni-connected for each i = 1, 2.
Moreover, Gi is bipancyclic if ni 6= 3 and nearly bipancyclic if ni = 3.

For the decomposition ofQn according to the general partition of n, Sonawane
and Borse [15] proved the following result.

Theorem 1.3 [15]. Let k, n1, n2, . . . , nk ≥ 2 be integers such that at most one ni

is odd and n = n1 + n2 + · · ·+ nk. Then Qn can be decomposed into k spanning

subgraphs G1, G2, . . . , Gk such that each Gi is ni-regular and ni-connected.

We extend this result also to the class of the product of even cycles as follows.
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Theorem 1.4. Let n, k ≥ 2 and n1, n2, . . . , nk ≥ 1 be integers such that n =
n1+n2+· · ·+nk and G be the product of n even cycles. Then G can be decomposed

into k spanning subgraphs G1, G2, . . . , Gk such that each Gi is 2ni-regular and

2ni-connected.

We prove Theorem 1.2 in Section 2. The proof of Theorem 1.4 is given in
Section 3.

2. Decomposition Into Two Subgraphs

In this section, we prove Theorem 1.2. Firstly, we prove this theorem for the
special cases n1 = 2 and n1 = 3. The general case follows from these two cases.

For n ≥ 1, let [n] = {1, 2, . . . , n}. We define a particular type of 3-regular
graph below.

Definition 2.1. Let r, s ≥ 4 be even integers and let W be the 3-regular
graph with vertex set V (W ) = {vji : i ∈ [r]; j ∈ [s]} and the edge set E(W ) =

{vji v
j
i+1: i ∈ [r]; j ∈ [s]} ∪{vji v

j+1
i : i = 1, 3, 5, . . . , r − 1; j = 1, 3, 5, . . . , s − 1} ∪

{vji v
j+1
i : i = 2, 4, 6, . . . , r; j = 2, 4, 6, . . . , s}, where vs+1

i = v1i and vjr+1 = vj1 (see
Figure 1). The graph W is isomorphic to a honeycomb toroidal graph H(s, r, 0)
defined in [2].

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

v11

v12

v13

v14

v1r−1

v1r

C1

v21

v22

v23

v24

v2r

C2

v31

v3r

C3

v41

v4r

C4

vs−1
1

vs−1
r

Cs−1

vs1

vsr

Cs

Figure 1. The graph W .

We need the following lemmas.

Lemma 2.2 [4]. The graph W defined above is 3-regular, 3-connected and nearly

bipancyclic.
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Lemma 2.3 [16]. Let Gi be an mi-regular and mi-connected graph for i = 1, 2.
Then the graph G1�G2 is (m1 +m2)-regular and (m1 +m2)-connected.

We prove the special case n1 = 2 of Theorem 1.2 in the following proposition.

Proposition 2.4. Let n ≥ 2 and let G be the product of n even cycles. Then G
has a Hamiltonian cycle C such that G − E(C) is a spanning, (2n − 2)-regular,
(2n− 2)-connected and bipancyclic subgraph of G.

Proof. We prove the result by induction on n. The result holds for n = 2 as, by
[1], the product of two cycles can be decomposed into two Hamiltonian cycles.
Suppose n ≥ 3. Let G = C1�C2� · · ·�Cn, where C1, C2, . . . , Cn are even cycles.
Let H = C1�C2� · · ·�Cn−1, |V (H)| = r and |V (Cn)| = s. Then G = H�Cn and
further, r and s are even integers such that r = |C1||C2| · · · |Cn−1| ≥ 4n−1 ≥ 16
and s ≥ 4. Label the vertices of the cycle Cn by {1, 2, . . . , s} so that j is adjacent
to j + 1 modulo s.

By induction, H has a Hamiltonian cycle, say Z, such that H − E(Z) is a
spanning, (2n − 4)-regular, (2n − 4)-connected and bipancyclic subgraph of H.
Label the vertices of the cycle Z by the set {v1, v2, . . . , vr} so that vp is adjacent

to vp+1(mod r). For compactness, let vjp denote the vertex (vp, j) of H�Cn, let
superscripts be computed modulo s with representative in [s] and subscripts be
modulo r with representative in [r]. For j ∈ [s], let Hj be the copy of H induced
by the set {vjp: p ∈ [r]} and let Zj be the copy of Z in Hj . Let F be the set of
edges of H�Cn between the graphs Hj , that is, F = {vjpv

j+1
p : p ∈ [r], j ∈ [s]}.

Then G = H1 ∪H2 ∪ · · · ∪Hs ∪ F.

We now construct a Hamiltonian cycle C by deleting one edge from Zj and
adding one edge of F between Hj and Hj+1 for all j. Let M = {v12v

2
2, v

2
1v

3
1, v

3
2v

4
2,

v41v
5
1, . . . , v

s−1
2 vs2, v

s
1v

1
1} and let C =

(

⋃s
j=1(Z

j − vj1v
j
2)
)

∪ M. Clearly, C is a

Hamiltonian cycle in G.

Let K = G − E(C). Then K is a spanning (2n − 2)-regular subgraph of G.

Further, K =
(

⋃s
j=1

(

(Hj − Zj) ∪ {vj1v
j
2}
))

∪ (F − M). We prove that K is

(2n− 2)-connected and bipancyclic.

Claim 1. K is bipancyclic.

Proof. We prove the claim by constructing a spanning bipancyclic subgraph of
K. Since Hj − E(Zj) is bipancyclic, it has a Hamiltonian cycle Xj for j ∈ [s].
Therefore V (Xj) = V (Zj) = {vjp: p ∈ [r]}. Let J = (F−M)∪(X1∪X2∪· · ·∪Xs).
Then J is a spanning subgraph of K. Note that the edge vj1v

j
2 of Zj is a chord

of Xj in Hj and so, a subpath of Xj from vj1 to vj2 has odd length. Obtain a
3-regular spanning subgraph W of J by deleting alternate edges of F between
Xj and Xj+1 starting from the edge vj2v

j+1
2 when j is odd, and starting from
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the edge vj1v
j+1
1 when j is even. It is easy to see that W is isomorphic to the

graph in Figure 1. By Lemma 2.2, W is nearly bipancyclic. Therefore W and
hence J contains cycles of every even length from 10 to rs = |V (J)|. The ladder
graph in J formed by the paths X1 − v12 and X2 − v22 contains an l-cycle for any
l ∈ {4, 6, 8}. Thus J contains cycle of every even length from 4 to |V (J)| and so
J is bipancyclic. As the graph J spans K, the graph K is also bipancyclic.

Claim 2. K is (2n− 2)-connected.

Proof. Let Dj = (Hj − E(Zj)) ∪ {vj1v
j
2} for j ∈ [s]. Then K =

(

⋃s
j=1D

j
)

∪

(F − M). Since Hj − E(Zj) is (2n − 4)-regular and (2n − 4)-connected, Dj is
(2n− 4)-connected, and the degree of each of vj1 and vj2 in Dj is 2n− 3 and the
degree of each of the remaining vertices in Dj is 2n − 4. For any j, Dj+1 and
Dj−1 are the two neighbouring subgraphs of Dj in the graph K. Note that in
K every vertex of Dj except vj1 and vj2 has neighbours in both Dj+1 and Dj−1,

whereas each of vj1 and vj2 has a neighbour in exactly one of Dj+1 and Dj−1.
Let S ⊂ V (K) such that |S| ≤ 2n − 3. To prove the claim, it suffices to

prove that K−S is connected. As V (Dj) = V (Hj) and n ≥ 3, |V (Dj)| ≥ 4n−1 ≥
2n+1 ≥ |S|+4. Hence there are at least three edges between Dj−S and Dj+1−S
in K − S for any j ∈ [s]. Therefore, if Dj − S is connected for all j ∈ [s], then
K − S is connected. Suppose Dj − S is not connected for some j. Without loss
of generality, we may assume that D1 − S is not connected. Then D1 contains
at least 2n− 4 vertices from S. If S ⊂ V (D1), then every vertex of D1 − S has a
neighbour in the connected graph K−V (D1) and so K−S is connected. Suppose
S is not a subset of V (D1). Then |S| = 2n− 3 and |V (D1)∩ S| = 2n− 4, and so
only one vertex, say x, from S is in V (K)−V (D1). Let W = K− (V (D1)∪{x}).
Then W is connected. Every vertex of D1 − S except possibly v11 and v12 has
a neighbour in W. Since the degree of each of v11 and v12 is 2n − 3 in D1, these
vertices cannot be isolated in D1−S. Hence the component of D1−S containing
v11 or v12 has a neighbour in W. This implies that K − S is connected.

Thus, C is a Hamiltonian cycle in G such that G−E(C) = K is a spanning,
(2n− 2)-regular, (2n− 2)-connected and bipancyclic subgraph of G.

Remark 2.5. By Lemma 2.3, the product G of n cycles is 2n-regular and 2n-
connected. If C is a cycle in G, then the minimum degree of G−E(C) is 2n− 2
and hence G−E(C) cannot be k-connected for k = 2n−1 or k = 2n. However, the
above proposition guarantees the existence of a cycle in G such that G−E(C) is
(2n− 2)-connected. Such a cycle is removable in G. This result can be compared
with an older theorem of Mader [13] which states that ifH is a simple n-connected
graph with minimum degree n+2, then there is a cycle C inH such thatH−E(C)
is n-connected (also see [5, 9]).
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We now prove the special case n1 = 3 of Theorem 1.2.

Proposition 2.6. Let n ≥ 3 and let G be the product of n even cycles. Then G
has a spanning, 3-regular, 3-connected and nearly bipancyclic subgraph W such

that G − E(W ) is a spanning, (2n − 3)-regular, (2n − 3)-connected subgraph of

G. Moreover, G − E(W ) is bipancyclic if n 6= 3, and it is nearly bipancyclic

otherwise.

Proof. Let C1, C2, . . . , Cn be even cycles and let G = C1�C2� · · ·�Cn. Write
G as G = H�Cn, where H = C1�C2� · · ·�Cn−1. It follows from Proposition
2.4 that H has a decomposition into two subgraphs C and D, where C is a
Hamiltonian cycle, and D is spanning, (2n− 4)-regular, (2n− 4)-connected and
bipancyclic. Obviously, H = D ∪ C. Let |V (Cn)| = s and |V (H)| = r. Then,
as in the proof of Proposition 2.4, we have G = H1 ∪ H2 ∪ · · · ∪ Hs ∪ F with
V (Hj) = {vjp: p ∈ [r]} and F = {vji v

j+1
i : i ∈ [r], j ∈ [s]}, where Hj is the copy

of H corresponding to jth vertex of the cycle Cn. Further, C
j is the copy of C

in Hj with vertices vj1, v
j
2, . . . , v

j
r , v

j
1 in order. Partition the edge set F into two

parts F1 and F2, where F1 = {vji v
j+1
i : i = 1, 3, 5, . . . , r − 1; j = 1, 3, 5, . . . , s −

1} ∪ {vji v
j+1
i : i = 2, 4, 6, . . . , r; j = 2, 4, 6, . . . , s} and F2 = F − F1.

We now construct a 3-regular subgraph W of G as required. Let W =
C1 ∪ C2 ∪ · · · ∪ Cs ∪ F1. Then W is isomorphic to the graph in Figure 1. By
Lemma 2.2, W is a 3-regular, 3-connected and nearly bipancyclic subgraph of G.
Let W ′ = G − E(W ). Clearly, W ′ = D1 ∪ D2 ∪ · · · ∪ Ds ∪ F2, where Dj is the
copy of D in Hj . Further, W ′ is a spanning and (2n− 3)-regular subgraph of G.

To complete the proof, it suffices to prove that W ′ is bipancyclic and (2n−3)-
connected.

Let Y j be a Hamiltonian cycle in Dj for j ∈ [s]. Let W
′′

= Y 1 ∪ Y 2 ∪ · · · ∪
Y s ∪F2. Then W

′′

is a spanning subgraph of W ′. Observe that W ′′ is isomorphic
to W and so it is nearly bipancyclic. Hence W ′ is nearly bipancyclic. Suppose
n ≥ 4. Then the cycles of lengths 4 and 8 exist in the graph Dj and so in W ′.
Hence W ′ contains cycles of every even length from 4 to |V (W ′)|. Thus W ′ is
bipancyclic in this case.

We now prove that W ′ is (2n− 3)-connected. Let S ⊂ W ′ with |S| ≤ 2n− 4.
It is enough to prove that W ′ − S is connected. Suppose S ⊂ Dj for some j.
Then each component of Dj − S is joined to Dj+1 or Dj−1 and hence W ′ − S is
connected. Suppose S intersects at least two of V (D1), V (D2), . . . , V (Ds). Then
|S∩V (Dj)| < (2n−4) and hence Dj−S is connected as Dj is (2n−4)-connected
for each j ∈ [s]. Through the edges of the matching F2, half of the vertices of Dj

have distinct neighbours in Dj+1 and the remaining half have distinct neighbours
in Dj−1. Therefore the connected graph Dj −S is joined to each of Dj+1−S and
Dj−1 − S in W ′ by at least one edge. It implies that W ′ − S is connected. Thus
W ′ is (2n− 3)-connected. This completes the proof.
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The next lemma follows from the fact that the product of even cycles is
bipancyclic (see [6]).

Lemma 2.7. If G1 and G2 are bipartite Hamiltonian graphs, then G1�G2 is

bipancyclic.

We now prove Theorem 1.2.

Proof of Theorem 1.2. We may assume that n2 ≥ n1 ≥ 2. By Propositions
2.4 and 2.6, the result holds for n1 = 2 and n1 = 3. Therefore the result also
holds for the cases n = 2 and n = 3. Suppose n, n1, n2 ≥ 4. Assume that the
result holds for all integers from 4 to n−1. Let G be the product of n even cycles
C1, C2, . . . , Cn and let H = C1�C2� · · ·�Cn−2. Then G = H�(Cn−1�Cn). Since
2n = n1 + n2, we can express 2(n − 2) as 2(n − 2) = (n1 − 2) + (n2 − 2). Note
that n1− 2 ≥ 2 and n2− 2 ≥ 2. Hence, by induction, H has a decomposition into
two spanning subgraphs W1 and W2 such that Wi is (ni − 2)-regular, (ni − 2)-
connected, and bipancyclic or nearly bipancyclic for i = 1, 2. Therefore, each Wi

contains a Hamiltonian cycle. By [1], the product of two cycles has a Hamiltonian
decomposition. Hence Cn−1�Cn can be decomposed into two Hamiltonian cycles,
say Z1 and Z2. This implies that G = (W1 ∪ W2)�(Z1 ∪ Z2) = (W1�Z1) ∪
(W2�Z2) = G1 ∪ G2, where G1 = W1�Z1 and G2 = W2�Z2. Hence G1 and G2

are edge-disjoint spanning subgraphs of G with G = G1 ∪G2. By Lemma 2.7, Gi

is bipancyclic and further, by Lemma 2.3, it is ni-regular and ni-connected for
i = 1, 2. Thus G1 and G2 give a decomposition of G as required.

Remark 2.8. It is worth mentioning that Theorem 1.2 gives a partial solution
to the following question due to Mader [14, p. 73].

Given any n-connected graph and k ∈ {1, 2, . . . , n}, is there always a k-
connected subgraph H of G so that G− E(H) is (n− k)-connected ?

3. Decomposition Into k Subgraphs

In this section, we prove Theorem 1.4. Firstly, we give a construction of obtaining
I-connected spanning subgraph of C1�C2� · · ·�Cn from the given I-connected
spanning subgraph of C1�C2� · · ·�Cn−1.

Suppose n ≥ 2. Let C1, C2, . . . , Cn be even cycles, H = C1�C2� · · ·�Cn−1

and G = H�Cn. Let |V (Cn)| = s. Then s ≥ 4. Let Hj be the copy of H in G
corresponding to jth vertex of the cycle Cn. Then, as in the proof of Proposition
2.4, G = H1∪H2∪· · ·∪Hs∪F, where F =

⋃s
j=1({xy:x ∈ V (Hj), y ∈ V (Hj+1)}).

By Lemma 2.3, H is (2n − 2)-connected. Let l be an even integer such that
2 ≤ l ≤ 2n − 2 and let K be a spanning l-connected subgraph of H in which
M = {u1u2, u3u4, . . . , ul−1ul} is a matching consisting of l/2 edges uiui+1. LetK

j
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be the corresponding copy of K in Hj and let M j = {uj1u
j
2, u

j
3u

j
4, . . . , u

j
l−1u

j
l } be

the matching inKj corresponding to the matchingM. ThenKj is l-connected and
Kj−M j is l/2-connected. InG, each vertex ofKj is adjacent to the corresponding
vertex of Kj+1 through an edge from F. Let N = {ujiu

j+1
i : j ∈ [s] and j odd; i ∈

[l] and i odd}∪ {ujiu
j+1
i : j ∈ [s] and j even; i ∈ [l] and i even}. Then N ⊆ F and

N is a matching in G. Also, V (N) = V (M1) ∪ V (M2) ∪ · · · ∪ V (M s).

Let W =
(

⋃s
j=1(K

j −M j)
)

∪ N (see Figure 2). Then W is a spanning

subgraph of G. We prove below that W is l-connected also.
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Figure 2. The spanning subgraph W of G.

Lemma 3.1. The graph W defined above is l-connected.

Proof. Let S ⊂ V (W ) with |S| ≤ l − 1. It suffices to prove that W − S is
connected. As V (W ) = V (K1) ∪ V (K2) ∪ · · · ∪ V (Ks), S ⊂ V (K1) ∪ V (K2) ∪
· · · ∪ V (Ks). Let Sj = S ∩ V (Kj) for j ∈ [s]. By j + 1 and j − 1, we mean
j + 1(mod s) and j − 1(mod s), respectively.
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Let W j = Kj − M j for j ∈ [s]. Since Kj is l-connected and matching M j

contains l/2 edges, W j is l/2-connected and further, it contains all l vertices ofM j

half of which have neighbours in W j−1 while the remaining half have neighbours
in W j+1. Clearly, W j − Sj contains l − |Sj | > |S| − |Sj | = (|S1| + |S2| + · · · +
|Sj−1|+ |Sj |+ |Sj+1|+ · · ·+ |Ss|)−|Sj | ≥ |Sj−1|+ |Sj+1| vertices of M j . Therefore
W j − Sj has at least one neighbour in W j−1 − Sj−1 or W j+1 − Sj+1. Further, if
W j − Sj has no neighbour in W j+1 − Sj+1, then |Sj |+ |Sj+1| ≥ l/2.

We may assume that |S1| ≥ |Sj | for all j ∈ [s]. Then |Sj | < l/2 for j 6= 1 as
|S| =

∑s
j=1 |S

j | < l. Therefore, as W j is l/2-connected, W j −Sj is connected for
j 6= 1.

Suppose |S1| ≥ l/2. Then
∑

j 6=1 |S
j | < l/2. ThereforeW j−Sj has a neighbour

inW j+1−Sj+1 for 2 ≤ j ≤ s−1. Let T = W−(S∪V (K1)). Then T is a connected
subgraph of W. We prove that every vertex of W 1−S1 has a neighbour in T. Let
D be a component of W 1−S1. If W 1−S1 is connected, then D = W 1−S1. Note
that W 1 − S1 = (K1 − M1) − S1 = (K1 − S1) − M1. Since K1 is l-connected,
K1 − S1 is (l − |S1|)-connected. Therefore, if W 1 − S1 is not connected, then
D contains at least l − |S1| > |S2| + |Ss| vertices of the matching M1. Each of
these vertices has a neighbour in W 2 or W s. In any case, D has a neighbour in
W 2−S2 or W s−Ss and so is in the connected graph T. This implies that W −S
is connected.

Suppose |S1| < l/2. Then |Sj | < l/2 for all j. Hence W j − Sj is connected.
Suppose W j−Sj has no neighbour in W j+1−Sj+1 for some j. Then W j−1−Sj−1

contains a neighbour of W j − Sj . By the same argument, W j+2 − Sj+2 contains
a neighbour of W j+1 − Sj+1. Suppose W i − Si has no neighbour in W i+1 − Si+1

for some i 6= j. Then i 6= j−1, i 6= j+1 and further, |Si|+ |Si+1| ≥ l/2. Therefore
|S| ≥ |Sj | + |Sj+1| + |Si| + |Si+1| ≥ l/2 + l/2 = l, a contradiction. Hence, for
any i 6= j, W i − Si has neighbours in W j+1 − Si+1. This implies that W − S is
connected.

Definition 3.2. Let G be the product of n even cycles. Suppose the diameter of
G is d. Let v0 be an end-vertex of a path inG of length d. Fix v0. Let V0 = {v0} and
let Vi = {v ∈ V (G): d(v0, v) = i} for i ∈ [d], where d(v0, v) denotes the distance
between v0 and v in G. Clearly, the sets V0, V1, . . . , Vd are mutually disjoint, non-
empty and they partition the set V (G). Let K be a spanning subgraph of G.
For i ∈ [d], let Ei(K) = {xy ∈ E(K):x ∈ Vi−1, y ∈ Vi}. Then the edge sets
E1(K), E2(K), . . . , Ed(K) are non-empty and mutually disjoint (see Figure 3).

Lemma 3.3. Let G,K and Ei(K) be as in Definition 3.2. Then E1(K),E2(K),. . . ,
Ed(K) partition the edge set E(K) of the graph K.

Proof. By definition of Vi, there is no edge in G with one end-vertex in Vj

and the other in Vj′ when |j − j′| 6= 1. Suppose two vertices x and y of some
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Vi are adjacent. Let Px and Py be shortest paths in G from v0 to x, and v0
to y respectively. Then each of Px and Py takes exactly one vertex from each of
V0, V1, . . . , Vi. Therefore Px∪Py∪{xy} contains an odd cycle in G, a contradiction
to the fact that G is bipartite. Thus each Vi is independent. This implies that
E(K) = E1(K) ∪ E2(K) ∪ · · · ∪ Ed(K).

t�� �
�� �
�� �

�� �
�� �


�� �

t

S
S
S V1

V2

V3

Vd

Vd−1

Vd−2

Vd−3

E1(K)

E2(K)

E3(K)

Ed(K)

Ed−1(K)

Ed−2(K)

V0 = {v0}

Figure 3. A decomposition of G.

We need the following result.

Lemma 3.4 [16]. Let Gi be a graph with diameter di for i = 1, 2, . . . , k. Then
the diameter of the graph G1�G2� · · ·�Gk is d1 + d2 + · · ·+ dk.

We are all set to prove Theorem 1.4. This theorem is restated below for
convenience.

Theorem 3.5. Let G be the product of n even cycles and let n = n1+n2+· · ·+nk

with k ≥ 2 and ni ≥ 1 for i ∈ [k]. Then G can be decomposed into k spanning

subgraphs G1, G2, . . . , Gk such that each Gi is 2ni-regular and 2ni-connected.

Proof. We prove the result by induction on n. Obviously, n ≥ k. If n = k,
then G is the product of k cycles and hence, by [1], G can be decomposed into k
Hamiltonian cycles. Thus the result holds for n = k.
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Suppose n ≥ k + 1. Then ni ≥ 2 for some i ∈ [k]. Without loss of generality,
we may assume that nk ≥ 2. Assume that the result holds for n − 1. Consider
n − 1 = n1 + n2 + · · · + nk−1 + (nk − 1). Let G = C1�C2� · · ·�Cn, where
C1, C2, . . . , Cn are even cycles. Let |Cn| = s and let H = C1�C2� · · ·�Cn−1.
Then, as in the proof of Proposition 2.4, G = H�Cn = H1 ∪H2 ∪ · · · ∪Hs ∪ F,
where Hj is a copy of H and F =

⋃s
j=1({xy:x ∈ V (Hj), y ∈ V (Hj+1)}) with

Hs+1 = H1.

By induction, H can be decomposed into k spanning subgraphs H1, H2, . . . ,
Hk such that Hi is 2ni-regular and 2ni-connected for i ∈ [k − 1], and Hk is
2(nk − 1)-regular and 2(nk − 1)-connected.

Let d be the diameter ofH. Since each Ci is an even cycle, the diameter of Ci is
|Ci|/2 ≥ 2. Therefore, by Lemma 3.4, d = |C1|+|C2|+···+|Cn−1|

2 ≥ 2(n−1) = 2n−2 ≥
2n−2nk. Let u0 be an end-vertex of a path in H of length d. As in the Definition
3.2, we partition the vertex set V (H) of H into the sets V0(H), V1(H), . . . , Vd(H),
where V0(H) = {u0} and Vi(H) = {u ∈ V (H): d(u, u0) = i} for i ∈ [d]. Since Hi

for i ∈ [k] is a spanning subgraph ofH, it follows from Lemma 3.3 that the edge set
E(Hi) of Hi can be partitioned into the sets E1(Hi), E2(Hi), . . . , Ed(Hi), where
Et(Hi) = {xy ∈ E(Hi):x ∈ Vt−1, y ∈ Vt} for t ∈ [d]. Note that if e ∈ Et(Hi) and
f ∈ Et′(Hi) with t′ ≥ t+ 2, then e and f are vertex-disjoint (see Figure 3).

For i ∈ [k− 1], we obtain a matching Mi of Hi by choosing one edge from ni

consecutive sets E2t−1(Hi) as follows.

Choose one edge from each of the sets E1(H1), E3(H1), . . . , E2n1−1(H1) to
get M1. Thus, we let M1 = {ut−1ut ∈ Et(H1): t = 1, 3, 5, . . . , 2n1−1}. In general,
we define Mi = {ut−1ut ∈ Et(Hi): t = 2pi + 1, 2pi + 3, . . . , 2pi + 2ni − 1}, where
p1 = 0 and pi = n1 + n2 + n3 + · · ·+ ni−1 for 2 ≤ i ≤ k − 1.

For j ∈ [s], the graph Hj is a copy of H. Let Hj
i be the subgraph of Hj corre-

sponding to the subgraphHi ofH for i ∈ [k]. Therefore the graphsHj
1 , H

j
2 , . . . , H

j
k

decompose the graph Hj . Further, the edge set E(Hj
i ) has a partition into non-

empty sets E1(H
j
i ), E2(H

j
i ), . . . , Ed(H

j
i ). For i ∈ [k − 1], let M j

i be the match-

ing in Hj
i corresponding to the matching Mi of H and let ujt be the vertex

of Hj corresponding to the vertex ut of H. Then M j
i = {ujt−1u

j
t ∈ Et(H

j
i ): t =

2pi+1, 2pi+3, . . . , 2pi+2ni−1}. LetM j be the union of these k−1 matchingsM j
i .

Therefore M j =
⋃k−1

i=1 M j
i =

{

uj0u
j
1, u

j
2u

j
3, . . . , u

j
2n1+···+2nk−1−2u

j
2n1+···+2nk−1−1

}

.

Clearly, M j is a matching in Hj .

We now construct the subgraphs G1, G2, . . . , Gk of G which give a decompo-
sition of G, as required.

Construction of the graphs Gi for i ∈ [k].

Let i ∈ [k−1]. We obtain Gi from H1
i ∪· · ·∪Hs

i by deleting the matching M j
i

fromHj
i for each j and then adding a matchingDi consisting of edges from the set
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F having one end in M j
i and the other end in M j+1

i or M j−1
i . More precisely, let

Di = {ujtu
j+1
t : j = 1, 3, . . . , s−1; t = 2pi, 2pi+2, . . . , 2pi+2ni−2}∪{ujtu

j+1
t : j =

2, 4, . . . , s; t = 2pi + 1, 2pi + 3, . . . , 2pi + 2ni − 1}.

t
t

t
t

t

t
t

t
t

tt
t

t
t

t
t

t

t
t

t

t
t

t
t

tt
t
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t

qqq q q q
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2pi+2
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i

H2
i

H3
i

H4
i
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i

2pi − 1

2pi + 2ni

2pi − 1

2pi − 1

2pi + 2ni

2pi + 2ni

2pi − 1

2pi − 1

2pi + 2ni

2pi + 2ni

Figure 4. The graph Gi.

For i ∈ [k − 1], let Gi =
(

⋃s
j=1(H

j
i −M j

i )
)

∪ Di (see Figure 4). Note that

Di is a matching consisting of ni edges between Hjand Hj+1 for each j ∈ [s] and
so the total number of edges in Di is sni.

For any i ∈ [k−1] and i′ ∈ [k−1] with i 6= i′, the graphs Hj
i and Hj

i′ are edge-
disjoint for each j. This implies that G1, G2, . . . , Gk−1 are mutually edge-disjoint
subgraphs of G. Since Hj

i is a 2ni-regular and spanning subgraph of Hj , Gi is

also a 2ni-regular and spanning subgraph of G. Further, as Hj
i is 2ni-connected,

Lemma 3.1 implies that Gi is also 2ni-connected.
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Let Gk = G−E(G1 ∪G2 ∪ · · · ∪Gk−1). The graph Gk is shown in Figure 5.

It is easy to see that Gk =
(

⋃s
j=1(H

j
k ∪M j)

)

∪ (F − D), where D =
⋃k−1

i=1 Di.

The edges of the matching M j are shown by the bold edges in Figure 5. Clearly,
D is a matching in G consisting of s(n1 + n2 + · · ·+ nk−1) = s(n− nk) edges of
F.

It follows that the graph Gk is a spanning and 2nk-regular subgraph of G.
Thus the graph G decomposes into the spanning subgraphs G1, G2, . . . , Gk.

It only remains to prove that the graph Gk is 2nk-connected.

s
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s
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s
s

s
s

s
s

s

s
s

s
s

s

s
s

s

s
s

s
s

s
s

s

s
s

s

qqq q q q

H1
k

H2
k

H3
k

H4
k

Hs
k

Figure 5. The graph Gk.

Claim. Gk is 2nk-connected.

Proof. Let S ⊂ V (Gk) =
⋃s

j=1 V (Hj) such that 0 < |S| ≤ 2nk − 1. It suffices

to prove that Gk − S is connected. Let Sj = V (Hj
k) ∩ S for j ∈ [s]. Since

V (Hj
k) = V (Hj), |V (Hj

k)| = |V (Hj)| = r = |C1||C2| · · · |Cn−1| ≥ 4n−1 = 22n−2 =
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22n−2nk+2nk−2 = 22n−2nk · 22nk−2 > (2n − 2nk)(2nk − 1) ≥ 2(n − nk)|S| ≥ (n −
nk) + |S|. Hence, there are at least r− (n− nk)− |S| > 0 edges between Hj

k −Sj

and Hj+1
k − Sj+1 in Gk − S.

Obviously at least one Sj is non-empty. We may assume that S1 6= ∅ and
|S1| ≥ |Sj | for j ∈ [s]. Suppose two more Sj are non-empty. Then |Sj | < 2nk − 2
for j ∈ [s] as |S| ≤ 2nk − 1. Hence each Hj

k − Sj is connected as Hj
k is (2nk − 2)-

connected. Further, Hj
k − Sj is connected to Hj+1

k − Sj+1 by edges of F − D.
This implies that Gk − S is connected.

Suppose Sj = ∅ for all j 6= 1. Therefore Hj
k − Sj = Hj

k is connected for all
j 6= 1. Obviously, each vertex of H1

k − S1 has a neighbour in H2
k or Hs

k. Hence
Gk − S is connected.

Suppose only one Sj other than S1 is nonempty. Suppose S2 6= ∅. Then
S = S1 ∪ S2. If H1

k − S1 and H2
k − S2 are connected, then they are connected to

each other by an edge of F −D and so Gk − S is connected. Suppose H1
k − S1

is not connected. Then |S1| = 2nk − 2 and |S2| = 1 as |S| ≤ 2nk − 1 and H1
k is

(2nk − 2)-connected. This implies that Hj
k − Sj for any j 6= 1 is connected. Let

T = Gk − (V (H1
k) ∪ S) = Gk − (V (H1

k) ∪ S2). Then T is connected. It suffices
to prove that every component of H1

k − S1 has a neighbour in T. Let W be a
component of H1

k − S1 and let v be a vertex of W. If v has a neighbour in Hs
k,

then we are through. Suppose v has no neighbour in Hs
k. Then v has a neighbour

v′ in H2
k . If v

′ /∈ S2, then also we are through. Suppose v′ ∈ S2. Then S2 = {v′}.
Also, v is an end-vertex of an edge of the matching M1. Therefore the degree of
v in H1

k is 2nk − 1. Hence v has a neighbour u in H1
k − S1. Obviously, u is in W.

Further, u has a neighbour in the subgraphs Hs
k or H2

k − S2 = H2
k − {v′} of T.

Thus W has a neighbour in the connected graph T. Hence Gk − S is connected.

Similarly, Gk − S is connected when Ss 6= ∅.

Suppose Sj 6= ∅ for some j /∈ {1, 2, s}. Then every component of H1
k −S1 has

a neighbour in H2
k or Hs

k. It follows that Gk − S is connected. This proves the
claim.

Thus, the graph G decomposes into the spanning subgraphs G1, G2, . . . , Gk,
where Gi is 2ni-regular and 2ni-connected for i = 1, 2, . . . , k. This completes the
proof.
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