ARC FAULT TOLERANCE OF CARTESIAN PRODUCT OF REGULAR DIGRAPHS ON SUPER-RESTRICTED ARC-CONNECTIVITY

Guozhen Zhang and Shiying Wang
School of Mathematical Sciences
Shanxi University
Taiyuan, Shanxi 030006, P.R. China
e-mail: guozhen@sxu.edu.cn

Abstract

Let $D=(V(D), A(D))$ be a strongly connected digraph. An arc set $S \subseteq A(D)$ is a restricted arc-cut of D if $D-S$ has a non-trivial strong component D_{1} such that $D-V\left(D_{1}\right)$ contains an arc. The restricted arcconnectivity $\lambda^{\prime}(D)$ is the minimum cardinality over all restricted arc-cuts of D. In [C. Balbuena, P. García-Vázquez, A. Hansberg and L.P. Montejano, On the super-restricted arc-connectivity of s-geodetic digraphs, Networks 61 (2013) 20-28], Balbuena et al. introduced the concept of super- λ^{\prime} digraphs. In this paper, we first introduce the concept of the arc fault tolerance of a digraph D on the super- λ^{\prime} property. We define a super- $\lambda^{\prime} \operatorname{digraph} D$ to be m-super- λ^{\prime} if $D-S$ is still super- λ^{\prime} for any $S \subseteq A(D)$ with $|S| \leq m$. The maximum value of such m, denoted by $S_{\lambda^{\prime}}(D)$, is said to be the arc fault tolerance of D on the super- λ^{\prime} property. $S_{\lambda^{\prime}}(D)$ is an index to measure the reliability of networks. Next we provide a necessary and sufficient condition for the Cartesian product of regular digraphs to be super- λ^{\prime}. Finally, we give the lower and upper bounds on $S_{\lambda^{\prime}}(D)$ for the Cartesian product D of regular digraphs and give an example to show that the lower and upper bounds are best possible. In particular, the exact value of $S_{\lambda^{\prime}}(D)$ is obtained in special cases.

Keywords: fault tolerance, restricted arc-connectivity, super-restricted arcconnectivity, Cartesian product, regular digraph.

2010 Mathematics Subject Classification: 05C40, 68M15.

1. Introduction

In a multiprocessor system, processors communicate by exchanging messages through an interconnection network whose topology is often modeled by a graph or a digraph $D=(V(D), A(D))$, where the vertex set $V(D)$ corresponds to processors, and the edge set or the arc set $A(D)$ corresponds to communication links. The properties of the graph or digraph determine the system's working efficiency. One fundamental consideration in the design of networks is reliability. An edge (arc)-cut of a (strongly) connected (di)graph D is a set of edges (arcs) whose removal makes the remaining (di)graph no longer (strongly) connected. The edge (arc)-connectivity $\lambda(D)$ is the minimum cardinality over all edge (arc)-cuts of D. High edge (arc)-connectivity is desirable since such a (di)graph is more reliable. It is well known that $\lambda(D) \leq \delta(D)$, where $\delta(D)$ is the minimum degree of D. Hence a (di)graph D with $\lambda(D)=\delta(D)$ is said to be maximally edge (arc)-connected.

To design more reliable networks, besides the requirement of maximal edge (arc)-connectivity, it is also desirable that the number of minimum edge (arc)cuts is as small as possible. For this purpose, Bauer et al. [1] defined the super- λ (di)graphs. A (strongly) connected (di)graph D is called a super edge (arc)connected (di)graph, in short, a super- λ (di)graph, if every minimum edge (arc)cut consists of edges (arcs) incident with one vertex. In order to estimate more precisely the reliability of networks, Esfahanian and Hakimi [6] introduced the concept of restricted edge-connectivity. A set of edges S in a connected graph G is a restricted edge-cut if $G-S$ is disconnected and contains no isolated vertex. The restricted edge-connectivity $\lambda^{\prime}(G)$ is the minimum cardinality over all restricted edge-cuts of G. A connected graph G is called a super-restricted edge-connected graph, in short, a super- λ^{\prime} graph, if every minimum restricted edge-cut consists of edges adjacent to one edge.

Recently, as a generalization of restricted edge-connectivity to digraphs, the concept of restricted arc-connectivity was introduced by Volkmann [11]. Let D be a strongly connected digraph. An arc set S of D is a restricted arc-cut of D if $D-S$ has a non-trivial strong component D_{1}, that means a strong component with order at least 2 , such that $D-V\left(D_{1}\right)$ contains an arc. The restricted arcconnectivity $\lambda^{\prime}(D)$ is the minimum cardinality over all restricted arc-cuts of D. A strongly connected digraph D is called λ^{\prime}-connected if $\lambda^{\prime}(D)$ exists. A restricted arc-cut S is called a λ^{\prime}-cut if $|S|=\lambda^{\prime}(D)$. For $u \in V(D)$, let $d^{+}(u)=d_{D}^{+}(u)=$ $|\{v \in V(D): u v \in A(D)\}|$ and $d^{-}(u)=d_{D}^{-}(u)=|\{v \in V(D): v u \in A(D)\}|$. In [11], Volkmann proved that each strong digraph D of order $n \geq 4$ and girth $g=2$ or $g=3$ except some families of digraphs is λ^{\prime}-connected and satisfies $\lambda(D) \leq \lambda^{\prime}(D) \leq \xi(D)$, where $\xi(D)$ is defined as follows. If $C_{g}=u_{1} u_{2} \cdots u_{g} u_{1}$ is a shortest cycle of D, then $\xi\left(C_{g}\right)=\min \left\{\sum_{i=1}^{g} d^{+}\left(u_{i}\right)-g, \sum_{i=1}^{g} d^{-}\left(u_{i}\right)-g\right\}$ and $\xi(D)=\min \left\{\xi\left(C_{g}\right): C_{g}\right.$ is a shortest cycle of $\left.D\right\}$.

For the investigation of $\lambda^{\prime}(D)$, Wang and Lin [12] introduced the notion of arc-degree. For a pair X, Y of nonempty vertex sets of a digraph D, we define $(X, Y)=\{x y \in A(D): x \in X, y \in Y\}$. If $Y=\bar{X}=V(D) \backslash X$, we write $\partial_{D}^{+}(X)$ or $\partial_{D}^{-}(Y)$ instead of (X, Y). When the digraph under consideration is obvious, we omit the subscript D and use $\partial^{+}(X)$ and $\partial^{-}(Y)$. Usually, we abbreviate $\partial^{+}(\{x\})$ and $\partial^{-}(\{x\})$ to $\partial^{+}(x)$ and $\partial^{-}(x)$, respectively. For any $x y \in A(D)$, the arc-degree of $x y$ is defined as $\xi^{\prime}(x y)=\min \left\{\left|\partial^{+}(\{x, y\})\right|,\left|\partial^{-}(\{x, y\})\right|, \mid \partial^{+}(x) \cup\right.$ $\partial^{-}(y)\left|,\left|\partial^{-}(x) \cup \partial^{+}(y)\right|\right\}$. The minimum arc-degree of D is $\xi^{\prime}(D)=\min \left\{\xi^{\prime}(x y)\right.$: $x y \in A(D)\}$. The arc-degree of an $\operatorname{arc} x y \in A(D)$ can be computed in terms of the degrees of vertices x and y. An arc $x y \in A(D)$ is a symmetric arc if $y x \in A(D)$. The set of symmetric arcs of D is denoted by $\operatorname{Sym}(D)$. If $x y \notin \operatorname{Sym}(D)$, then $\xi^{\prime}(x y)=\min \left\{d^{+}(x)+d^{+}(y)-1, d^{-}(x)+d^{-}(y)-1, d^{+}(x)+d^{-}(y)-1, d^{-}(x)+\right.$ $\left.d^{+}(y)\right\}$. If $x y \in \operatorname{Sym}(D)$, then $\xi^{\prime}(x y)=\min \left\{d^{+}(x)+d^{+}(y)-2, d^{-}(x)+d^{-}(y)-\right.$ $\left.2, d^{+}(x)+d^{-}(y)-1, d^{-}(x)+d^{+}(y)-1\right\}$. By $[12], \xi^{\prime}(D) \leq \xi(D)$ for many digraphs D, for example, for all the digraphs D with $\delta(D) \geq 3$.

More recently, Balbuena et al. [3] extended the notion of super- λ^{\prime} graphs to digraphs as follows. A λ^{\prime}-connected digraph D is called a super-restricted arcconnected digraph, in short, a super- λ^{\prime} digraph, if and only if for every λ^{\prime}-cut S there exists $x y \in A(D)$ such that $S \in \Omega_{x y}=\left\{\partial^{+}(\{x, y\}), \partial^{-}(\{x, y\}), \partial^{+}(x) \cup\right.$ $\left.\partial^{-}(y), \partial^{-}(x) \cup \partial^{+}(y)\right\}$. In the same article, Balbuena et al. provided a sufficient condition for an s-geodetic digraph to be super- λ^{\prime}. Super-restricted arcconnectivity is a more refined measure for the network reliability than restricted arc-connectivity.

A natural question is how many links of a super- λ^{\prime} interconnection network an adversary needs to destroy such that the damaged network is not super- λ^{\prime} any more. In fact, the similar question has been investigated for the super- λ (di)graphs in $[4,7,8,16]$. In this paper, we study this problem for the super- λ^{\prime} digraphs. For this purpose, we first introduce the following concepts.

Definition. Let m be a nonnegative integer. A super- λ^{\prime} digraph D is m-super- λ^{\prime} if $D-S$ is still super- λ^{\prime} for any $S \subseteq A(D)$ with $|S| \leq m$.

Definition. The arc fault tolerance of a super- λ^{\prime} digraph D on the super- λ^{\prime} property, denoted by $S_{\lambda^{\prime}}(D)$, is the integer m such that D is m-super- λ^{\prime} but not $(m+1)$-super- λ^{\prime}.

Example 1. Let C_{4} be an undirected cycle of order 4 , and let D be the digraph obtained from C_{4} by replacing each edge of C_{4} by two oppositely oriented arcs with the same ends. Then D is 0 -super- λ^{\prime}. For any $e \in A(D), D-e$ is still super- λ^{\prime}. So D is 1 -super- λ^{\prime}. For any $u \in V(D)$, let $\left\{e_{1}, e_{2}\right\}=\partial^{+}(u)$. Then D is not 2 -super- λ^{\prime} since $D-\left\{e_{1}, e_{2}\right\}$ is not strongly connected. Thus $S_{\lambda^{\prime}}(D)=1$.

Now, we answer the above question. An adversary needs to destroy at least $S_{\lambda^{\prime}}(D)+1$ links for destroying the super- λ^{\prime} property of an interconnection network D. $S_{\lambda^{\prime}}(D)$ can be used to evaluate the reliability of an interconnection network D. Therefore, the determination of $S_{\lambda^{\prime}}(D)$ is full of scientific significance as well as application value.

For designing large-scale interconnection networks, the Cartesian product is an important method to obtain large digraphs from smaller ones, with a number of parameters that can be easily calculated from the corresponding parameters of those small initial digraphs. The Cartesian product preserves many nice properties of the initial digraphs (see, for example, [14]). The Cartesian product of digraphs D_{1} and D_{2} is the digraph $D_{1} \times D_{2}$ whose vertex set is $V\left(D_{1}\right) \times V\left(D_{2}\right)$ and whose arc set is the set of all pairs $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ such that either $x_{1} x_{2} \in A\left(D_{1}\right)$ and $y_{1}=y_{2}$, or $y_{1} y_{2} \in A\left(D_{2}\right)$ and $x_{1}=x_{2}$. In $[5,9,10,13,14,15,17]$, the authors introduced some results about (arc) connectivity of the Cartesian product of digraphs.

For graph-theoretical terminology and notation not defined here we follow [2]. We only consider finite digraphs D without loops and multiple arcs. For a vertex u of $D, d_{D}^{+}(u)$ and $d_{D}^{-}(u)$ are called the out-degree and in-degree of u, respectively. If D has vertices $v_{1}, v_{2}, \ldots, v_{n}$, the sequence $\left(d_{D}^{+}\left(v_{1}\right), d_{D}^{+}\left(v_{2}\right), \ldots, d_{D}^{+}\left(v_{n}\right)\right)$ is called an out-degree sequence of D. An in-degree sequence of D can be defined similarly. Let $\delta^{+}(D)=\min \left\{d_{D}^{+}(u): u \in V(D)\right\}$ and $\delta^{-}(D)=\min \left\{d_{D}^{-}(u): u \in V(D)\right\}$. Then $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$. For subsets X and X^{\prime} of $V(D)$, denote by $D[X]$ the subdigraph of D induced by X and write $X \subset X^{\prime}$ if X is properly contained in X^{\prime}. Denote by $\overleftrightarrow{K}_{n}$ the complete digraph on n vertices. Any digraph with just one vertex is referred to as trivial. Let D and H be two digraphs. The union $D \cup H$ of D and H is the digraph with vertex set $V(D) \cup V(H)$ and arc set $A(D) \cup A(H)$. Let D_{i} be a digraph for $i=1,2, \ldots, n$. For simplicity, we write $\nu_{i}=\left|V\left(D_{i}\right)\right|, \lambda_{i}=\lambda\left(D_{i}\right), \delta_{i}=\delta\left(D_{i}\right), \delta_{i}^{+}=\delta^{+}\left(D_{i}\right)$ and $\delta_{i}^{-}=\delta^{-}\left(D_{i}\right)$. For $y \in V\left(D_{2}\right)$, we use D_{1}^{y} to denote the subdigraph of $D_{1} \times D_{2}$ induced by the vertex set $\left\{(x, y): x \in V\left(D_{1}\right)\right\}$. Clearly, D_{1}^{y} is isomorphic to D_{1}. D_{2}^{x} can be defined similarly for $x \in V\left(D_{1}\right)$.

A regular network has the advantages of easy implementation and low cost when it is manufactured. Hence, in this paper, we focus on regular digraphs. A digraph D is k-regular if $d_{D}^{+}(v)=d_{D}^{-}(v)=k$ for all $v \in V(D)$; a regular digraph is one that is k-regular for some k. Let $D_{1} \times D_{2}$ be the Cartesian product of regular digraphs D_{1} and D_{2}. We provide a necessary and sufficient condition for $D_{1} \times D_{2}$ to be super- λ^{\prime} and give the lower and upper bounds on $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$. An example shows that the lower and upper bounds are best possible. In particular, the exact value of $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$ is obtained in special cases. These results are also generalized to the Cartesian product of n regular digraphs.

2. A Necessary and Sufficient Condition for the Cartesian Product of Regular Digraphs to Be Super- λ^{\prime}

We first give two lemmas.
Lemma 2 [12]. Let D be a strongly connected digraph with $\delta^{+}(D) \geq 3$ or $\delta^{-}(D) \geq 3$. Then D is λ^{\prime}-connected and $\lambda^{\prime}(D) \leq \xi^{\prime}(D)$.

Lemma 3 [3]. Let D be a λ^{\prime}-connected digraph and let S be a λ^{\prime}-cut of D. If D is not super- λ^{\prime}, then there exists a subset of vertices $X \subset V(D)$ such that $S=\partial^{+}(X)$ and both $D[X]$ and $D[\bar{X}]$ contain an arc.

Theorem 4. Let D_{i} be a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 2$ for $i=1,2$. Then $D_{1} \times D_{2}$ is super $-\lambda^{\prime}$ if and only if $D_{1} \times D_{2} \not \approx \overleftrightarrow{K}_{n} \times D$, where $n \geq 3$ and D is a strongly connected k-regular digraph with $k=\lambda(D)=2$.

Proof. Necessity. Let S be an arbitrary λ^{\prime}-cut of $D_{1} \times D_{2}$. Since $D_{1} \times D_{2}$ is superλ^{\prime}, there exists $x y \in A\left(D_{1} \times D_{2}\right)$ such that $S \in \Omega_{x y}=\left\{\partial^{+}(\{x, y\}), \partial^{-}(\{x, y\})\right.$, $\left.\partial^{+}(x) \cup \partial^{-}(y), \partial^{-}(x) \cup \partial^{+}(y)\right\}$. Note that $\xi^{\prime}(x y)=\min \left\{\left|\partial^{+}(\{x, y\})\right|,\left|\partial^{-}(\{x, y\})\right|\right.$, $\left.\left|\partial^{+}(x) \cup \partial^{-}(y)\right|,\left|\partial^{-}(x) \cup \partial^{+}(y)\right|\right\}$. Thus $\lambda^{\prime}\left(D_{1} \times D_{2}\right)=|S| \geq \xi^{\prime}(x y) \geq \xi^{\prime}\left(D_{1} \times\right.$ $\left.D_{2}\right)$. By $\delta\left(D_{1} \times D_{2}\right) \geq 4$, Lemma 2 yields $\lambda^{\prime}\left(D_{1} \times D_{2}\right) \leq \xi^{\prime}\left(D_{1} \times D_{2}\right)$. Hence $\lambda^{\prime}\left(D_{1} \times D_{2}\right)=\xi^{\prime}\left(D_{1} \times D_{2}\right)$. Suppose that $D_{1} \times D_{2} \cong \overleftrightarrow{K}_{n} \times D$, where $n \geq 3$ and D is a strongly connected k-regular digraph with $k=\lambda(D)=2$. Then $\stackrel{\zeta}{K}_{n} \times D$ is super- λ^{\prime} and $\lambda^{\prime}\left(\overleftrightarrow{K}_{n} \times D\right)=\xi^{\prime}\left(\overleftrightarrow{K}_{n} \times D\right)$. Since $\overleftrightarrow{K}_{n} \times D$ is $(n+1)$-regular, for any $u \in V\left(\overleftrightarrow{K}_{n} \times D\right)$, $d^{+}(u)=d^{-}(u)=n+1$. Let $x y \in A\left(\overleftrightarrow{K}_{n} \times D\right)$. If $x y \notin \operatorname{Sym}\left(\overleftrightarrow{K}_{n} \times D\right), \xi^{\prime}(x y)=\min \left\{d^{+}(x)+d^{+}(y)-1, d^{-}(x)+d^{-}(y)-1, d^{+}(x)+\right.$ $\left.d^{-}(y)-1, d^{-}(x)+d^{+}(y)\right\}=2 n+1$. If $x y \in \operatorname{Sym}\left(\overleftrightarrow{K}_{n} \times D\right), \xi^{\prime}(x y)=\min \left\{d^{+}(x)+\right.$ $\left.d^{+}(y)-2, d^{-}(x)+d^{-}(y)-2, d^{+}(x)+d^{-}(y)-1, d^{-}(x)+d^{+}(y)-1\right\}=2 n$. Note that $\operatorname{Sym}\left(\overleftrightarrow{K}_{n} \times D\right) \neq \emptyset$. Thus $\xi^{\prime}\left(\overleftrightarrow{K}_{n} \times D\right)=2 n$ and so $\lambda^{\prime}\left(\overleftrightarrow{K}_{n} \times D\right)=2 n$. By $\lambda(D)=$ 2 , there exists a minimum arc-cut $\left\{y_{1} y_{2}, y_{3} y_{4}\right\}$ of D such that $D-\left\{y_{1} y_{2}, y_{3} y_{4}\right\}$ has t strong components $B_{1}, B_{2}, \ldots, B_{t}$. Denote $V\left(\overleftrightarrow{K}_{n}\right)=\left\{x_{j}: j=1,2, \ldots, n\right\}$ and denote by $D^{x_{j}}$ the subdigraph of $\overleftrightarrow{K}_{n} \times D$ induced by the vertex set $\left\{\left(x_{j}, y\right)\right.$: $y \in V(D)\}$. Clearly $D^{x_{j}} \cong D$. Thus $D^{x_{j}}-\left\{\left(x_{j}, y_{1}\right)\left(x_{j}, y_{2}\right),\left(x_{j}, y_{3}\right)\left(x_{j}, y_{4}\right)\right\}$ has t strong components. Let $S=\bigcup_{j=1}^{n}\left\{\left(x_{j}, y_{1}\right)\left(x_{j}, y_{2}\right),\left(x_{j}, y_{3}\right)\left(x_{j}, y_{4}\right)\right\}$. Then $|S|=$ $2 n$ and $\overleftrightarrow{K}_{n} \times D-S$ has t strong components $\overleftrightarrow{K}_{n} \times B_{1}, \overleftrightarrow{K}_{n} \times B_{2}, \ldots, \overleftrightarrow{K}_{n} \times B_{t}$ By $n \geq 3, S$ is clearly a restricted arc-cut of $\overleftrightarrow{K}_{n} \times D$. Note that $\lambda^{\prime}\left(\overleftrightarrow{K}_{n} \times D\right)=$ $2 n=|S|$. Thus S is a λ^{\prime}-cut. By $n \geq 3$, for any $x y \in A\left(\overleftrightarrow{K}_{n} \times D\right), S \notin \Omega_{x y}$, which implies that $\overleftrightarrow{K}_{n} \times D$ is not super- λ^{\prime}, a contradiction. We conclude that $D_{1} \times D_{2} \not \approx \overleftrightarrow{K}_{n} \times D$

Sufficiency. Let $D^{*}=D_{1} \times D_{2}$. By Lemma 2, D^{*} is λ^{\prime}-connected and $\lambda^{\prime}\left(D^{*}\right) \leq \xi^{\prime}\left(D^{*}\right)$. Suppose that D^{*} is not super- λ^{\prime}. Then there exists a λ^{\prime}-cut S
such that for any $x y \in A\left(D^{*}\right), S \notin \Omega_{x y}$. By Lemma 3 , there exists a subset of vertices $X \subset V\left(D^{*}\right)$ such that $S=\partial^{+}(X)$ and both $D^{*}[X]$ and $D^{*}[\bar{X}]$ contain an arc. Thus $|X| \geq 2$ and $|\bar{X}| \geq 2$. If $|X|=2$, then there exists $u v \in A\left(D^{*}[X]\right)$ such that $S=\partial^{+}(\{u, v\}) \in \Omega_{u v}$, a contradiction. Thus $|X| \geq 3$. Similarly, $|\bar{X}| \geq 3$. We give four claims.

Claim 1. $|X| \geq k_{1}+k_{2}-1$.
Since D_{i} is k_{i}-regular for $i=1,2, D^{*}$ is $\left(k_{1}+k_{2}\right)$-regular. If $\operatorname{Sym}\left(D^{*}\right) \neq \emptyset$, then $|S|=\lambda^{\prime}\left(D^{*}\right) \leq \xi^{\prime}\left(D^{*}\right)=2 k_{1}+2 k_{2}-2$. Note that $S=\partial^{+}(X)$. Thus

$$
|X|\left(k_{1}+k_{2}\right)-|X|(|X|-1) \leq|S| \leq 2 k_{1}+2 k_{2}-2
$$

which implies that $(|X|-2)\left(k_{1}+k_{2}-|X|-1\right) \leq 0$. By $|X| \geq 3,|X| \geq k_{1}+k_{2}-1$.
If $\operatorname{Sym}\left(D^{*}\right)=\emptyset$, then $|S|=\lambda^{\prime}\left(D^{*}\right) \leq \xi^{\prime}\left(D^{*}\right)=2 k_{1}+2 k_{2}-1$. Since $D^{*}[X]$ is not a complete digraph, $\sum_{v \in X} d_{D^{*}[X]}^{+}(v) \leq|X|(|X|-1)-1$. Hence

$$
|X|\left(k_{1}+k_{2}\right)-|X|(|X|-1)+1 \leq|S| \leq 2 k_{1}+2 k_{2}-1
$$

Similarly, $|X| \geq k_{1}+k_{2}-1$. Claim 1 holds.
Claim 2. For any $y \in V\left(D_{2}\right)$ and any $x \in V\left(D_{1}\right), X \nsubseteq V\left(D_{1}^{y}\right)$ and $X \nsubseteq V\left(D_{2}^{x}\right)$.
By contradiction. Suppose that $X \subseteq V\left(D_{1}^{y}\right)$ for some $y \in V\left(D_{2}\right)$. If $X \subset$ $V\left(D_{1}^{y}\right)$, then, by Claim 1 and $k_{i} \geq 2$ for $i=1,2, \lambda^{\prime}\left(D^{*}\right)=|S| \geq|X| k_{2}+$ $\lambda_{1} \geq\left(k_{1}+k_{2}-1\right) k_{2}+k_{1} \geq 2 k_{1}+2 k_{2}+k_{1}-2 \geq 2 k_{1}+2 k_{2}>\xi^{\prime}\left(D^{*}\right)$, a contradiction. If $X=V\left(D_{1}^{y}\right)$, then $|S|=|X| k_{2}$. If $|X| \geq k_{1}+k_{2}$ or $k_{2} \geq 3$, then $|S|=|X| k_{2} \geq 2 k_{1}+2 k_{2}$ or $|S|=|X| k_{2} \geq 3\left(k_{1}+k_{2}-1\right)>2 k_{1}+2 k_{2}$. This means that $\lambda^{\prime}\left(D^{*}\right)=|S|>\xi^{\prime}\left(D^{*}\right)$, a contradiction. If $|X|=k_{1}+k_{2}-1$ and $k_{2}=2$, then $|X|=\left|V\left(D_{1}^{y}\right)\right|=k_{1}+1$ and so D_{1}^{y} is a complete digraph. Thus $D_{1} \times D_{2} \cong \overleftrightarrow{K}_{n} \times D$, where $n=|X| \geq 3$ and D is a strongly connected k-regular digraph with $k=\lambda(D)=2$, a contradiction. The case that $X \nsubseteq V\left(D_{2}^{x}\right)$ for any $x \in V\left(D_{1}\right)$ can be proved analogously. Claim 2 holds.

By Claim 2, X contains two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ such that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. Let $\widetilde{D_{1}^{y_{i}}}=D_{1}^{y_{i}}-S$ and $\widetilde{D_{2}^{x_{i}}}=D_{2}^{x_{i}}-S$ for $i=1,2$.
Claim 3. At least one graph of $\widetilde{D_{1}^{y_{1}}}, \widetilde{D_{1}^{y_{2}}}, \widetilde{D_{2}^{x_{1}}}$ and $\widetilde{D_{2}^{x_{2}}}$ is strongly connected.
By contradiction. Suppose that $\widetilde{D_{1}^{y_{i}}}$ and $\widetilde{D_{2}^{x_{i}}}$ are not strongly connected for $i=1,2$. Then $\lambda^{\prime}\left(D^{*}\right)=|S| \geq 2 \lambda_{1}+2 \lambda_{2}=2 k_{1}+2 k_{2}>\xi^{\prime}\left(D^{*}\right)$, a contradiction. Claim 3 holds.

By Claim 3, we may assume, without loss of generality, that $\widetilde{D_{1}^{y_{1}}}$ is strongly connected and so $V\left(D_{1}^{y_{1}}\right) \subseteq X$.
Claim 4. For some $x \in V\left(D_{1}\right), \widetilde{D_{2}^{x}}$ is strongly connected.

By contradiction. Suppose that $\widetilde{D_{2}^{x}}$ is not strongly connected for any $x \in$ $V\left(D_{1}\right)$. Then $|S| \geq \nu_{1} \lambda_{2}=\nu_{1} k_{2}$. If $\operatorname{Sym}\left(D^{*}\right) \neq \emptyset$, then $2 k_{1}+2 k_{2}-2=\xi^{\prime}\left(D^{*}\right) \geq$ $|S| \geq \nu_{1} k_{2}$. Thus $2 k_{1}-2 \geq\left(\nu_{1}-2\right) k_{2} \geq\left(k_{1}-1\right) k_{2} \geq 2 k_{1}-2$, which implies that all the inequalities become equalities. Hence $\nu_{1}=k_{1}+1$ and $k_{2}=2$. This means that $D_{1} \times D_{2} \cong \overleftrightarrow{K}_{n} \times D$, where $n \geq 3$ and D is a strongly connected k-regular digraph with $k=\lambda(D)=2$, a contradiction. If $\operatorname{Sym}\left(D^{*}\right)=\emptyset$, then $2 k_{1}+2 k_{2}-1=\xi^{\prime}\left(D^{*}\right) \geq|S| \geq \nu_{1} k_{2}$. Thus $2 k_{1}-1 \geq\left(\nu_{1}-2\right) k_{2} \geq k_{1} k_{2} \geq 2 k_{1}$, a contradiction. Claim 4 holds.

By Claim 4, $V\left(D_{2}^{x}\right) \subseteq X$ or $V\left(D_{2}^{x}\right) \subseteq \bar{X}$. Since $V\left(D_{1}^{y_{1}}\right) \subseteq X$ and $V\left(D_{2}^{x}\right) \cap$ $V\left(D_{1}^{y_{1}}\right)=\left\{\left(x, y_{1}\right)\right\}$, we see that $\left(x, y_{1}\right) \in X$ and so $V\left(D_{2}^{x}\right) \subseteq X$. Now, $V\left(D_{1}^{y_{1}}\right) \cup$ $V\left(D_{2}^{x}\right) \subseteq X$. A similar argument can be used to establish that there exist two vertices $y^{\prime} \in V\left(D_{2}\right)$ and $x^{\prime} \in V\left(D_{1}\right)$ such that $V\left(D_{1}^{y^{\prime}}\right) \cup V\left(D_{2}^{x^{\prime}}\right) \subseteq \bar{X}$. Thus $V\left(D_{1}^{y_{1}}\right) \cap V\left(D_{2}^{x^{\prime}}\right)=\left\{\left(x^{\prime}, y_{1}\right)\right\} \subseteq X \cap \bar{X}$, a contradiction. We conclude that $D_{1} \times D_{2}$ is super- λ^{\prime}.

3. $\quad S_{\lambda^{\prime}}(D)$ for the Cartesian Product of Regular Digraphs

For convenience, denote $\omega_{D}(X)=\left|\partial_{D}^{+}(X)\right|=\left|\partial^{+}(X)\right|$.
Lemma 5. Let D be a strongly connected digraph with $\delta^{+}(D) \geq 3$ or $\delta^{-}(D) \geq 3$. If $\omega_{D}(X)>\xi^{\prime}(D)$ holds for any $X \subseteq V(D)$ with $|X| \geq 3$ and $|\bar{X}| \geq 3$, then D is super- λ^{\prime}.

Proof. By Lemma 2, D is λ^{\prime}-connected and $\lambda^{\prime}(D) \leq \xi^{\prime}(D)$. Suppose, to the contrary, that D is not super- λ^{\prime}. Then there exists a λ^{\prime}-cut S of D such that for any $x y \in A(D), S \notin \Omega_{x y}$. By Lemma 3 , there exists a subset of vertices $X \subset V(D)$ such that $S=\partial^{+}(X)$ and both $D[X]$ and $D[\bar{X}]$ contain an arc. Thus $|X| \geq 2$ and $|\bar{X}| \geq 2$. If $|X|=2$, then there exists $u v \in A(D[X])$ such that $S=\partial^{+}(\{u, v\}) \in \Omega_{u v}$, a contradiction. Thus $|X| \geq 3$. Similarly, $|\bar{X}| \geq 3$. Hence $\xi^{\prime}(D) \geq \lambda^{\prime}(D)=|S|=\omega_{D}(X)>\xi^{\prime}(D)$, a contradiction. We conclude that D is super- λ^{\prime}.

Lemma 6. Let D be a k-regular digraph. Then $\xi^{\prime}(D-S) \leq \xi^{\prime}(D)$ for any $S \subseteq A(D)$ with $|S| \leq k-1$.

Proof. Since D is k-regular, $\xi^{\prime}(D) \geq 2 k-2$. By $|S| \leq \delta(D)-1$, there exists $x y \in A(D-S)$ such that $x y$ is adjacent to at least one arc a in S. Without loss of generality, assume that $a=x u$ with $u \in V(D)$ and $u \neq y$. Thus $\xi^{\prime}(D-$ $S) \leq \xi^{\prime}(x y) \leq \min \left\{d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1, d_{D-S}^{-}(x)+d_{D-S}^{-}(y)-1, d_{D-S}^{+}(x)+\right.$ $\left.d_{D-S}^{-}(y)-1, d_{D-S}^{-}(x)+d_{D-S}^{+}(y)\right\} \leq \min \left\{d_{D}^{+}(x)+d_{D}^{+}(y)-2, d_{D}^{-}(x)+d_{D}^{-}(y)-\right.$ $\left.1, d_{D}^{+}(x)+d_{D}^{-}(y)-2, d_{D}^{-}(x)+d_{D}^{+}(y)\right\}=2 k-2 \leq \xi^{\prime}(D)$.

Lemma 7. Let D be a digraph with $\delta(D) \geq 4$. Then $\delta^{+}(D-S) \geq 3$ or $\delta^{-}(D-$ $S) \geq 3$ for any $S \subseteq A(D)$ with $|S| \leq \delta(D)-1$.

Proof. If all the arcs in S are incident with a vertex x, then, for any $y \in V(D) \backslash$ $\{x\}, \min \left\{d_{D-S}^{+}(y), d_{D-S}^{-}(y)\right\} \geq \delta(D)-1 \geq 3$. In order to prove that $\delta^{+}(D-S) \geq$ 3 or $\delta^{-}(D-S) \geq 3$, it suffices to show that $d_{D-S}^{+}(x) \geq 3$ or $d_{D-S}^{-}(x) \geq 3$. Let $S=S_{0} \cup S_{1}$ with $S_{0} \cap S_{1}=\emptyset, S_{0} \subseteq \partial^{+}(x)$ and $S_{1} \subseteq \partial^{-}(x)$. Then $\left|S_{0}\right|+\left|S_{1}\right|=|S|$ and so $\left|S_{0}\right| \leq\left\lfloor\frac{|S|}{2}\right\rfloor$ or $\left|S_{1}\right| \leq\left\lfloor\frac{|S|}{2}\right\rfloor$. Without loss of generality, assume that $\left|S_{0}\right| \leq\left\lfloor\frac{|S|}{2}\right\rfloor$. Then $d_{D-S}^{+}(x)=d_{D}^{+}(x)-\left|S_{0}\right| \geq d_{D}^{+}(x)-\left\lfloor\frac{|S|}{2}\right\rfloor \geq \delta(D)-\left\lfloor\frac{\delta(D)-1}{2}\right\rfloor=$ $\left\lceil\frac{\delta(D)+1}{2}\right\rceil \geq\left\lceil\frac{4+1}{2}\right\rceil=3$.

If exactly $|S|-1$ arcs in S are incident with a vertex x, then, for any $y \in$ $V(D) \backslash\{x\}, d_{D-S}^{+}(y) \geq 3$ or $d_{D-S}^{-}(y) \geq 3$. In order to prove that $\delta^{+}(D-S) \geq 3$ or $\delta^{-}(D-S) \geq 3$, it suffices to show that $d_{D-S}^{+}(x) \geq 3$ and $d_{D-S}^{-}(x) \geq 3$. Let $S^{\prime}=S \cap\left(\partial^{+}(x) \cup \partial^{-}(x)\right)$. Then $\left|S^{\prime}\right|=|S|-1$. If $S^{\prime} \subseteq \partial^{+}(x)$, then $d_{D-S}^{-}(x)=d_{D}^{-}(x) \geq 4$. If $S^{\prime} \subseteq \partial^{-}(x)$, then $d_{D-S}^{+}(x)=d_{D}^{+}(x) \geq 4$. Next consider the case $S^{\prime} \nsubseteq \partial^{+}(x)$ and $S^{\prime} \nsubseteq \partial^{-}(x)$. Let $S^{\prime}=S_{0}^{\prime} \cup S_{1}^{\prime}$ with $S_{0}^{\prime} \cap S_{1}^{\prime}=\emptyset$, $S_{0}^{\prime} \subseteq \partial^{+}(x)$ and $S_{1}^{\prime} \subseteq \partial^{-}(x)$. Then $\left|S_{0}^{\prime}\right| \geq 1,\left|S_{1}^{\prime}\right| \geq 1$ and $\left|S_{0}^{\prime}\right|+\left|S_{1}^{\prime}\right|=\left|S^{\prime}\right|$. Note that $\left|S^{\prime}\right|=|S|-1 \leq \delta(D)-2$. Thus $\left|S_{0}^{\prime}\right| \leq \delta(D)-3$ and $\left|S_{1}^{\prime}\right| \leq \delta(D)-3$, which implies that $d_{D-S}^{+}(x)=d_{D}^{+}(x)-\left|S_{0}^{\prime}\right| \geq \delta(D)-(\delta(D)-3)=3$ and $d_{D-S}^{-}(x) \geq$ $\delta(D)-(\delta(D)-3)=3$.

Suppose that at most $|S|-2 \operatorname{arcs}$ in S are incident with a vertex. If $|S|-2=1$, then any two arcs in S are not adjacent. It follows that for any $y \in V(D)$, $\min \left\{d_{D-S}^{+}(y), d_{D-S}^{-}(y)\right\} \geq \delta(D)-1 \geq 3$ and so $\delta(D-S) \geq 3$. If $|S|-2 \geq 2$, then for any $y \in V(D), \min \left\{d_{D-S}^{+}(y), d_{D-S}^{-}(y)\right\} \geq \delta(D)-(|S|-2) \geq \delta(D)-$ $(\delta(D)-3)=3$ and so $\delta(D-S) \geq 3$.

Lemma 8. Let $D=D_{1} \times D_{2}$, where D_{i} is a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Then $\omega_{D-S}(X)>\xi^{\prime}(D-S)$ holds for any $S \subseteq A(D)$ and any $X \subseteq V(D)$ such that $|S| \leq k_{1}+k_{2}-1,|X| \geq 3$ and $X \subset V\left(D_{1}^{y_{0}}\right)$ with $y_{0} \in V\left(D_{2}\right)$ or $X \subset V\left(D_{2}^{x_{0}}\right)$ with $x_{0} \in V\left(D_{1}\right)$.

Proof. Suppose, to the contrary, that there exists a subset S of $A(D)$ and a subset X of $V(D)$ satisfying the conditions of the lemma such that

$$
\begin{equation*}
\omega_{D-S}(X) \leq \xi^{\prime}(D-S) \tag{1}
\end{equation*}
$$

Case 1. $\operatorname{Sym}(D) \neq \emptyset$. Note that D is $\left(k_{1}+k_{2}\right)$-regular. Thus $\xi^{\prime}(D)=2 k_{1}+$ $2 k_{2}-2$. By $|S| \leq k_{1}+k_{2}-1$, Lemma 6 yields $\xi^{\prime}(D-S) \leq \xi^{\prime}(D)=2 k_{1}+2 k_{2}-2$. Thus $2 k_{1}+2 k_{2}-2 \geq \xi^{\prime}(D-S) \geq \omega_{D-S}(X) \geq \omega_{D}(X)-|S| \geq \omega_{D}(X)-\left(k_{1}+k_{2}-1\right)$ and so

$$
\begin{equation*}
\omega_{D}(X) \leq 3 k_{1}+3 k_{2}-3 . \tag{2}
\end{equation*}
$$

Let $|X|=a \geq 3$. Assume that $X \subset V\left(D_{1}^{y_{0}}\right)$ with $y_{0} \in V\left(D_{2}\right)$. Then $\omega_{D}(X)=$ $\omega_{D_{1}^{y_{0}}}(X)+\left|\left(X, \overline{V\left(D_{1}^{y_{0}}\right)}\right)\right|=\omega_{D_{1}^{y_{0}}}(X)+\sum_{z \in X}\left|\left(\{z\}, \overline{V\left(D_{1}^{y_{0}}\right)}\right)\right|=\omega_{D_{1}^{y_{0}}}(X)+a k_{2}$. Combining this with (2), we have

$$
\begin{equation*}
3 k_{1} \geq \omega_{D_{1}^{y_{0}}}(X)+(a-3) k_{2}+3 \tag{3}
\end{equation*}
$$

Note that $a \geq 3$ and $k_{2} \geq 3$. Thus (3) yields

$$
\begin{equation*}
3 k_{1} \geq \omega_{D_{1}^{y_{0}}}(X)+3 a-6 \tag{4}
\end{equation*}
$$

For any vertex $z \in X$, since $\left|\left(\{z\}, V\left(D_{1}^{y_{0}}\right) \backslash X\right)\right|=\left|\left(\{z\}, V\left(D_{1}^{y_{0}}\right)\right)\right|-|(\{z\}, X)| \geq$ $k_{1}-(a-1)$, we have $\omega_{D_{1}^{y_{0}}}(X)=\sum_{z \in X}\left|\left(\{z\}, V\left(D_{1}^{y_{0}}\right) \backslash X\right)\right| \geq a\left(k_{1}-a+1\right)$. Combining this with (4), we have

$$
\begin{equation*}
(a-3) k_{1} \leq a^{2}-4 a+6 \tag{5}
\end{equation*}
$$

Since $D_{1}^{y_{0}} \cong D_{1}$ and X is a nonempty proper subset of $V\left(D_{1}^{y_{0}}\right), \omega_{D_{1}^{y_{0}}}(X) \geq \lambda_{1}=$ k_{1}. By (4), we have

$$
\begin{equation*}
2 k_{1} \geq 3 a-6 \tag{6}
\end{equation*}
$$

Combining (5) with (6), we have $(a-3)(3 a-6) \leq 2 a^{2}-8 a+12$ and so $1 \leq a \leq 6$. Note that $a \geq 3$. Thus $3 \leq a \leq 6$. Consider the following four cases.

Case 1.1. $a=6$. Note that D is $\left(k_{1}+k_{2}\right)$-regular and $D[X]$ has at most 30 arcs. Thus $\omega_{D}(X) \geq 6 k_{1}+6 k_{2}-30$. By (6), $k_{1} \geq 6$ and so $k_{1}+k_{2} \geq 9$. If $\omega_{D}(X) \geq 6 k_{1}+6 k_{2}-29$, then $\omega_{D}(X)>3 k_{1}+3 k_{2}-3$, contradicting (2). Thus $\omega_{D}(X)=6 k_{1}+6 k_{2}-30$ and so $D[X] \cong \overleftrightarrow{K}_{6}$.

If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-2$, then $\omega_{D-S}(X)=\omega_{D}(X)-|S \cap(X, \bar{X})| \geq$ $6 k_{1}+6 k_{2}-30-\left(k_{1}+k_{2}-2\right)=5 k_{1}+5 k_{2}-28>2 k_{1}+2 k_{2}-2=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X)=5 k_{1}+5 k_{2}-29$. By $|S| \leq$ $k_{1}+k_{2}-1, S \cap A(D[X])=\emptyset$. Note that $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 8$. Thus there exists $x y \in \operatorname{Sym}(D[X])$ such that $x y$ is adjacent to at least one arc in $S \cap(X, \bar{X})$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y)=\min \left\{d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2, d_{D-S}^{-}(x)+d_{D-S}^{-}(y)-\right.$ $\left.2, d_{D-S}^{+}(x)+d_{D-S}^{-}(y)-1, d_{D-S}^{-}(x)+d_{D-S}^{+}(y)-1\right\} \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq$ $d_{D}^{+}(x)+d_{D}^{+}(y)-1-2=2 k_{1}+2 k_{2}-3<5 k_{1}+5 k_{2}-29=\omega_{D-S}(X)$, contradicting (1).

Case 1.2. $a=5$. Note that D is $\left(k_{1}+k_{2}\right)$-regular and $D[X]$ has at most 20 arcs. Thus $\omega_{D}(X) \geq 5 k_{1}+5 k_{2}-20$. By (6), $k_{1} \geq 5$ and so $k_{1}+k_{2} \geq 8$. If $\omega_{D}(X) \geq 5 k_{1}+5 k_{2}-18$, then $\omega_{D}(X)>3 k_{1}+3 k_{2}-3$, contradicting (2). Thus $5 k_{1}+5 k_{2}-20 \leq \omega_{D}(X) \leq 5 k_{1}+5 k_{2}-19$. Since D is $\left(k_{1}+k_{2}\right)$-regular, $\omega_{D}(X)=5 k_{1}+5 k_{2}-|A(D[X])|$ and so $19 \leq|A(D[X])| \leq 20$.

If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-3$, then $\omega_{D-S}(X)=\omega_{D}(X)-|S \cap(X, \bar{X})| \geq$ $4 k_{1}+4 k_{2}-17>2 k_{1}+2 k_{2}-2=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $k_{1}+k_{2}-2 \leq|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-1$, then $\omega_{D-S}(X) \geq 4 k_{1}+4 k_{2}-19$. By $|S| \leq k_{1}+k_{2}-1,|S \cap A(D[X])| \leq 1$. Note that $|S \cap(X, \bar{X})| \geq k_{1}+k_{2}-2 \geq 6$ and $|X|=5$. Thus there exists $x \in X$ such that $|S \cap(\{x\}, \bar{X})| \geq 2$. By $|X|=5$, $19 \leq|A(D[X])| \leq 20$ and $|S \cap A(D[X])| \leq 1$, there exists $x z \in \operatorname{Sym}(D[X]-S)$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(x z) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-2 \leq d_{D}^{+}(x)+d_{D}^{+}(z)-2-2=$ $2 k_{1}+2 k_{2}-4<4 k_{1}+4 k_{2}-19 \leq \omega_{D-S}(X)$, contradicting (1).

Case 1.3. $a=4$. Note that D is $\left(k_{1}+k_{2}\right)$-regular and $D[X]$ has at most 12 arcs. Thus $\omega_{D}(X) \geq 4 k_{1}+4 k_{2}-12$. If $\omega_{D}(X) \geq 4 k_{1}+4 k_{2}-8$, then, by $k_{1}+k_{2} \geq 6, \omega_{D}(X)>3 k_{1}+3 k_{2}-3$, contradicting (2). Thus $4 k_{1}+4 k_{2}-12 \leq$ $\omega_{D}(X) \leq 4 k_{1}+4 k_{2}-9$.

Case 1.3.1. $4 k_{1}+4 k_{2}-12 \leq \omega_{D}(X) \leq 4 k_{1}+4 k_{2}-10$. Now $10 \leq|A(D[X])| \leq$ 12 and so $10 \leq \Sigma_{v \in X} d_{D[X]}^{+}(v) \leq 12$. Thus the out-degree sequence of $D[X]$ may be $(3,3,3,3),(2,3,3,3),(2,2,3,3)$, or $(1,3,3,3)$. Since $X \subset V\left(D_{1}^{y_{0}}\right), \mid\left(X, V\left(D_{1}^{y_{0}}\right) \backslash\right.$ $X) \mid \geq \lambda_{1}=k_{1} \geq 3$. Combining this with the out-degree sequence of $D[X]$, there exists $u \in X$ such that $d_{D_{1}^{+}}^{+}(u) \geq 4$. Since $D_{1}^{y_{0}} \cong D_{1}$ and D_{1} is k_{1}-regular, $k_{1} \geq 4$ and so $k_{1}+k_{2} \geq 7$.

If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-4$, then $\omega_{D-S}(X)=\omega_{D}(X)-|S \cap(X, \bar{X})| \geq$ $3 k_{1}+3 k_{2}-8>2 k_{1}+2 k_{2}-2=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-3$, then $\omega_{D-S}(X) \geq 3 k_{1}+3 k_{2}-9$ and $|S \cap A(D[X])|$ ≤ 2. Note that $|S \cap(X, \bar{X})|=k_{1}+k_{2}-3 \geq 4$. Assume that there exists one of X, say x, such that $|S \cap(\{x\}, \bar{X})| \geq 2$. Combining $|S| \leq k_{1}+k_{2}-1$ with $|S \cap(X, \bar{X})|=k_{1}+k_{2}-3$, we have $|S \cap(\bar{X}, X)| \leq 2$. Since D is $\left(k_{1}+k_{2}\right)$ regular and $k_{1}+k_{2} \geq 7$, there exists an arc $u x \in(\bar{X}, X)$ with $u x \notin S$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(u x) \leq d_{D-S}^{+}(u)+d_{D-S}^{+}(x)-1 \leq d_{D}^{+}(u)+d_{D}^{+}(x)-2-1=$ $2 k_{1}+2 k_{2}-3<3 k_{1}+3 k_{2}-9 \leq \omega_{D-S}(X)$, contradicting (1). Assume that for any $x \in X,|S \cap(\{x\}, \bar{X})| \leq 1$. By $|S \cap(X, \bar{X})| \geq 4,|S \cap(\{x\}, \bar{X})|=1$ for any $x \in X$. Note that $10 \leq|A(D[X])| \leq 12$ and $|S \cap A(D[X])| \leq 2$. Thus there exists $y z \in A(D[X]-S)$ and so $\xi^{\prime}(D-S) \leq \xi^{\prime}(y z) \leq d_{D-S}^{+}(y)+d_{D-S}^{+}(z)-1 \leq$ $2 k_{1}+2 k_{2}-2-1<3 k_{1}+3 k_{2}-9 \leq \omega_{D-S}(X)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-2$, then $\omega_{D-S}(X) \geq 3 k_{1}+3 k_{2}-10$ and $\mid S \cap$ $A(D[X]) \mid \leq 1$. By $|S \cap(X, \bar{X})|=k_{1}+k_{2}-2 \geq 5$ and $|X|=4$, there exists $x \in X$ such that $|S \cap(\{x\}, \bar{X})| \geq 2$. If there exists $x y \in \operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq 2 k_{1}+2 k_{2}-2-2<3 k_{1}+3 k_{2}-10 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, by $10 \leq|A(D[X])| \leq 12$ and $|S \cap A(D[X])| \leq 1$, there exists $z \in X$ such that exactly one of $\{x z, z x\} \subseteq A(D[X])$, say $x z$, is in S. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(z x) \leq d_{D-S}^{+}(z)+d_{D-S}^{+}(x)-1 \leq 2 k_{1}+2 k_{2}-3-1<$ $3 k_{1}+3 k_{2}-10 \leq \omega_{D-S}(X)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X) \geq 3 k_{1}+3 k_{2}-11$ and $S \cap A(D[X])$ $=\emptyset$. We first give a claim.
Claim. If $|S \cap(X, \bar{X})| \geq 6$ and $|X|=4$, then there exist $x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 4$.

By contradiction. Suppose that for any $u, v \in X,|S \cap(\{u, v\}, \bar{X})| \leq 3$. If $|S \cap(\{u, v\}, \bar{X})| \leq 2$ for any $u, v \in X$, then, by $|X|=4,|S \cap(X, \bar{X})| \leq 4$, contradicting $|S \cap(X, \bar{X})| \geq 6$. If there exist $u, v \in X$ such that $|S \cap(\{u, v\}, \bar{X})|=$ 3, then there exists one of $\{u, v\}$, say u, such that $|S \cap(\{u\}, \bar{X})| \geq 2$. By $|S \cap(X, \bar{X})| \geq 6,|S \cap(X \backslash\{u, v\}, \bar{X})| \geq 3$. Note that $|X \backslash\{u, v\}|=2$. Thus there exists one of $X \backslash\{u, v\}$, say z, such that $|S \cap(\{z\}, \bar{X})| \geq 2$ and so $|S \cap(\{u, z\}, \bar{X})|$ ≥ 4, a contradiction. The claim holds.

Note that $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 6$ and $|X|=4$. By Claim, there exist $x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 4$. If $x y \in A(D[X])$ or $y x \in A(D[X])$, then $\xi^{\prime}(D-S) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-4-1<3 k_{1}+3 k_{2}-11 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, by $10 \leq|A(D[X])| \leq 12$, every arc in $D[X]$ is symmetric. If $|S \cap(\{x, y\}, \bar{X})| \geq 5$, then there exists one of $\{x, y\}$, say x, such that $|S \cap(\{x\}, \bar{X})| \geq 3$. For any $z \in X$ with $z \neq y, x z \in \operatorname{Sym}(D[X])$. Thus $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(x z) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-2 \leq 2 k_{1}+2 k_{2}-3-2<3 k_{1}+3 k_{2}-11 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, $|S \cap(\{x, y\}, \bar{X})|=4$. There exists one of $\{x, y\}$, say x, such that $|S \cap(\{x\}, \bar{X})| \geq 2$. By $|S \cap(X, \bar{X})| \geq 6,|S \cap(X \backslash\{x, y\}, \bar{X})| \geq 2$. There exists $w \in X \backslash\{x, y\}$ such that $|S \cap(\{w\}, \bar{X})| \geq 1$. Since $x w \in \operatorname{Sym}(D[X])$, $\xi^{\prime}(D-S) \leq \xi^{\prime}(x w) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(w)-2 \leq 2 k_{1}+2 k_{2}-3-2<3 k_{1}+3 k_{2}-11 \leq$ $\omega_{D-S}(X)$, contradicting (1).

Case 1.3.2. $\omega_{D}(X)=4 k_{1}+4 k_{2}-9$. If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-2$, then, by $k_{1}+k_{2} \geq 6, \omega_{D-S}(X) \geq 3 k_{1}+3 k_{2}-7>2 k_{1}+2 k_{2}-2=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X)=3 k_{1}+3 k_{2}-8$ and $S \cap$ $A(D[X])=\emptyset$. By $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 5$ and $|X|=4$, there exist $x \in X$ such that $|S \cap(\{x\}, \bar{X})| \geq 2$. Note that $|A(D[X])|=9$ and $S \cap A(D[X])=\emptyset$. Thus there exists $y \in X$ such that $x y \in A(D[X])$ or $y x \in A(D[X])$. Thus $\xi^{\prime}(D-S) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq d_{D}^{+}(x)+d_{D}^{+}(y)-2-1=2 k_{1}+2 k_{2}-3<$ $3 k_{1}+3 k_{2}-8=\omega_{D-S}(X)$, contradicting (1).

Case 1.4. $a=3$. Note that D is $\left(k_{1}+k_{2}\right)$-regular and $D[X]$ has at most 6 arcs. Thus $\omega_{D}(X) \geq 3 k_{1}+3 k_{2}-6$. By (2), $3 k_{1}+3 k_{2}-6 \leq \omega_{D}(X) \leq 3 k_{1}+3 k_{2}-3$.

Case 1.4.1. $\omega_{D}(X)=3 k_{1}+3 k_{2}-6$. Now $D[X] \cong \overleftrightarrow{K}_{3}$. If $|S \cap(X, \bar{X})| \leq$ $k_{1}+k_{2}-5$, then $\omega_{D-S}(X)=\omega_{D}(X)-|S \cap(X, \bar{X})| \geq 2 k_{1}+2 k_{2}-1>2 k_{1}+2 k_{2}-2=$ $\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $k_{1}+k_{2}-4 \leq|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-3$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-3$ and $|S \cap A(D[X])| \leq 3$. By $|S \cap(X, \bar{X})| \geq k_{1}+k_{2}-4 \geq 2$ and $|X|=3$, there exist
$x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 2$. Since $D[X] \cong \overleftrightarrow{K}_{3}, x y \in \operatorname{Sym}(D[X])$. If $x y \in \operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq$ $d_{D}^{+}(x)+d_{D}^{+}(y)-2-2=2 k_{1}+2 k_{2}-4<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). If exactly one of $\{x y, y x\}$, say $y x$, is in S, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq$ $d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Next consider $x y \in S$ and $y x \in S$. By $|S \cap(\{x, y\}, \bar{X})| \geq 2$, there exists one of $\{x, y\}$, say x, such that $|S \cap(\{x\}, \bar{X})| \geq 1$. Let $z=X \backslash\{x, y\}$. If $x z \in \operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x z) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-2 \leq$ $2 k_{1}+2 k_{2}-2-2<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, by $|S \cap A(D[X])| \leq 3$, exactly one of $\{x z, z x\}$, say $z x$, is in S. Thus $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(x z) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-2$, then $\omega_{D-S}(X)=2 k_{1}+2 k_{2}-4$ and $|S \cap A(D[X])|$ ≤ 1. Note that $|S \cap(X, \bar{X})|=k_{1}+k_{2}-2 \geq 4$ and $|X|=3$. Similar to the proof of Claim in Case 1.3.1, we can prove that there exist $x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 3$. Since $D[X] \cong \overleftrightarrow{K}_{3}, x y \in \operatorname{Sym}(D[X])$. If $x y \in$ $\operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq 2 k_{1}+$ $2 k_{2}-3-2<2 k_{1}+2 k_{2}-4=\omega_{D-S}(X)$, contradicting (1). Otherwise, by $|S \cap A(D[X])| \leq 1$, exactly one of $\{x y, y x\}$, say $y x$, is in S. Thus $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-4-1<2 k_{1}+2 k_{2}-4=\omega_{D-S}(X)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X)=2 k_{1}+2 k_{2}-5$ and $S \cap A(D[X])$ $=\emptyset$. Note that $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 5$ and $|X|=3$. Similar to the proof of Claim in Case 1.3.1, we can prove that there exist $x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 4$. Since $D[X] \cong \overleftrightarrow{K}_{3}$ and $S \cap A(D[X])=\emptyset, x y \in \operatorname{Sym}(D[X])$ Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq 2 k_{1}+2 k_{2}-4-2<$ $2 k_{1}+2 k_{2}-5=\omega_{D-S}(X)$, contradicting (1).

Case 1.4.2. $\omega_{D}(X)=3 k_{1}+3 k_{2}-5$. Now $D[X] \cong D^{\prime}$, where D^{\prime} is a digraph obtained from $\overleftrightarrow{K}_{3}$ by deleting an arc.

If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-4$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-1>2 k_{1}+2 k_{2}-2=$ $\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $k_{1}+k_{2}-3 \leq|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-2$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-3$ and $|S \cap A(D[X])| \leq 2$. By $|S \cap(X, \bar{X})| \geq k_{1}+k_{2}-3 \geq 3$ and $|X|=3$, there exist $x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 2$. Since $D[X] \cong D^{\prime}, x y \in A(D[X])$ or $y x \in A(D[X])$. Without loss of generality, suppose that $x y \in A(D[X])$. Consider the following two possibilities.

Assume that $x y \notin S$. Consider $y x \in A(D[X])$. If $y x \notin S$, then $x y \in$ $\operatorname{Sym}(D[X]-S)$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq d_{D}^{+}(x)+$ $d_{D}^{+}(y)-2-2=2 k_{1}+2 k_{2}-4<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). If $y x \in S$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-3-1<$
$2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Consider $y x \notin A(D[X])$. Then, by $D[X] \cong D^{\prime}$, every arc in $D[X]-x y$ is symmetric. If $|S \cap(\{x, y\}, \bar{X})| \geq 3$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq$ $\omega_{D-S}(X)$, contradicting (1). Otherwise, $|S \cap(\{x, y\}, \bar{X})|=2$. There exists one of $\{x, y\}$, say x, such that $|S \cap(\{x\}, \bar{X})| \geq 1$. Let $z=X \backslash\{x, y\}$. By $|S \cap(X, \bar{X})| \geq 3$, $|S \cap(\{z\}, \bar{X})| \geq 1$. If $x z \in \operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x z) \leq d_{D-S}^{+}(x)+$ $d_{D-S}^{+}(z)-2 \leq 2 k_{1}+2 k_{2}-2-2<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). If exactly one of $\{x z, z x\}$, say $z x$, is in S, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x z) \leq$ $d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). If $x z \in S$ and $z x \in S$, then, by $|S \cap A(D[X])| \leq 2, y z \in \operatorname{Sym}(D[X]-S)$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(y z) \leq d_{D-S}^{+}(y)+d_{D-S}^{+}(z)-2 \leq 2 k_{1}+2 k_{2}-2-2<$ $2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1).

Assume that $x y \in S$. Consider $y x \in A(D[X])$. If $y x \notin S$, then $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(y x) \leq d_{D-S}^{+}(y)+d_{D-S}^{+}(x)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). If $y x \in S$, then, by $|S \cap A(D[X])| \leq 2, S \cap A(D[X])=\{x y, y x\}$. Note that $D[X] \cong D^{\prime}$. Without loss of generality, suppose that $z y \notin A(D[X])$. Then $x z \in \operatorname{Sym}(D[X]-S)$. If $|S \cap(\{x\}, \bar{X})| \geq 1$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x z) \leq$ $d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-2 \leq 2 k_{1}+2 k_{2}-2-2<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, $|S \cap(\{y\}, \bar{X})| \geq 2$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(y z) \leq$ $d_{D-S}^{+}(y)+d_{D-S}^{+}(z)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Consider $y x \notin A(D[X])$. Then, by $D[X] \cong D^{\prime}$, every arc in $D[X]-x y$ is symmetric. Suppose that $|S \cap(\{x\}, \bar{X})| \geq 2$. By $|S \cap A(D[X])| \leq 2$ and $x y \in S$, at least one of $\{x z, z x\}$, say $x z$, is not in S. Thus $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(x z) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(z)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Suppose that $|S \cap(\{x\}, \bar{X})| \leq 1$. Then, by $|S \cap(X, \bar{X})| \geq 3$, $|S \cap(\{y, z\}, \bar{X})| \geq 2$. If $y z \in \operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(y z) \leq$ $d_{D-S}^{+}(y)+d_{D-S}^{+}(z)-2 \leq 2 k_{1}+2 k_{2}-2-2<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, by $|S \cap A(D[X])| \leq 2$ and $x y \in S$, exactly one of $\{y z, z y\}$, say $z y$, is in S. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(y z) \leq d_{D-S}^{+}(y)+d_{D-S}^{+}(z)-1 \leq$ $2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X)=2 k_{1}+2 k_{2}-4$ and $S \cap A(D[X])$ $=\emptyset$. Note that $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 5$ and $|X|=3$. Similar to the proof of Claim in Case 1.3.1, we can prove that there exist $x, y \in X$ such that $|S \cap(\{x, y\}, \bar{X})| \geq 4$. Since $D[X] \cong D^{\prime}, x y \in A(D[X])$ or $y x \in A(D[X])$. Thus $\xi^{\prime}(D-S) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-4-1<2 k_{1}+2 k_{2}-4=\omega_{D-S}(X)$, contradicting (1).

Case 1.4.3. $\omega_{D}(X)=3 k_{1}+3 k_{2}-4$. If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-3$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-1>2 k_{1}+2 k_{2}-2=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $k_{1}+k_{2}-2 \leq|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-1$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-3$ and $|S \cap A(D[X])| \leq 1$. Note that $|X|=3$ and $|A(D[X])|=4$. Thus there exists
$x y \in \operatorname{Sym}(D[X])$. Assume that $|S \cap(\{x, y\}, \bar{X})| \geq 2$. If $x y \in \operatorname{Sym}(D[X]-S)$, then $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-2 \leq d_{D}^{+}(x)+d_{D}^{+}(y)-2-2=$ $2 k_{1}+2 k_{2}-4<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Otherwise, by $|S \cap A(D[X])| \leq 1$, exactly one of $\{x y, y x\}$, say $y x$, is in S. Thus $\xi^{\prime}(D-S) \leq$ $\xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq 2 k_{1}+2 k_{2}-3-1<2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1). Assume that $|S \cap(\{x, y\}, \bar{X})| \leq 1$. Let $z=X \backslash\{x, y\}$. By $|S \cap(X, \bar{X})| \geq k_{1}+k_{2}-2 \geq 4,|S \cap(\{z\}, \bar{X})| \geq 3$. Note that $|A(D[X])|=4$ and $|S \cap A(D[X])| \leq 1$. Thus at least one of $\{z x, x z, z y, y z\}$, say $z x$, is in $A(D[X]-S)$. This means that $\xi^{\prime}(D-S) \leq \xi^{\prime}(z x) \leq d_{D-S}^{+}(z)+d_{D-S}^{+}(x)-1 \leq 2 k_{1}+2 k_{2}-3-1<$ $2 k_{1}+2 k_{2}-3 \leq \omega_{D-S}(X)$, contradicting (1).

Case 1.4.4. $\omega_{D}(X)=3 k_{1}+3 k_{2}-3$. If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-2$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-1>2 k_{1}+2 k_{2}-2=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (1).

If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X)=2 k_{1}+2 k_{2}-2$ and $S \cap A(D[X])$ $=\emptyset$. By $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 5$ and $|X|=3$, there exist $x \in X$ such that $|S \cap(\{x\}, \bar{X})| \geq 2$. Let $\{y, z\}=X \backslash\{x\}$. Note that $|A(D[X])|=3$. Thus at least one of $\{x y, y x, x z, z x\}$, say $x y$, is in $A(D[X])$. This means that $\xi^{\prime}(D-S) \leq \xi^{\prime}(x y) \leq d_{D-S}^{+}(x)+d_{D-S}^{+}(y)-1 \leq d_{D}^{+}(x)+d_{D}^{+}(y)-2-1=$ $2 k_{1}+2 k_{2}-3<2 k_{1}+2 k_{2}-2=\omega_{D-S}(X)$, contradicting (1).

Case 2. $\operatorname{Sym}(D)=\emptyset$. Note that D is $\left(k_{1}+k_{2}\right)$-regular. Thus $\xi^{\prime}(D)=$ $2 k_{1}+2 k_{2}-1$. Similar to the first paragraph of the proof of Case 1, we can deduce that $3 \leq a \leq 7$. Moreover, similar to (2), we have

$$
\begin{equation*}
\omega_{D}(X) \leq 3 k_{1}+3 k_{2}-2 \tag{7}
\end{equation*}
$$

Note that $\operatorname{Sym}(D)=\emptyset$. When $a=4,5,6,7, \omega_{D}(X) \geq 4 k_{1}+4 k_{2}-6,5 k_{1}+$ $5 k_{2}-10,6 k_{1}+6 k_{2}-15,7 k_{1}+7 k_{2}-21$, respectively. In all cases, by $k_{1}+k_{2} \geq 6$, $\omega_{D}(X)>3 k_{1}+3 k_{2}-2$, contradicting (7).

If $a=3$, then $\omega_{D}(X) \geq 3 k_{1}+3 k_{2}-3$. By (7), $3 k_{1}+3 k_{2}-3 \leq \omega_{D}(X) \leq$ $3 k_{1}+3 k_{2}-2$. If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-3$, then $\omega_{D-S}(X)=\omega_{D}(X)-\mid S \cap$ $(X, \bar{X}) \mid \geq 3 k_{1}+3 k_{2}-3-\left(k_{1}+k_{2}-3\right)=2 k_{1}+2 k_{2}>2 k_{1}+2 k_{2}-1=\xi^{\prime}(D) \geq$ $\xi^{\prime}(D-S)$, contradicting (1). If $k_{1}+k_{2}-2 \leq|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-1$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}-2$. By $|S \cap(X, \bar{X})| \geq k_{1}+k_{2}-2 \geq 4$ and $|X|=3$, there exists $x \in X$ such that $|S \cap(\{x\}, \bar{X})| \geq 2$. Combining $|S| \leq k_{1}+k_{2}-1$ with $|S \cap(X, \bar{X})| \geq k_{1}+k_{2}-2$, we have $|S \cap(\bar{X}, X)| \leq 1$. Since D is $\left(k_{1}+k_{2}\right)$ regular and $k_{1}+k_{2} \geq 6$, there exists an arc $u x \in(\bar{X}, X)$ with $u x \notin S$. Thus $\xi^{\prime}(D-S) \leq \xi^{\prime}(u x) \leq d_{D-S}^{+}(u)+d_{D-S}^{+}(x)-1 \leq d_{D}^{+}(u)+d_{D}^{+}(x)-2-1=$ $2 k_{1}+2 k_{2}-3<2 k_{1}+2 k_{2}-2 \leq \omega_{D-S}(X)$, contradicting (1).

The case that $X \subset V\left(D_{2}^{x_{0}}\right)$ with $x_{0} \in V\left(D_{1}\right)$ can be proved similarly. Lemma 8 holds.

Lemma 9. Let $D=D_{1} \times D_{2}$, where D_{i} is a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Then $\omega_{D-S}(X)>\xi^{\prime}(D-S)$ holds for any
$S \subseteq A(D)$ and any $X \subseteq V(D)$ such that $|S| \leq k_{1}+k_{2}-1$ and $X=X_{0} \cup X_{1}$, where $X_{0} \cap X_{1}=\emptyset,\left|X_{0}\right| \geq 1,\left|X_{1}\right| \geq 1,\left|X_{0} \cup X_{1}\right| \geq 3$ and $X_{0} \subset V\left(D_{1}^{y_{0}}\right)$ (respectively, $X_{0} \subset V\left(D_{2}^{x_{0}}\right)$) and $X_{1} \subset V\left(D_{1}^{y_{1}}\right)$ (respectively, $X_{1} \subset V\left(D_{2}^{x_{1}}\right)$) with $\left\{y_{0}, y_{1}\right\} \subseteq V\left(D_{2}\right)$ (respectively, $\left\{x_{0}, x_{1}\right\} \subseteq V\left(D_{1}\right)$).

Proof. Suppose, to the contrary, that there exists a subset S of $A(D)$ and a subset X of $V(D)$ satisfying the conditions of the lemma such that

$$
\begin{equation*}
\omega_{D-S}(X)=\omega_{D-S}\left(X_{0} \cup X_{1}\right) \leq \xi^{\prime}(D-S) \tag{8}
\end{equation*}
$$

Case 1. $\operatorname{Sym}(D) \neq \emptyset$. Note that D is $\left(k_{1}+k_{2}\right)$-regular. Thus $\xi^{\prime}(D)=2 k_{1}+$ $2 k_{2}-2$. By $|S| \leq k_{1}+k_{2}-1$, Lemma 6 yields $\xi^{\prime}(D-S) \leq \xi^{\prime}(D)=2 k_{1}+2 k_{2}-2$. Thus $2 k_{1}+2 k_{2}-2 \geq \xi^{\prime}(D-S) \geq \omega_{D-S}\left(X_{0} \cup X_{1}\right) \geq \omega_{D}\left(X_{0} \cup X_{1}\right)-|S| \geq$ $\omega_{D}\left(X_{0} \cup X_{1}\right)-\left(k_{1}+k_{2}-1\right)$ and so

$$
\begin{equation*}
\omega_{D}\left(X_{0} \cup X_{1}\right) \leq 3 k_{1}+3 k_{2}-3 \tag{9}
\end{equation*}
$$

Let $\left|X_{0}\right|=a$ and $\left|X_{1}\right|=b$. Then $a, b \geq 1$ and $a+b \geq 3$. Assume that $X_{0} \subset V\left(D_{1}^{y_{0}}\right)$ and $X_{1} \subset V\left(D_{1}^{y_{1}}\right)$ with $\left\{y_{0}, y_{1}\right\} \subseteq V\left(D_{2}\right)$. Then $\omega_{D}\left(X_{0} \cup X_{1}\right) \geq$ $\omega_{D_{1}^{y_{0}}}\left(X_{0}\right)+\left|\left(X_{0}, \overline{V\left(D_{1}^{y_{0}}\right)}\right)\right|-a+\omega_{D_{1}^{y_{1}}}\left(X_{1}\right)+\left|\left(X_{1}, \overline{V\left(D_{1}^{y_{1}}\right)}\right)\right|-b=\omega_{D_{1}^{y_{0}}}\left(X_{0}\right)+$ $\omega_{D_{1}^{y_{1}}}\left(X_{1}\right)+a k_{2}+b k_{2}-a-b$. Combining this with (9), we have

$$
\begin{equation*}
3 k_{1} \geq \omega_{D_{1}^{y_{0}}}\left(X_{0}\right)+\omega_{D_{1}^{y_{1}}}\left(X_{1}\right)+(a+b-3) k_{2}-a-b+3 \tag{10}
\end{equation*}
$$

Note that $a+b \geq 3$ and $k_{2} \geq 3$. Thus (10) yields

$$
\begin{equation*}
3 k_{1} \geq \omega_{D_{1}^{y_{0}}}\left(X_{0}\right)+\omega_{D_{1}^{y_{1}}}\left(X_{1}\right)+2(a+b)-6 \tag{11}
\end{equation*}
$$

Note that $\omega_{D_{1}^{y_{0}}}\left(X_{0}\right)=\sum_{z \in X_{0}}\left|\left(\{z\}, V\left(D_{1}^{y_{0}}\right) \backslash X_{0}\right)\right| \geq a\left(k_{1}-a+1\right)$ and $\omega_{D_{1}^{y_{1}}}\left(X_{1}\right) \geq$ $b\left(k_{1}-b+1\right)$. Combining this with (11), we have

$$
\begin{equation*}
(a+b-3) k_{1} \leq a^{2}+b^{2}-3(a+b)+6 \tag{12}
\end{equation*}
$$

Note that $\omega_{D_{1}^{y_{0}}}\left(X_{0}\right) \geq \lambda_{1}=k_{1}$ and $\omega_{D_{1}^{y_{1}}}\left(X_{1}\right) \geq \lambda_{1}=k_{1}$. By (11), $k_{1} \geq$ $2(a+b)-6$. Combining this with (12), we have

$$
\begin{equation*}
(a+b)^{2}-9(a+b)+12+2 a b \leq 0 \tag{13}
\end{equation*}
$$

that is, $(a+b-2)(a+b-7)+2 a b-2 \leq 0$. Since $a, b \geq 1$ and $a+b \geq 3$, $2 a b-2>0$. Thus $(a+b-2)(a+b-7)<0$, which yields $2<a+b<7$ and so $3 \leq a+b \leq 6$.

If $a+b=6$, then, by (13), we have $a b \leq 3$, a contradiction. If $a+b=5$, then, by (13), we have $a b \leq 4$. Recall that $a, b \geq 1$. Thus $\{a, b\}=\{1,4\}$. By the
definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 14 arcs. By $k_{1}+k_{2} \geq 6$, $\omega_{D}\left(X_{0} \cup X_{1}\right) \geq 5 k_{1}+5 k_{2}-14>3 k_{1}+3 k_{2}-3$, contradicting (9).

If $a+b=4$, then $\{a, b\}$ is equal to $\{1,3\}$ or $\{2,2\}$. By the definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 8 arcs. By $k_{1}+k_{2} \geq 6, \omega_{D}\left(X_{0} \cup X_{1}\right) \geq$ $4 k_{1}+4 k_{2}-8>3 k_{1}+3 k_{2}-3$, contradicting (9).

If $a+b=3$, then $\{a, b\}$ is equal to $\{1,2\}$. By the definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 4 arcs and so $\omega_{D}\left(X_{0} \cup X_{1}\right) \geq 3 k_{1}+3 k_{2}-4$. By $(9), 3 k_{1}+3 k_{2}-4 \leq \omega_{D}\left(X_{0} \cup X_{1}\right)=\omega_{D}(X) \leq 3 k_{1}+3 k_{2}-3$. Its proof is the same as the proof of Cases 1.4.3 and 1.4.4 of Lemma 8.

Case 2. $\operatorname{Sym}(D)=\emptyset$. Note that D is $\left(k_{1}+k_{2}\right)$-regular. Thus $\xi^{\prime}(D)=$ $2 k_{1}+2 k_{2}-1$. Similar to the first paragraph of the proof of Case 1, we can deduce that $3 \leq a+b \leq 7$. Moreover, similar to (9) and (13), we have

$$
\begin{equation*}
\omega_{D}\left(X_{0} \cup X_{1}\right) \leq 3 k_{1}+3 k_{2}-2 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
(a+b)^{2}-10(a+b)+14+2 a b \leq 0 \tag{15}
\end{equation*}
$$

respectively.
If $a+b=7$, then, by (15), we have $2 a b \leq 7$, a contradiction. If $a+b=6$, then, by (15), we have $a b \leq 5$. Recall that $a, b \geq 1$. Thus $\{a, b\}=\{1,5\}$. Note that $\operatorname{Sym}(D)=\emptyset$. By the definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 11 arcs. By $k_{1}+k_{2} \geq 6, \omega_{D}\left(X_{0} \cup X_{1}\right) \geq 6 k_{1}+6 k_{2}-11>3 k_{1}+3 k_{2}-2$, contradicting (14). If $a+b=5$, then, by (15), we have $2 a b \leq 11$. Recall that $a, b \geq 1$. Thus $\{a, b\}=\{1,4\}$. By the definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 7 arcs. Thus $\omega_{D}\left(X_{0} \cup X_{1}\right) \geq 5 k_{1}+5 k_{2}-7>3 k_{1}+3 k_{2}-2$, contradicting (14).

If $a+b=4$, then $\{a, b\}$ is equal to $\{1,3\}$ or $\{2,2\}$. By the definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 4 arcs. By $k_{1}+k_{2} \geq 6, \omega_{D}\left(X_{0} \cup X_{1}\right) \geq$ $4 k_{1}+4 k_{2}-4>3 k_{1}+3 k_{2}-2$, contradicting (14).

If $a+b=3$, then $\{a, b\}$ is equal to $\{1,2\}$. By the definition of Cartesian product, $D\left[X_{0} \cup X_{1}\right]$ has at most 2 arcs and so $\omega_{D}\left(X_{0} \cup X_{1}\right) \geq 3 k_{1}+3 k_{2}-2$. By (14), $\omega_{D}\left(X_{0} \cup X_{1}\right)=\omega_{D}(X)=3 k_{1}+3 k_{2}-2$. If $|S \cap(X, \bar{X})| \leq k_{1}+k_{2}-2$, then $\omega_{D-S}(X) \geq 2 k_{1}+2 k_{2}>2 k_{1}+2 k_{2}-1=\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$, contradicting (8). If $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1$, then $\omega_{D-S}(X)=2 k_{1}+2 k_{2}-1$ and $S \cap A(D[X])=\emptyset$. By $|S \cap(X, \bar{X})|=k_{1}+k_{2}-1 \geq 5$, there exists $x \in X$ such that $|S \cap(\{x\}, \bar{X})| \geq 1$. Note that $|X|=3,|A(D[X])|=2$ and $\operatorname{Sym}(D)=\emptyset$. Thus there exists $y \in X$ such that $x y \in A(D[X])$ or $y x \in A(D[X])$. This means that $\xi^{\prime}(D-S) \leq d_{D-S}^{+}(x)+$ $d_{D-S}^{+}(y)-1 \leq d_{D}^{+}(x)+d_{D}^{+}(y)-1-1=2 k_{1}+2 k_{2}-2<2 k_{1}+2 k_{2}-1=\omega_{D-S}(X)$, contradicting (8).

The case that $X_{0} \subset V\left(D_{2}^{x_{0}}\right)$ and $X_{1} \subset V\left(D_{2}^{x_{1}}\right)$ with $\left\{x_{0}, x_{1}\right\} \subseteq V\left(D_{1}\right)$ can be proved similarly. Lemma 9 holds.

By considering the out-degrees of vertices in X, we proved $\omega_{D-S}(X)>\xi^{\prime}(D-$ $S)$ in Lemmas 8 and 9. Note that $\partial_{D-S}^{+}(X)=\partial_{D-S}^{-}(\bar{X})$. Thus $\omega_{D-S}(X)=$ $\partial_{D-S}^{-}(\bar{X})$. In the following, by considering the in-degrees of vertices in \bar{X} and using the similar approaches to the two employed to prove Lemmas 8 and 9 , we have:

Lemma 10. Let $D=D_{1} \times D_{2}$, where D_{i} is a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Then $\omega_{D-S}(X)>\xi^{\prime}(D-S)$ holds for any $S \subseteq A(D)$ and any $X \subseteq V(\bar{D})$ such that $|S| \leq k_{1}+k_{2}-1,|\bar{X}| \geq 3$ and $\bar{X} \subset V\left(D_{1}^{y_{0}}\right)$ with $y_{0} \in V\left(D_{2}\right)$ or $\bar{X} \subset V\left(D_{2}^{x_{0}}\right)$ with $x_{0} \in V\left(D_{1}\right)$.

Lemma 11. Let $D=D_{1} \times D_{2}$, where D_{i} is a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Then $\omega_{D-S}(X)>\xi^{\prime}(D-S)$ holds for any $S \subseteq A(D)$ and any $X \subseteq V(D)$ such that $|S| \leq k_{1}+k_{2}-1, \bar{X}=X_{0} \cup X_{1}$, where $X_{0} \cap X_{1}=\emptyset,\left|X_{0}\right| \geq 1,\left|X_{1}\right| \geq 1,\left|X_{0} \cup X_{1}\right| \geq 3$ and $X_{0} \subset V\left(D_{1}^{y_{0}}\right)$ (respectively, $X_{0} \subset V\left(D_{2}^{x_{0}}\right)$) and $X_{1} \subset V\left(D_{1}^{y_{1}}\right)$ (respectively, $X_{1} \subset V\left(D_{2}^{x_{1}}\right)$) with $\left\{y_{0}, y_{1}\right\} \subseteq V\left(D_{2}\right)$ (respectively, $\left\{x_{0}, x_{1}\right\} \subseteq V\left(D_{1}\right)$).
Lemma 12 [15]. Let D_{i} be a nontrivial strongly connected digraph for $i=1,2$. Then $\lambda\left(D_{1} \times D_{2}\right)=\min \left\{\delta_{1}^{-}+\delta_{2}^{-}, \delta_{1}^{+}+\delta_{2}^{+}, \lambda_{1} \nu_{2}, \lambda_{2} \nu_{1}\right\}$.

Theorem 13. Let D_{i} be a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Then $\min \left\{k_{1}+k_{2}-1, \nu_{1} k_{2}-2 k_{1}-2 k_{2}, \nu_{2} k_{1}-2 k_{1}-2 k_{2}\right\} \leq S_{\lambda^{\prime}}\left(D_{1} \times\right.$ $\left.D_{2}\right) \leq k_{1}+k_{2}-1$.

Proof. By $k_{i} \geq 3$ for $i=1,2$, Theorem 4 implies that $D_{1} \times D_{2}$ is super $-\lambda^{\prime}$. Note that $D_{1} \times D_{2}$ is $\left(k_{1}+k_{2}\right)$-regular. For any $x \in V\left(D_{1} \times D_{2}\right)$, let S be the set of arcs with $S=\partial_{D_{1} \times D_{2}}^{+}(x)$. Then $|S|=k_{1}+k_{2} . D_{1} \times D_{2}-S$ is not super- λ^{\prime} since $D_{1} \times D_{2}-S$ is not strongly connected. By the definition of $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$, we have $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right) \leq k_{1}+k_{2}-1$.

Denote $m=\min \left\{k_{1}+k_{2}-1, \nu_{1} k_{2}-2 k_{1}-2 k_{2}, \nu_{2} k_{1}-2 k_{1}-2 k_{2}\right\}$. Let $D=D_{1} \times D_{2}$. To show that $S_{\lambda^{\prime}}(D) \geq m$, it suffices to show that for any $S \subseteq A(D)$ with $|S| \leq m, D-S$ is still super- λ^{\prime}. By Lemma 12, $\lambda(D)=$ $\min \left\{\delta_{1}^{-}+\delta_{2}^{-}, \delta_{1}^{+}+\delta_{2}^{+}, \lambda_{1} \nu_{2}, \lambda_{2} \nu_{1}\right\}$. Note that D_{i} is k_{i}-regular and $k_{i}=\lambda_{i}$ for $i=1,2$. Thus $\lambda_{1} \nu_{2}=k_{1} \nu_{2} \geq k_{1}\left(k_{2}+1\right) \geq k_{1}+k_{2}$. Similarly, $\lambda_{2} \nu_{1} \geq k_{1}+k_{2}$. Hence $\lambda(D)=k_{1}+k_{2}$. $\mathrm{By}|S| \leq m \leq k_{1}+k_{2}-1, D-S$ is strongly connected. Note that D is $\left(k_{1}+k_{2}\right)$-regular and $|S| \leq k_{1}+k_{2}-1$. Lemma 7 yields $\delta^{+}(D-S) \geq 3$ or $\delta^{-}(D-S) \geq 3$. Let X be any subset of $V(D-S)$ with $|X| \geq 3$ and $|\bar{X}| \geq 3$. Then, by Lemma 5 , in order to show that $D-S$ is super- λ^{\prime}, it suffices to prove that $\omega_{D-S}(X)>\xi^{\prime}(D-S)$ holds. By Lemma $6, \xi^{\prime}(D-S) \leq \xi^{\prime}(D)$. Clearly, $\omega_{D-S}(X) \geq \omega_{D}(X)-|S| \geq \omega_{D}(X)-m$. If $\omega_{D}(X)>\xi^{\prime}(D)+m$, then $\omega_{D-S}(X)>$ $\xi^{\prime}(D) \geq \xi^{\prime}(D-S)$. In the following, we assume that

$$
\begin{equation*}
\omega_{D}(X) \leq \xi^{\prime}(D)+m, \tag{16}
\end{equation*}
$$

and prove that $\omega_{D-S}(X)>\xi^{\prime}(D-S)$ holds in this case.
Denote $I_{1}=\left\{x: x \in V\left(D_{1}\right)\right.$ and $D_{2}^{x}-(X, \bar{X})$ is not strongly connected $\}$ and $I_{2}=\left\{y: y \in V\left(D_{2}\right)\right.$ and $D_{1}^{y}-(X, \bar{X})$ is not strongly connected $\}$. We give three claims.

Claim 1. $\left|I_{i}\right|<\nu_{i}$ for $i=1,2$.
By contradiction. Suppose, without loss of generality, that $\left|I_{1}\right|=\nu_{1}$. Then $D_{2}^{x}-(X, \bar{X})$ is not strongly connected for all $x \in V\left(D_{1}\right)$ and so $\omega_{D}(X) \geq \nu_{1} \lambda_{2}=$ $\nu_{1} k_{2}$. Combining this with (16), we have

$$
\nu_{1} k_{2} \leq \xi^{\prime}(D)+m \leq 2 k_{1}+2 k_{2}-1+\nu_{1} k_{2}-2 k_{1}-2 k_{2}=\nu_{1} k_{2}-1,
$$

a contradiction. Claim 1 holds.
Claim 2. $\left|I_{i}\right| \geq 1$ for $i=1,2$.
By contradiction. Suppose, without loss of generality, that $\left|I_{1}\right|=0$. Then $D_{2}^{x}-(X, \bar{X})$ is strongly connected for all $x \in V\left(D_{1}\right)$. By Claim 1 , there exists $y \in V\left(D_{2}\right)$ such that $D_{1}^{y}-(X, \bar{X})$ is strongly connected. Thus we have that $D-(X, \bar{X})$ is strongly connected, a contradiction. Claim 2 holds.
Claim 3. $\left|I_{1}\right| \leq 2$ or $\left|I_{2}\right| \leq 2$.
By contradiction. Suppose that $\left|I_{1}\right| \geq 3$ and $\left|I_{2}\right| \geq 3$. Then

$$
\begin{aligned}
\omega_{D}(X) & \geq 3 \lambda_{1}+3 \lambda_{2}=3 k_{1}+3 k_{2} \\
& =2 k_{1}+2 k_{2}-1+k_{1}+k_{2}-1+2 \geq \xi^{\prime}(D)+m+2,
\end{aligned}
$$

contradicting (16). Claim 3 holds.
By Claims 2 and 3, we assume, without loss of generality, that $1 \leq\left|I_{2}\right| \leq 2$. We consider the following two cases.

Case 1. $\left|I_{2}\right|=1$. Let $I_{2}=\left\{y_{0}\right\}$. Then $D_{1}^{y_{0}}-(X, \bar{X})$ is not strongly connected and $D_{1}^{y}-(X, \bar{X})$ is strongly connected for all $y \in V\left(D_{2}\right) \backslash\left\{y_{0}\right\}$. By Claim 1, there exists $x \in V\left(D_{1}\right)$ such that $D_{2}^{x}-(X, \bar{X})$ is strongly connected. Thus $D_{2}^{x} \cup\left(\bigcup_{y \in V\left(D_{2}\right) \backslash\left\{y_{0}\right\}} D_{1}^{y}\right)-(X, \bar{X})$ is strongly connected and so is contained in $D[X]$ or $D[\bar{X}]$. If $D_{2}^{x} \cup\left(\bigcup_{y \in V\left(D_{2}\right) \backslash\left\{y_{0}\right\}} D_{1}^{y}\right)-(X, \bar{X})$ is contained in $D[\bar{X}]$, then $X \subseteq V\left(D_{1}^{y_{0}}\right)$. Since $D_{1}^{y_{0}}-(X, \bar{X})$ is not strongly connected, $X \subset V\left(D_{1}^{y_{0}}\right)$. By Lemma 8, we have $\omega_{D-S}(X)>\xi^{\prime}(D-S)$. The theorem holds in this case. If $D_{2}^{x} \cup\left(\cup_{y \in V\left(D_{2}\right) \backslash\left\{y_{0}\right\}} D_{1}^{y}\right)-(X, \bar{X})$ is contained in $D[X]$, then $\bar{X} \subseteq V\left(D_{1}^{y_{0}}\right)$. Since $D_{1}^{y_{0}}-(X, \bar{X})$ is not strongly connected, $\bar{X} \subset V\left(D_{1}^{y_{0}}\right)$. By Lemma 10 , we have $\omega_{D-S}(X)>\xi^{\prime}(D-S)$. The theorem holds in this case.

Case 2. $\left|I_{2}\right|=2$. Let $I_{2}=\left\{y_{0}, y_{1}\right\}$. Then $D_{1}^{y_{0}}-(X, \bar{X})$ and $D_{1}^{y_{1}}-(X, \bar{X})$ are not strongly connected, but $D_{1}^{y}-(X, \bar{X})$ is strongly connected for all $y \in V\left(D_{2}\right) \backslash$
$\left\{y_{0}, y_{1}\right\}$. By Claim 1, there exists $x \in V\left(D_{1}\right)$ such that $D_{2}^{x}-(X, \bar{X})$ is strongly connected. Thus $D_{2}^{x} \cup\left(\bigcup_{y \in V\left(D_{2}\right) \backslash\left\{y_{0}, y_{1}\right\}} D_{1}^{y}\right)-(X, \bar{X})$ is strongly connected and so is contained in $D[X]$ or $D[\bar{X}]$. If $D_{2}^{x} \cup\left(\bigcup_{y \in V\left(D_{2}\right) \backslash\left\{y_{0}, y_{1}\right\}} D_{1}^{y}\right)-(X, \bar{X})$ is contained in $D[\bar{X}]$, then $X \subseteq V\left(D_{1}^{y_{0}} \cup D_{1}^{y_{1}}\right)$. Let $X=X_{0} \cup X_{1}$ with $X_{0} \cap X_{1}=\emptyset$, $X_{0} \subseteq V\left(D_{1}^{y_{0}}\right)$ and $X_{1} \subseteq V\left(D_{1}^{y_{1}}\right)$. Then $\left|X_{0} \cup X_{1}\right|=|X| \geq 3$. Since $D_{1}^{y_{0}}-(X, \bar{X})$ and $D_{1}^{y_{1}}-(X, \bar{X})$ are not strongly connected, $\left|X_{0}\right| \geq 1,\left|X_{1}\right| \geq 1, X_{0} \subset V\left(D_{1}^{y_{0}}\right)$ and $X_{1} \subset V\left(D_{1}^{y_{1}}\right)$. By Lemma 9 , we have $\omega_{D-S}(X)>\xi^{\prime}(D-S)$. The theorem holds in this case. If $D_{2}^{x} \cup\left(\bigcup_{\underline{y} \in V\left(D_{2}\right) \backslash\left\{y_{0}, y_{1}\right\}} D_{1}^{y}\right)-(X, \bar{X})$ is contained in $D[X]$, then $\bar{X} \subseteq V\left(D_{1}^{y_{0}} \cup D_{1}^{y_{1}}\right)$. Let $\bar{X}=X_{0} \cup X_{1}$ with $X_{0} \cap X_{1}=\emptyset, X_{0} \subseteq V\left(D_{1}^{y_{0}}\right)$ and $X_{1} \subseteq V\left(D_{1}^{y_{1}}\right)$. Then $\left|X_{0} \cup X_{1}\right|=|\bar{X}| \geq 3$. Since $D_{1}^{y_{0}}-(X, \bar{X})$ and $D_{1}^{y_{1}}-(X, \bar{X})$ are not strongly connected, $\left|X_{0}\right| \geq 1,\left|X_{1}\right| \geq 1, X_{0} \subset V\left(D_{1}^{y_{0}}\right)$ and $X_{1} \subset V\left(D_{1}^{y_{1}}\right)$. By Lemma 11, we have $\omega_{D-S}(X)>\xi^{\prime}(D-S)$. The theorem holds in this case.

Remark 14. The lower and upper bounds on $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$ in Theorem 13 are best possible. The reasons are as follows. Let $D_{1} \cong \overleftrightarrow{K}_{5}$ and $D_{2} \cong \overleftrightarrow{K}_{8}$. Then D_{i} is a strongly connected k_{i}-regular graph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Clearly $\min \left\{k_{1}+k_{2}-1, \nu_{1} k_{2}-2 k_{1}-2 k_{2}, \nu_{2} k_{1}-2 k_{1}-2 k_{2}\right\}=10=k_{1}+k_{2}-1=$ $\nu_{2} k_{1}-2 k_{1}-2 k_{2}$. By Theorem 13, $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)=k_{1}+k_{2}-1=\min \left\{k_{1}+k_{2}-\right.$ $\left.1, \nu_{1} k_{2}-2 k_{1}-2 k_{2}, \nu_{2} k_{1}-2 k_{1}-2 k_{2}\right\}=\nu_{2} k_{1}-2 k_{1}-2 k_{2}$, which implies that the lower and upper bounds on $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$ in Theorem 13 are attainable.

Corollary 15. Let D_{i} be a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2$. Then $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)=k_{1}+k_{2}-1$ if one of the following conditions holds:
(a) $k_{1} \geq 5$ and $k_{2} \geq 5$,
(b) D_{1} and D_{2} are not complete digraphs and $k_{1}, k_{2} \geq 4$.

Proof. By Theorem 13, $\min \left\{k_{1}+k_{2}-1, \nu_{1} k_{2}-2 k_{1}-2 k_{2}, \nu_{2} k_{1}-2 k_{1}-2 k_{2}\right\} \leq$ $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right) \leq k_{1}+k_{2}-1$. It suffices to show that $\nu_{1} k_{2}-2 k_{1}-2 k_{2} \geq k_{1}+k_{2}-1$ and $\nu_{2} k_{1}-2 k_{1}-2 k_{2} \geq k_{1}+k_{2}-1$.
(a) Note that $\nu_{1} k_{2}-2 k_{1}-2 k_{2}-\left(k_{1}-k_{2}-1\right)=\nu_{1} k_{2}-3 k_{1}-3 k_{2}+1 \geq$ $\left(k_{1}+1\right) k_{2}-3 k_{1}-3 k_{2}+1=k_{1} k_{2}-3 k_{1}-2 k_{2}+1=\left(k_{1}-2\right)\left(k_{2}-3\right)-5>0$ because $k_{1} \geq 5$ and $k_{2} \geq 5$. Thus $\nu_{1} k_{2}-2 k_{1}-2 k_{2}>k_{1}+k_{2}-1$. Similarly, $\nu_{2} k_{1}-2 k_{1}-2 k_{2}>k_{1}+k_{2}-1$.
(b) Since D_{1} is not a complete digraph, $\nu_{1} \geq k_{1}+2$. Thus $\nu_{1} k_{2}-2 k_{1}-$ $2 k_{2}-\left(k_{1}-k_{2}-1\right)=\nu_{1} k_{2}-3 k_{1}-3 k_{2}+1 \geq\left(k_{1}+2\right) k_{2}-3 k_{1}-3 k_{2}+1=$ $k_{1} k_{2}-3 k_{1}-k_{2}+1=\left(k_{1}-1\right)\left(k_{2}-3\right)-2>0$ because $k_{1} \geq 4$ and $k_{2} \geq 4$. Thus $\nu_{1} k_{2}-2 k_{1}-2 k_{2}>k_{1}+k_{2}-1$. Similarly, $\nu_{2} k_{1}-2 k_{1}-2 k_{2}>k_{1}+k_{2}-1$.

In fact, Theorem 13 can be generalized to the Cartesian product of n strongly connected regular digraphs. We need the following lemma.

Lemma 16. Let D_{i} be a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2, \ldots, n$. Then $D_{1} \times D_{2} \times \cdots \times D_{n}$ is super $-\lambda^{\prime}$ and $\lambda\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right)=$ $k_{1}+k_{2}+\cdots+k_{n}$.

Proof. We first prove that $\lambda\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right)=k_{1}+k_{2}+\cdots+k_{n}$ by induction on n. If $n=2$, then, by Lemma $12, \lambda\left(D_{1} \times D_{2}\right)=\min \left\{\delta_{1}^{-}+\delta_{2}^{-}, \delta_{1}^{+}+\right.$ $\left.\delta_{2}^{+}, \lambda_{1} \nu_{2}, \lambda_{2} \nu_{1}\right\}$. Note that D_{i} is k_{i}-regular and $k_{i}=\lambda_{i}$ for $i=1,2$. Thus $\lambda_{1} \nu_{2}=$ $k_{1} \nu_{2} \geq k_{1}\left(k_{2}+1\right) \geq k_{1}+k_{2}$. Similarly, $\lambda_{2} \nu_{1} \geq k_{1}+k_{2}$. Hence $\lambda\left(D_{1} \times D_{2}\right)=k_{1}+k_{2}$. Suppose that $n \geq 3$ and $\lambda\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right)=k_{1}+k_{2}+\cdots+k_{n-1}$. Note $D_{1} \times D_{2}$ is a strongly connected $\left(k_{1}+k_{2}\right)$-regular digraph with $k_{1}+k_{2}=$ $\lambda\left(D_{1} \times D_{2}\right)$. Thus, by the induction hypothesis, $\lambda\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right)=$ $\lambda\left(\left(D_{1} \times D_{2}\right) \times D_{3} \times \cdots \times D_{n}\right)=\left(k_{1}+k_{2}\right)+k_{3}+\cdots+k_{n}=k_{1}+k_{2}+\cdots+k_{n}$. Next we prove that $D_{1} \times D_{2} \times \cdots \times D_{n}$ is super- λ^{\prime}. Note that $D_{1} \times D_{2} \times \cdots \times D_{n-1}$ is a strongly connected $\left(k_{1}+k_{2}+\cdots+k_{n-1}\right)$-regular digraph with $k_{1}+k_{2}+$ $\cdots+k_{n-1}=\lambda\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right)$. By $k_{i} \geq 3$, Theorem 4 implies that $D_{1} \times D_{2} \times \cdots \times D_{n}=\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right) \times D_{n}$ is super- $-\lambda^{\prime}$.

Theorem 17. Let D_{i} be a strongly connected k_{i}-regular digraph with $k_{i}=\lambda_{i} \geq 3$ for $i=1,2, \ldots, n$. Then $\min _{1 \leq i \leq n}\left\{\sum_{j=1}^{n} k_{j}-1, \nu_{i}\left(\sum_{j=1}^{n} k_{j}-k_{i}\right)-2 \sum_{j=1}^{n} k_{j}\right\} \leq$ $S_{\lambda^{\prime}}\left(D_{1} \times D_{2} \times \cdots \times D_{n}\right) \leq \sum_{j=1}^{n} k_{j}-1$.

Proof. By Lemma 16, $D_{1} \times D_{2} \times \cdots \times D_{n}$ is super- λ^{\prime}. Note that $D_{1} \times D_{2} \times$ $\cdots \times D_{n-1}$ is a strongly connected $\left(k_{1}+k_{2}+\cdots+k_{n-1}\right)$-regular digraph with $k_{1}+k_{2}+\cdots+k_{n-1}=\lambda\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right)$ by Lemma 16. For any integer i with $1 \leq i \leq n-1$, we have $\left|V\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right)\right| k_{n}=\nu_{1} \nu_{2} \cdots \nu_{n-1} k_{n} \geq$ $\left(1+k_{1}\right) \cdots\left(1+k_{i-1}\right) \nu_{i}\left(1+k_{i+1}\right) \cdots\left(1+k_{n-1}\right) k_{n} \geq \nu_{i}\left(\sum_{j=1}^{n} k_{j}-k_{i}\right)$. By Theorem 13, we see that

$$
\begin{aligned}
& \sum_{j=1}^{n} k_{j}-1 \geq S_{\lambda^{\prime}}\left(\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right) \times D_{n}\right) \\
& \geq \min \left\{k_{1}+k_{2}+\cdots+k_{n-1}+k_{n}-1,\right. \\
&\left|V\left(D_{1} \times D_{2} \times \cdots \times D_{n-1}\right)\right| k_{n}-2\left(k_{1}+k_{2}+\cdots+k_{n-1}\right)-2 k_{n} \\
&\left.\nu_{n}\left(k_{1}+k_{2}+\cdots+k_{n-1}\right)-2\left(k_{1}+k_{2}+\cdots+k_{n-1}\right)-2 k_{n}\right\} \\
& \geq \min _{1 \leq i \leq n-1}\left\{\sum_{j=1}^{n} k_{j}-1, \nu_{i}\left(\sum_{j=1}^{n} k_{j}-k_{i}\right)-2 \sum_{j=1}^{n} k_{j}, \nu_{n}\left(\sum_{j=1}^{n} k_{j}-k_{n}\right)-2 \sum_{j=1}^{n} k_{j}\right\} \\
&= \min _{1 \leq i \leq n}\left\{\sum_{j=1}^{n} k_{j}-1, \nu_{i}\left(\sum_{j=1}^{n} k_{j}-k_{i}\right)-2 \sum_{j=1}^{n} k_{j}\right\} .
\end{aligned}
$$

4. Conclusions

In this paper, the concept of the arc fault tolerance $S_{\lambda^{\prime}}(D)$ of a digraph D on the super- λ^{\prime} property was presented. The parameter can be used to evaluate the reliability of interconnection networks. We investigate $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$ for the Cartesian product $D_{1} \times D_{2}$ of regular digraphs D_{1} and D_{2}. We give a necessary and sufficient condition for $D_{1} \times D_{2}$ to be super- λ^{\prime} and obtain $\min \left\{k_{1}+k_{2}-\right.$ $\left.1, \nu_{1} k_{2}-2 k_{1}-2 k_{2}, \nu_{2} k_{1}-2 k_{1}-2 k_{2}\right\} \leq S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right) \leq k_{1}+k_{2}-1$, where D_{i} is k_{i}-regular and $\nu_{i}=\left|V\left(D_{i}\right)\right|$ for $i=1,2$. An example shows that the lower and upper bounds are best possible. Moreover, we show that $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)=k_{1}+k_{2}-1$ in some cases. The above results show that the arc fault-tolerant capability of the Cartesian product of regular digraphs is nice in terms of the super- λ^{\prime} property. The lower and upper bounds on $S_{\lambda^{\prime}}\left(D_{1} \times D_{2}\right)$ are also generalized to the Cartesian product of n regular digraphs. The value of $S_{\lambda^{\prime}}(D)$ will provide a beneficial reference for engineers when designing or selecting interconnection networks to build parallel systems. The determination of the exact value of $S_{\lambda^{\prime}}(D)$ remains an open problem for the general digraphs.

Acknowledgement

The authors would like to express their deepest gratitude to the anonymous referees for the suggestions and comments that improve the quality of this paper. This work is supported by the National Natural Science Foundation of China (11401352, 11401354, 11501341).

References

[1] D. Bauer, F. Boesch, C. Suffel and R. Tindell, Combinatorial optimization problems in the analysis and design of probabilistic networks, Networks 15 (1985) 257-271. doi:10.1002/net. 3230150210
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[3] C. Balbuena, P. García-Vázquez, A. Hansberg and L.P. Montejano, On the superrestricted arc-connectivity of s-geodetic digraphs, Networks 61 (2013) 20-28. doi:10.1002/net. 21462
[4] C.W. Cheng and S.Y. Hsieh, Bounds for the super extra edge connectivity of graphs, in: International Computing and Combinatorics Conference, D. Xu, D. Du, D. Du $(\operatorname{Ed}(\mathrm{s}))$, Lecture Notes in Comput. Sci. 9198 (2015) 624-631. doi:10.1007/978-3-319-21398-9_49
[5] X. Chen, J. Liu and J. Meng, The restricted arc connectivity of Cartesian product digraphs, Inform. Process. Lett. 109 (2009) 1202-1205.
doi:10.1016/j.ipl.2009.08.005
[6] A.H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199. doi:10.1016/0020-0190(88)90025-7
[7] Y. Hong, J. Meng and Z. Zhang, Edge fault tolerance of graphs with respect to super edge connectivity, Discrete Appl. Math. 160 (2012) 579-587. doi:10.1016/j.dam.2011.10.033
[8] Z.M. Hong and J.M. Xu, Vulnerability of super edge-connected networks, Theoret. Comput. Sci. 520 (2014) 75-86. doi:10.1016/j.tcs.2013.10.021
[9] J. Liu and J. Meng, Super-connected and super-arc-connected Cartesian product of digraphs, Inform. Process. Lett. 108 (2008) 90-93. doi:10.1016/j.ipl.2008.04.006
[10] J. Liu, J. Meng and Z. Zhang, Double-super-connected digraphs, Discrete Appl. Math. 158 (2010) 1012-1016. doi:10.1016/j.dam.2010.02.004
[11] L. Volkmann, Restricted arc-connectivity of digraphs, Inform. Process. Lett. 103 (2007) 234-239. doi:10.1016/j.ipl.2007.04.004
[12] S. Wang and S. Lin, λ^{\prime}-optimal digraphs, Inform. Process. Lett. 108 (2008) 386-389. doi:10.1016/j.ipl.2008.07.008
[13] J.M. Xu, Connectivity of Cartesian product digraphs and fault-tolerant routings of generalized hypercubes, Appl. Math. J. Chinese Univ. 13 (1998) 179-187. doi:10.1007/s11766-998-0039-x
[14] J.M. Xu, Topological Structure and Analysis of Interconnection Networks (Kluwer Academic Publishers, Dordrecht, 2001). doi:10.1007/978-1-4757-3387-7
[15] C. Yang and J.M. Xu, Reliability of interconnection networks modeled by Cartesian product digraphs, Networks 52 (2008) 202-205.
doi:10.1002/net. 20231
[16] G. Zhang, Arc fault tolerance of Cartesian product digraphs on hyper arc connectivity, Int. J. Comput. Math. 91 (2014) 2152-2162. doi:10.1080/00207160.2014.883069
[17] Z. Zhang and Y. Zhu, Cyclic arc-connectivity in a Cartesian product digraph, Appl. Math. Lett. 23 (2010) 796-800.
doi:10.1016/j.aml.2010.03.013

