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Abstract

Let D = (V (D), A(D)) be a strongly connected digraph. An arc set
S ⊆ A(D) is a restricted arc-cut of D if D − S has a non-trivial strong
component D1 such that D − V (D1) contains an arc. The restricted arc-
connectivity λ′(D) is the minimum cardinality over all restricted arc-cuts of
D. In [C. Balbuena, P. Garćıa-Vázquez, A. Hansberg and L.P. Montejano,
On the super-restricted arc-connectivity of s-geodetic digraphs, Networks 61
(2013) 20–28], Balbuena et al. introduced the concept of super-λ′ digraphs.
In this paper, we first introduce the concept of the arc fault tolerance of a
digraph D on the super-λ′ property. We define a super-λ′ digraph D to be
m-super-λ′ if D − S is still super-λ′ for any S ⊆ A(D) with |S| ≤ m. The
maximum value of such m, denoted by Sλ′(D), is said to be the arc fault
tolerance of D on the super-λ′ property. Sλ′(D) is an index to measure the
reliability of networks. Next we provide a necessary and sufficient condition
for the Cartesian product of regular digraphs to be super-λ′. Finally, we
give the lower and upper bounds on Sλ′(D) for the Cartesian product D

of regular digraphs and give an example to show that the lower and upper
bounds are best possible. In particular, the exact value of Sλ′(D) is obtained
in special cases.
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1. Introduction

In a multiprocessor system, processors communicate by exchanging messages
through an interconnection network whose topology is often modeled by a graph
or a digraph D = (V (D), A(D)), where the vertex set V (D) corresponds to pro-
cessors, and the edge set or the arc set A(D) corresponds to communication links.
The properties of the graph or digraph determine the system’s working efficiency.
One fundamental consideration in the design of networks is reliability. An edge
(arc)-cut of a (strongly) connected (di)graph D is a set of edges (arcs) whose re-
moval makes the remaining (di)graph no longer (strongly) connected. The edge
(arc)-connectivity λ(D) is the minimum cardinality over all edge (arc)-cuts of D.
High edge (arc)-connectivity is desirable since such a (di)graph is more reliable. It
is well known that λ(D) ≤ δ(D), where δ(D) is the minimum degree of D. Hence
a (di)graph D with λ(D) = δ(D) is said to be maximally edge (arc)-connected.

To design more reliable networks, besides the requirement of maximal edge
(arc)-connectivity, it is also desirable that the number of minimum edge (arc)-
cuts is as small as possible. For this purpose, Bauer et al. [1] defined the super-λ
(di)graphs. A (strongly) connected (di)graph D is called a super edge (arc)-
connected (di)graph, in short, a super-λ (di)graph, if every minimum edge (arc)-
cut consists of edges (arcs) incident with one vertex. In order to estimate more
precisely the reliability of networks, Esfahanian and Hakimi [6] introduced the
concept of restricted edge-connectivity. A set of edges S in a connected graph G is
a restricted edge-cut if G−S is disconnected and contains no isolated vertex. The
restricted edge-connectivity λ′(G) is the minimum cardinality over all restricted
edge-cuts of G. A connected graph G is called a super-restricted edge-connected
graph, in short, a super-λ′ graph, if every minimum restricted edge-cut consists
of edges adjacent to one edge.

Recently, as a generalization of restricted edge-connectivity to digraphs, the
concept of restricted arc-connectivity was introduced by Volkmann [11]. Let D

be a strongly connected digraph. An arc set S of D is a restricted arc-cut of D
if D−S has a non-trivial strong component D1, that means a strong component
with order at least 2, such that D − V (D1) contains an arc. The restricted arc-
connectivity λ′(D) is the minimum cardinality over all restricted arc-cuts of D. A
strongly connected digraph D is called λ′-connected if λ′(D) exists. A restricted
arc-cut S is called a λ′-cut if |S| = λ′(D). For u ∈ V (D), let d+(u) = d+D(u) =
|{v ∈ V (D) : uv ∈ A(D)}| and d−(u) = d−D(u) = |{v ∈ V (D) : vu ∈ A(D)}|.
In [11], Volkmann proved that each strong digraph D of order n ≥ 4 and girth
g = 2 or g = 3 except some families of digraphs is λ′-connected and satisfies
λ(D) ≤ λ′(D) ≤ ξ(D), where ξ(D) is defined as follows. If Cg = u1u2 · · ·ugu1 is
a shortest cycle of D, then ξ(Cg) = min

{∑g
i=1 d

+(ui)− g,
∑g

i=1 d
−(ui)− g

}
and

ξ(D) = min{ξ(Cg) : Cg is a shortest cycle of D}.
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For the investigation of λ′(D), Wang and Lin [12] introduced the notion of
arc-degree. For a pair X,Y of nonempty vertex sets of a digraph D, we define
(X,Y ) = {xy ∈ A(D) : x ∈ X, y ∈ Y }. If Y = X = V (D) \X, we write ∂+

D(X)
or ∂−

D(Y ) instead of (X,Y ). When the digraph under consideration is obvious,
we omit the subscript D and use ∂+(X) and ∂−(Y ). Usually, we abbreviate
∂+({x}) and ∂−({x}) to ∂+(x) and ∂−(x), respectively. For any xy ∈ A(D), the
arc-degree of xy is defined as ξ′(xy) = min{|∂+({x, y})|, |∂−({x, y})|, |∂+(x) ∪
∂−(y)|, |∂−(x) ∪ ∂+(y)|}. The minimum arc-degree of D is ξ′(D) = min{ξ′(xy) :
xy ∈ A(D)}. The arc-degree of an arc xy ∈ A(D) can be computed in terms of the
degrees of vertices x and y. An arc xy ∈ A(D) is a symmetric arc if yx ∈ A(D).
The set of symmetric arcs of D is denoted by Sym(D). If xy 6∈ Sym(D), then
ξ′(xy) = min{d+(x) + d+(y) − 1, d−(x) + d−(y) − 1, d+(x) + d−(y) − 1, d−(x) +
d+(y)}. If xy ∈ Sym(D), then ξ′(xy) = min{d+(x) + d+(y)− 2, d−(x) + d−(y)−
2, d+(x)+d−(y)−1, d−(x)+d+(y)−1}. By [12], ξ′(D) ≤ ξ(D) for many digraphs
D, for example, for all the digraphs D with δ(D) ≥ 3.

More recently, Balbuena et al. [3] extended the notion of super-λ′ graphs to
digraphs as follows. A λ′-connected digraph D is called a super-restricted arc-
connected digraph, in short, a super-λ′ digraph, if and only if for every λ′-cut
S there exists xy ∈ A(D) such that S ∈ Ωxy = {∂+({x, y}), ∂−({x, y}), ∂+(x) ∪
∂−(y), ∂−(x) ∪ ∂+(y)}. In the same article, Balbuena et al. provided a suffi-
cient condition for an s-geodetic digraph to be super-λ′. Super-restricted arc-
connectivity is a more refined measure for the network reliability than restricted
arc-connectivity.

A natural question is how many links of a super-λ′ interconnection network
an adversary needs to destroy such that the damaged network is not super-λ′

any more. In fact, the similar question has been investigated for the super-λ
(di)graphs in [4, 7, 8, 16]. In this paper, we study this problem for the super-λ′

digraphs. For this purpose, we first introduce the following concepts.

Definition. Let m be a nonnegative integer. A super-λ′ digraph D is m-super-λ′

if D − S is still super-λ′ for any S ⊆ A(D) with |S| ≤ m.

Definition. The arc fault tolerance of a super-λ′ digraph D on the super-λ′

property, denoted by Sλ′(D), is the integer m such that D is m-super-λ′ but not
(m+ 1)-super-λ′.

Example 1. Let C4 be an undirected cycle of order 4, and let D be the digraph
obtained from C4 by replacing each edge of C4 by two oppositely oriented arcs
with the same ends. Then D is 0-super-λ′. For any e ∈ A(D), D − e is still
super-λ′. So D is 1-super-λ′. For any u ∈ V (D), let {e1, e2} = ∂+(u). Then D is
not 2-super-λ′ since D − {e1, e2} is not strongly connected. Thus Sλ′(D) = 1.
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Now, we answer the above question. An adversary needs to destroy at least
Sλ′(D)+1 links for destroying the super-λ′ property of an interconnection network
D. Sλ′(D) can be used to evaluate the reliability of an interconnection network
D. Therefore, the determination of Sλ′(D) is full of scientific significance as well
as application value.

For designing large-scale interconnection networks, the Cartesian product is
an important method to obtain large digraphs from smaller ones, with a number
of parameters that can be easily calculated from the corresponding parameters
of those small initial digraphs. The Cartesian product preserves many nice prop-
erties of the initial digraphs (see, for example, [14]). The Cartesian product of
digraphsD1 andD2 is the digraphD1×D2 whose vertex set is V (D1)×V (D2) and
whose arc set is the set of all pairs (x1, y1)(x2, y2) such that either x1x2 ∈ A(D1)
and y1 = y2, or y1y2 ∈ A(D2) and x1 = x2. In [5, 9, 10, 13, 14, 15, 17], the au-
thors introduced some results about (arc) connectivity of the Cartesian product
of digraphs.

For graph-theoretical terminology and notation not defined here we follow [2].
We only consider finite digraphs D without loops and multiple arcs. For a vertex
u ofD, d+D(u) and d−D(u) are called the out-degree and in-degree of u, respectively.
If D has vertices v1, v2, . . . , vn, the sequence (d

+
D(v1), d

+
D(v2), . . . , d

+
D(vn)) is called

an out-degree sequence of D. An in-degree sequence of D can be defined similarly.
Let δ+(D) = min{d+D(u) : u ∈ V (D)} and δ−(D) = min{d−D(u) : u ∈ V (D)}.
Then δ(D) = min{δ+(D), δ−(D)}. For subsets X and X ′ of V (D), denote by
D[X] the subdigraph of D induced by X and write X ⊂ X ′ if X is properly

contained in X ′. Denote by
←→
K n the complete digraph on n vertices. Any digraph

with just one vertex is referred to as trivial. Let D and H be two digraphs. The
union D ∪H of D and H is the digraph with vertex set V (D) ∪ V (H) and arc
set A(D) ∪ A(H). Let Di be a digraph for i = 1, 2, . . . , n. For simplicity, we
write νi = |V (Di)|, λi = λ(Di), δi = δ(Di), δ

+
i = δ+(Di) and δ−i = δ−(Di). For

y ∈ V (D2), we use D
y
1 to denote the subdigraph of D1×D2 induced by the vertex

set {(x, y) : x ∈ V (D1)}. Clearly, Dy
1 is isomorphic to D1. Dx

2 can be defined
similarly for x ∈ V (D1).

A regular network has the advantages of easy implementation and low cost
when it is manufactured. Hence, in this paper, we focus on regular digraphs. A
digraph D is k-regular if d+D(v) = d−D(v) = k for all v ∈ V (D); a regular digraph
is one that is k-regular for some k. Let D1 × D2 be the Cartesian product of
regular digraphs D1 and D2. We provide a necessary and sufficient condition for
D1×D2 to be super-λ′ and give the lower and upper bounds on Sλ′(D1×D2). An
example shows that the lower and upper bounds are best possible. In particular,
the exact value of Sλ′(D1 × D2) is obtained in special cases. These results are
also generalized to the Cartesian product of n regular digraphs.
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2. A Necessary and Sufficient Condition for the Cartesian

Product of Regular Digraphs to be Super-λ′

We first give two lemmas.

Lemma 2 [12]. Let D be a strongly connected digraph with δ+(D) ≥ 3 or

δ−(D) ≥ 3. Then D is λ′-connected and λ′(D) ≤ ξ′(D).

Lemma 3 [3]. Let D be a λ′-connected digraph and let S be a λ′-cut of D. If

D is not super-λ′, then there exists a subset of vertices X ⊂ V (D) such that

S = ∂+(X) and both D[X] and D[X] contain an arc.

Theorem 4. Let Di be a strongly connected ki-regular digraph with ki = λi ≥ 2

for i = 1, 2. Then D1 ×D2 is super-λ′ if and only if D1 ×D2 6∼=
←→
K n ×D, where

n ≥ 3 and D is a strongly connected k-regular digraph with k = λ(D) = 2.

Proof. Necessity. Let S be an arbitrary λ′-cut ofD1×D2. SinceD1×D2 is super-
λ′, there exists xy ∈ A(D1 × D2) such that S ∈ Ωxy = {∂+({x, y}), ∂−({x, y}),
∂+(x)∪∂−(y), ∂−(x)∪∂+(y)}. Note that ξ′(xy) = min{|∂+({x, y})|, |∂−({x, y})|,
|∂+(x) ∪ ∂−(y)|, |∂−(x) ∪ ∂+(y)|}. Thus λ′(D1 × D2) = |S| ≥ ξ′(xy) ≥ ξ′(D1 ×
D2). By δ(D1 × D2) ≥ 4, Lemma 2 yields λ′(D1 × D2) ≤ ξ′(D1 × D2). Hence

λ′(D1×D2) = ξ′(D1×D2). Suppose that D1×D2
∼=
←→
K n×D, where n ≥ 3 and

D is a strongly connected k-regular digraph with k = λ(D) = 2. Then
←→
K n ×D

is super-λ′ and λ′
(←→
K n ×D

)
= ξ′

(←→
K n ×D

)
. Since

←→
K n ×D is (n + 1)-regular,

for any u ∈ V
(←→
K n × D

)
, d+(u) = d−(u) = n + 1. Let xy ∈ A

(←→
K n × D

)
. If

xy 6∈ Sym
(←→
K n×D

)
, ξ′(xy) = min{d+(x)+d+(y)−1, d−(x)+d−(y)−1, d+(x)+

d−(y)−1, d−(x)+d+(y)} = 2n+1. If xy ∈ Sym
(←→
K n×D

)
, ξ′(xy) = min{d+(x)+

d+(y)−2, d−(x)+d−(y)−2, d+(x)+d−(y)−1, d−(x)+d+(y)−1} = 2n. Note that

Sym
(←→
K n×D

)
6= ∅. Thus ξ′

(←→
K n×D

)
= 2n and so λ′

(←→
K n×D

)
= 2n. By λ(D) =

2, there exists a minimum arc-cut {y1y2, y3y4} of D such that D − {y1y2, y3y4}

has t strong components B1, B2, . . . , Bt. Denote V
(←→
K n

)
= {xj : j = 1, 2, . . . , n}

and denote by Dxj the subdigraph of
←→
K n×D induced by the vertex set {(xj , y) :

y ∈ V (D)}. Clearly Dxj ∼= D. Thus Dxj −
{
(xj , y1)(xj , y2), (xj , y3)(xj , y4)

}
has t

strong components. Let S =
⋃n

j=1

{
(xj , y1)(xj , y2), (xj , y3)(xj , y4)

}
. Then |S| =

2n and
←→
K n×D−S has t strong components

←→
K n×B1,

←→
K n×B2, . . . ,

←→
K n×Bt.

By n ≥ 3, S is clearly a restricted arc-cut of
←→
K n ×D. Note that λ′

(←→
K n ×D

)
=

2n = |S|. Thus S is a λ′-cut. By n ≥ 3, for any xy ∈ A(
←→
K n × D), S 6∈ Ωxy,

which implies that
←→
K n × D is not super-λ′, a contradiction. We conclude that

D1 ×D2 6∼=
←→
K n ×D.

Sufficiency. Let D∗ = D1 × D2. By Lemma 2, D∗ is λ′-connected and
λ′(D∗) ≤ ξ′(D∗). Suppose that D∗ is not super-λ′. Then there exists a λ′-cut S
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such that for any xy ∈ A(D∗), S 6∈ Ωxy. By Lemma 3, there exists a subset of
vertices X ⊂ V (D∗) such that S = ∂+(X) and both D∗[X] and D∗[X] contain an
arc. Thus |X| ≥ 2 and |X| ≥ 2. If |X| = 2, then there exists uv ∈ A(D∗[X]) such
that S = ∂+({u, v}) ∈ Ωuv, a contradiction. Thus |X| ≥ 3. Similarly, |X| ≥ 3.
We give four claims.

Claim 1. |X| ≥ k1 + k2 − 1.

Since Di is ki-regular for i = 1, 2, D∗ is (k1 + k2)-regular. If Sym(D∗) 6= ∅,
then |S| = λ′(D∗) ≤ ξ′(D∗) = 2k1 + 2k2 − 2. Note that S = ∂+(X). Thus

|X|(k1 + k2)− |X|(|X| − 1) ≤ |S| ≤ 2k1 + 2k2 − 2,

which implies that (|X|−2)(k1+k2−|X|−1) ≤ 0. By |X| ≥ 3, |X| ≥ k1+k2−1.
If Sym(D∗) = ∅, then |S| = λ′(D∗) ≤ ξ′(D∗) = 2k1 +2k2− 1. Since D∗[X] is

not a complete digraph,
∑

v∈X d+
D∗[X](v) ≤ |X|(|X| − 1)− 1. Hence

|X|(k1 + k2)− |X|(|X| − 1) + 1 ≤ |S| ≤ 2k1 + 2k2 − 1.

Similarly, |X| ≥ k1 + k2 − 1. Claim 1 holds.

Claim 2. For any y ∈ V (D2) and any x ∈ V (D1), X 6⊆ V (Dy
1) and X 6⊆ V (Dx

2 ).

By contradiction. Suppose that X ⊆ V (Dy
1) for some y ∈ V (D2). If X ⊂

V (Dy
1), then, by Claim 1 and ki ≥ 2 for i = 1, 2, λ′(D∗) = |S| ≥ |X|k2 +

λ1 ≥ (k1 + k2 − 1)k2 + k1 ≥ 2k1 + 2k2 + k1 − 2 ≥ 2k1 + 2k2 > ξ′(D∗), a
contradiction. If X = V (Dy

1), then |S| = |X|k2. If |X| ≥ k1 + k2 or k2 ≥ 3,
then |S| = |X|k2 ≥ 2k1 + 2k2 or |S| = |X|k2 ≥ 3(k1 + k2 − 1) > 2k1 + 2k2. This
means that λ′(D∗) = |S| > ξ′(D∗), a contradiction. If |X| = k1 + k2 − 1 and
k2 = 2, then |X| = |V (Dy

1)| = k1 + 1 and so D
y
1 is a complete digraph. Thus

D1×D2
∼=
←→
K n×D, where n = |X| ≥ 3 and D is a strongly connected k-regular

digraph with k = λ(D) = 2, a contradiction. The case that X 6⊆ V (Dx
2 ) for any

x ∈ V (D1) can be proved analogously. Claim 2 holds.

By Claim 2, X contains two vertices (x1, y1) and (x2, y2) such that x1 6= x2

and y1 6= y2. Let D̃
yi
1 = D

yi
1 − S and D̃xi

2 = Dxi

2 − S for i = 1, 2.

Claim 3. At least one graph of D̃
y1
1 , D̃

y2
1 , D̃x1

2 and D̃x2

2 is strongly connected.

By contradiction. Suppose that D̃yi
1 and D̃xi

2 are not strongly connected for
i = 1, 2. Then λ′(D∗) = |S| ≥ 2λ1 + 2λ2 = 2k1 + 2k2 > ξ′(D∗), a contradiction.
Claim 3 holds.

By Claim 3, we may assume, without loss of generality, that D̃y1
1 is strongly

connected and so V (Dy1
1 ) ⊆ X.

Claim 4. For some x ∈ V (D1), D̃x
2 is strongly connected.
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By contradiction. Suppose that D̃x
2 is not strongly connected for any x ∈

V (D1). Then |S| ≥ ν1λ2 = ν1k2. If Sym(D∗) 6= ∅, then 2k1 +2k2− 2 = ξ′(D∗) ≥
|S| ≥ ν1k2. Thus 2k1 − 2 ≥ (ν1 − 2)k2 ≥ (k1 − 1)k2 ≥ 2k1 − 2, which implies
that all the inequalities become equalities. Hence ν1 = k1 + 1 and k2 = 2. This

means that D1 × D2
∼=
←→
K n × D, where n ≥ 3 and D is a strongly connected

k-regular digraph with k = λ(D) = 2, a contradiction. If Sym(D∗) = ∅, then
2k1 + 2k2 − 1 = ξ′(D∗) ≥ |S| ≥ ν1k2. Thus 2k1 − 1 ≥ (ν1 − 2)k2 ≥ k1k2 ≥ 2k1, a
contradiction. Claim 4 holds.

By Claim 4, V (Dx
2 ) ⊆ X or V (Dx

2 ) ⊆ X. Since V (Dy1
1 ) ⊆ X and V (Dx

2 ) ∩
V (Dy1

1 ) = {(x, y1)}, we see that (x, y1) ∈ X and so V (Dx
2 ) ⊆ X. Now, V (Dy1

1 ) ∪
V (Dx

2 ) ⊆ X. A similar argument can be used to establish that there exist two

vertices y′ ∈ V (D2) and x′ ∈ V (D1) such that V
(
D

y′

1

)
∪ V

(
Dx′

2

)
⊆ X. Thus

V
(
D

y1
1

)
∩ V

(
Dx′

2

)
= {(x′, y1)} ⊆ X ∩ X, a contradiction. We conclude that

D1 ×D2 is super-λ′.

3. Sλ′(D) for the Cartesian Product of Regular Digraphs

For convenience, denote ωD(X) = |∂+
D(X)| = |∂+(X)|.

Lemma 5. Let D be a strongly connected digraph with δ+(D) ≥ 3 or δ−(D) ≥ 3.
If ωD(X) > ξ′(D) holds for any X ⊆ V (D) with |X| ≥ 3 and |X| ≥ 3, then D is

super-λ′.

Proof. By Lemma 2, D is λ′-connected and λ′(D) ≤ ξ′(D). Suppose, to the
contrary, that D is not super-λ′. Then there exists a λ′-cut S of D such that
for any xy ∈ A(D), S 6∈ Ωxy. By Lemma 3, there exists a subset of vertices
X ⊂ V (D) such that S = ∂+(X) and both D[X] and D[X] contain an arc. Thus
|X| ≥ 2 and |X| ≥ 2. If |X| = 2, then there exists uv ∈ A(D[X]) such that
S = ∂+({u, v}) ∈ Ωuv, a contradiction. Thus |X| ≥ 3. Similarly, |X| ≥ 3. Hence
ξ′(D) ≥ λ′(D) = |S| = ωD(X) > ξ′(D), a contradiction. We conclude that D is
super-λ′.

Lemma 6. Let D be a k-regular digraph. Then ξ′(D − S) ≤ ξ′(D) for any

S ⊆ A(D) with |S| ≤ k − 1.

Proof. Since D is k-regular, ξ′(D) ≥ 2k − 2. By |S| ≤ δ(D) − 1, there exists
xy ∈ A(D − S) such that xy is adjacent to at least one arc a in S. Without
loss of generality, assume that a = xu with u ∈ V (D) and u 6= y. Thus ξ′(D −
S) ≤ ξ′(xy) ≤ min

{
d+D−S(x) + d+D−S(y) − 1, d−D−S(x) + d−D−S(y) − 1, d+D−S(x)+

d−D−S(y) − 1, d−D−S(x) + d+D−S(y)
}
≤ min

{
d+D(x) + d+D(y) − 2, d−D(x) + d−D(y) −

1, d+D(x) + d−D(y)− 2, d−D(x) + d+D(y)
}
= 2k − 2 ≤ ξ′(D).
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Lemma 7. Let D be a digraph with δ(D) ≥ 4. Then δ+(D − S) ≥ 3 or δ−(D −
S) ≥ 3 for any S ⊆ A(D) with |S| ≤ δ(D)− 1.

Proof. If all the arcs in S are incident with a vertex x, then, for any y ∈ V (D) \
{x}, min

{
d+D−S(y), d

−
D−S(y)

}
≥ δ(D)−1 ≥ 3. In order to prove that δ+(D−S) ≥

3 or δ−(D − S) ≥ 3, it suffices to show that d+D−S(x) ≥ 3 or d−D−S(x) ≥ 3. Let
S = S0∪S1 with S0∩S1 = ∅, S0 ⊆ ∂+(x) and S1 ⊆ ∂−(x). Then |S0|+ |S1| = |S|

and so |S0| ≤
⌊
|S|
2

⌋
or |S1| ≤

⌊
|S|
2

⌋
. Without loss of generality, assume that

|S0| ≤
⌊
|S|
2

⌋
. Then d+D−S(x) = d+D(x)−|S0| ≥ d+D(x)−

⌊
|S|
2

⌋
≥ δ(D)−

⌊
δ(D)−1

2

⌋
=

⌈
δ(D)+1

2

⌉
≥
⌈
4+1
2

⌉
= 3.

If exactly |S| − 1 arcs in S are incident with a vertex x, then, for any y ∈
V (D) \ {x}, d+D−S(y) ≥ 3 or d−D−S(y) ≥ 3. In order to prove that δ+(D− S) ≥ 3

or δ−(D − S) ≥ 3, it suffices to show that d+D−S(x) ≥ 3 and d−D−S(x) ≥ 3.
Let S′ = S ∩ (∂+(x) ∪ ∂−(x)). Then |S′| = |S| − 1. If S′ ⊆ ∂+(x), then
d−D−S(x) = d−D(x) ≥ 4. If S′ ⊆ ∂−(x), then d+D−S(x) = d+D(x) ≥ 4. Next consider
the case S′ 6⊆ ∂+(x) and S′ 6⊆ ∂−(x). Let S′ = S′

0 ∪ S′
1 with S′

0 ∩ S′
1 = ∅,

S′
0 ⊆ ∂+(x) and S′

1 ⊆ ∂−(x). Then |S′
0| ≥ 1, |S′

1| ≥ 1 and |S′
0|+ |S

′
1| = |S

′|. Note
that |S′| = |S| − 1 ≤ δ(D)− 2. Thus |S′

0| ≤ δ(D)− 3 and |S′
1| ≤ δ(D)− 3, which

implies that d+D−S(x) = d+D(x) − |S
′
0| ≥ δ(D) − (δ(D) − 3) = 3 and d−D−S(x) ≥

δ(D)− (δ(D)− 3) = 3.
Suppose that at most |S|−2 arcs in S are incident with a vertex. If |S|−2 = 1,

then any two arcs in S are not adjacent. It follows that for any y ∈ V (D),
min

{
d+D−S(y), d

−
D−S(y)

}
≥ δ(D) − 1 ≥ 3 and so δ(D − S) ≥ 3. If |S| − 2 ≥ 2,

then for any y ∈ V (D), min
{
d+D−S(y), d

−
D−S(y)

}
≥ δ(D) − (|S| − 2) ≥ δ(D) −

(δ(D)− 3) = 3 and so δ(D − S) ≥ 3.

Lemma 8. Let D = D1×D2, where Di is a strongly connected ki-regular digraph

with ki = λi ≥ 3 for i = 1, 2. Then ωD−S(X) > ξ′(D−S) holds for any S ⊆ A(D)
and any X ⊆ V (D) such that |S| ≤ k1 + k2 − 1, |X| ≥ 3 and X ⊂ V (Dy0

1 ) with

y0 ∈ V (D2) or X ⊂ V (Dx0

2 ) with x0 ∈ V (D1).

Proof. Suppose, to the contrary, that there exists a subset S of A(D) and a
subset X of V (D) satisfying the conditions of the lemma such that

(1) ωD−S(X) ≤ ξ′(D − S).

Case 1. Sym(D) 6= ∅. Note that D is (k1 + k2)-regular. Thus ξ
′(D) = 2k1 +

2k2− 2. By |S| ≤ k1+k2− 1, Lemma 6 yields ξ′(D−S) ≤ ξ′(D) = 2k1+2k2− 2.
Thus 2k1+2k2−2 ≥ ξ′(D−S) ≥ ωD−S(X) ≥ ωD(X)−|S| ≥ ωD(X)−(k1+k2−1)
and so

(2) ωD(X) ≤ 3k1 + 3k2 − 3.
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Let |X| = a ≥ 3. Assume that X ⊂ V (Dy0
1 ) with y0 ∈ V (D2). Then ωD(X) =

ωD
y0
1

(X)+
∣∣∣
(
X,V (Dy0

1 )
)∣∣∣ = ωD

y0
1

(X)+
∑

z∈X

∣∣∣
(
{z}, V (Dy0

1 )
)∣∣∣ = ωD

y0
1

(X)+ak2.

Combining this with (2), we have

(3) 3k1 ≥ ωD
y0
1

(X) + (a− 3)k2 + 3.

Note that a ≥ 3 and k2 ≥ 3. Thus (3) yields

(4) 3k1 ≥ ωD
y0
1

(X) + 3a− 6.

For any vertex z ∈ X, since
∣∣({z}, V

(
D

y0
1

)
\X
)∣∣ =

∣∣({z}, V
(
D

y0
1

))∣∣−
∣∣({z}, X)

∣∣ ≥
k1 − (a − 1), we have ωD

y0
1

(X) =
∑

z∈X

∣∣({z}, V
(
D

y0
1

)
\ X

)∣∣ ≥ a(k1 − a + 1).

Combining this with (4), we have

(5) (a− 3)k1 ≤ a2 − 4a+ 6.

Since D
y0
1
∼= D1 and X is a nonempty proper subset of V (Dy0

1 ), ωD
y0
1

(X) ≥ λ1 =

k1. By (4), we have

(6) 2k1 ≥ 3a− 6.

Combining (5) with (6), we have (a−3)(3a−6) ≤ 2a2−8a+12 and so 1 ≤ a ≤ 6.
Note that a ≥ 3. Thus 3 ≤ a ≤ 6. Consider the following four cases.

Case 1.1. a = 6. Note that D is (k1 + k2)-regular and D[X] has at most
30 arcs. Thus ωD(X) ≥ 6k1 + 6k2 − 30. By (6), k1 ≥ 6 and so k1 + k2 ≥ 9. If
ωD(X) ≥ 6k1 + 6k2 − 29, then ωD(X) > 3k1 + 3k2 − 3, contradicting (2). Thus

ωD(X) = 6k1 + 6k2 − 30 and so D[X] ∼=
←→
K 6.

If |S ∩ (X,X)| ≤ k1 + k2 − 2, then ωD−S(X) = ωD(X) − |S ∩ (X,X)| ≥
6k1+6k2−30−(k1+k2−2) = 5k1+5k2−28 > 2k1+2k2−2 = ξ′(D) ≥ ξ′(D−S),
contradicting (1).

If |S ∩ (X,X)| = k1 + k2 − 1, then ωD−S(X) = 5k1 + 5k2 − 29. By |S| ≤
k1+k2−1, S∩A(D[X]) = ∅. Note that |S∩(X,X)| = k1+k2−1 ≥ 8. Thus there
exists xy ∈ Sym(D[X]) such that xy is adjacent to at least one arc in S∩ (X,X).
Thus ξ′(D − S) ≤ ξ′(xy) = min

{
d+D−S(x) + d+D−S(y) − 2, d−D−S(x) + d−D−S(y) −

2, d+D−S(x) + d−D−S(y)− 1, d−D−S(x) + d+D−S(y)− 1
}
≤ d+D−S(x) + d+D−S(y)− 2 ≤

d+D(x)+d+D(y)−1−2 = 2k1+2k2−3 < 5k1+5k2−29 = ωD−S(X), contradicting (1).

Case 1.2. a = 5. Note that D is (k1 + k2)-regular and D[X] has at most
20 arcs. Thus ωD(X) ≥ 5k1 + 5k2 − 20. By (6), k1 ≥ 5 and so k1 + k2 ≥ 8.
If ωD(X) ≥ 5k1 + 5k2 − 18, then ωD(X) > 3k1 + 3k2 − 3, contradicting (2).
Thus 5k1 + 5k2 − 20 ≤ ωD(X) ≤ 5k1 + 5k2 − 19. Since D is (k1 + k2)-regular,
ωD(X) = 5k1 + 5k2 − |A(D[X])| and so 19 ≤ |A(D[X])| ≤ 20.
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If |S ∩ (X,X)| ≤ k1 + k2 − 3, then ωD−S(X) = ωD(X) − |S ∩ (X,X)| ≥
4k1 + 4k2 − 17 > 2k1 + 2k2 − 2 = ξ′(D) ≥ ξ′(D − S), contradicting (1).

If k1 + k2 − 2 ≤ |S ∩ (X,X)| ≤ k1 + k2 − 1, then ωD−S(X) ≥ 4k1 + 4k2 − 19.
By |S| ≤ k1+k2−1, |S∩A(D[X])| ≤ 1. Note that |S∩ (X,X)| ≥ k1+k2−2 ≥ 6
and |X| = 5. Thus there exists x ∈ X such that |S ∩ ({x}, X)| ≥ 2. By |X| = 5,
19 ≤ |A(D[X])| ≤ 20 and |S ∩ A(D[X])| ≤ 1, there exists xz ∈ Sym(D[X]− S).
Thus ξ′(D − S) ≤ ξ′(xz) ≤ d+D−S(x) + d+D−S(z) − 2 ≤ d+D(x) + d+D(z) − 2 − 2 =
2k1 + 2k2 − 4 < 4k1 + 4k2 − 19 ≤ ωD−S(X), contradicting (1).

Case 1.3. a = 4. Note that D is (k1 + k2)-regular and D[X] has at most
12 arcs. Thus ωD(X) ≥ 4k1 + 4k2 − 12. If ωD(X) ≥ 4k1 + 4k2 − 8, then, by
k1 + k2 ≥ 6, ωD(X) > 3k1 + 3k2 − 3, contradicting (2). Thus 4k1 + 4k2 − 12 ≤
ωD(X) ≤ 4k1 + 4k2 − 9.

Case 1.3.1. 4k1+4k2−12 ≤ ωD(X) ≤ 4k1+4k2−10. Now 10 ≤ |A(D[X])| ≤
12 and so 10 ≤ Σv∈Xd+

D[X](v) ≤ 12. Thus the out-degree sequence ofD[X] may be

(3, 3, 3, 3), (2, 3, 3, 3), (2, 2, 3, 3), or (1, 3, 3, 3). Since X ⊂ V (Dy0
1 ), |(X,V (Dy0

1 ) \
X)| ≥ λ1 = k1 ≥ 3. Combining this with the out-degree sequence of D[X], there
exists u ∈ X such that d+

D
y0
1

(u) ≥ 4. Since Dy0
1
∼= D1 and D1 is k1-regular, k1 ≥ 4

and so k1 + k2 ≥ 7.

If |S ∩ (X,X)| ≤ k1 + k2 − 4, then ωD−S(X) = ωD(X) − |S ∩ (X,X)| ≥
3k1 + 3k2 − 8 > 2k1 + 2k2 − 2 = ξ′(D) ≥ ξ′(D − S), contradicting (1).

If |S∩(X,X)| = k1+k2−3, then ωD−S(X) ≥ 3k1+3k2−9 and |S∩A(D[X])|
≤ 2. Note that |S ∩ (X,X)| = k1 + k2 − 3 ≥ 4. Assume that there exists one
of X, say x, such that |S ∩ ({x}, X)| ≥ 2. Combining |S| ≤ k1 + k2 − 1 with
|S ∩ (X,X)| = k1 + k2 − 3, we have |S ∩ (X,X)| ≤ 2. Since D is (k1 + k2)-
regular and k1 + k2 ≥ 7, there exists an arc ux ∈ (X,X) with ux 6∈ S. Thus
ξ′(D − S) ≤ ξ′(ux) ≤ d+D−S(u) + d+D−S(x) − 1 ≤ d+D(u) + d+D(x) − 2 − 1 =
2k1 + 2k2 − 3 < 3k1 + 3k2 − 9 ≤ ωD−S(X), contradicting (1). Assume that for
any x ∈ X, |S ∩ ({x}, X)| ≤ 1. By |S ∩ (X,X)| ≥ 4, |S ∩ ({x}, X)| = 1 for any
x ∈ X. Note that 10 ≤ |A(D[X])| ≤ 12 and |S ∩ A(D[X])| ≤ 2. Thus there
exists yz ∈ A(D[X]− S) and so ξ′(D − S) ≤ ξ′(yz) ≤ d+D−S(y) + d+D−S(z)− 1 ≤
2k1 + 2k2 − 2− 1 < 3k1 + 3k2 − 9 ≤ ωD−S(X), contradicting (1).

If |S ∩ (X,X)| = k1 + k2 − 2, then ωD−S(X) ≥ 3k1 + 3k2 − 10 and |S ∩
A(D[X])| ≤ 1. By |S ∩ (X,X)| = k1+k2−2 ≥ 5 and |X| = 4, there exists x ∈ X

such that |S∩({x}, X)| ≥ 2. If there exists xy ∈ Sym(D[X]−S), then ξ′(D−S) ≤
ξ′(xy) ≤ d+D−S(x)+d+D−S(y)−2 ≤ 2k1+2k2−2−2 < 3k1+3k2−10 ≤ ωD−S(X),
contradicting (1). Otherwise, by 10 ≤ |A(D[X])| ≤ 12 and |S ∩ A(D[X])| ≤ 1,
there exists z ∈ X such that exactly one of {xz, zx} ⊆ A(D[X]), say xz, is in
S. Thus ξ′(D − S) ≤ ξ′(zx) ≤ d+D−S(z) + d+D−S(x) − 1 ≤ 2k1 + 2k2 − 3 − 1 <

3k1 + 3k2 − 10 ≤ ωD−S(X), contradicting (1).
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If |S∩(X,X)| = k1+k2−1, then ωD−S(X) ≥ 3k1+3k2−11 and S∩A(D[X])
= ∅. We first give a claim.

Claim. If |S ∩ (X,X)| ≥ 6 and |X| = 4, then there exist x, y ∈ X such that

|S ∩ ({x, y}, X)| ≥ 4.

By contradiction. Suppose that for any u, v ∈ X, |S ∩ ({u, v}, X)| ≤ 3. If
|S ∩ ({u, v}, X)| ≤ 2 for any u, v ∈ X, then, by |X| = 4, |S ∩ (X,X)| ≤ 4,
contradicting |S∩(X,X)| ≥ 6. If there exist u, v ∈ X such that |S∩({u, v}, X)| =
3, then there exists one of {u, v}, say u, such that |S ∩ ({u}, X)| ≥ 2. By
|S∩ (X,X)| ≥ 6, |S∩ (X \{u, v}, X)| ≥ 3. Note that |X \{u, v}| = 2. Thus there
exists one of X \{u, v}, say z, such that |S∩({z}, X)| ≥ 2 and so |S∩({u, z}, X)|
≥ 4, a contradiction. The claim holds.

Note that |S ∩ (X,X)| = k1 + k2− 1 ≥ 6 and |X| = 4. By Claim, there exist
x, y ∈ X such that |S ∩ ({x, y}, X)| ≥ 4. If xy ∈ A(D[X]) or yx ∈ A(D[X]), then
ξ′(D−S) ≤ d+D−S(x)+d+D−S(y)−1 ≤ 2k1+2k2−4−1 < 3k1+3k2−11 ≤ ωD−S(X),
contradicting (1). Otherwise, by 10 ≤ |A(D[X])| ≤ 12, every arc in D[X] is
symmetric. If |S∩({x, y}, X)| ≥ 5, then there exists one of {x, y}, say x, such that
|S∩({x}, X)| ≥ 3. For any z ∈ X with z 6= y, xz ∈ Sym(D[X]). Thus ξ′(D−S) ≤
ξ′(xz) ≤ d+D−S(x)+d+D−S(z)−2 ≤ 2k1+2k2−3−2 < 3k1+3k2−11 ≤ ωD−S(X),

contradicting (1). Otherwise, |S ∩ ({x, y}, X)| = 4. There exists one of {x, y},
say x, such that |S∩ ({x}, X)| ≥ 2. By |S∩ (X,X)| ≥ 6, |S∩ (X \{x, y}, X)| ≥ 2.
There exists w ∈ X \{x, y} such that |S∩({w}, X)| ≥ 1. Since xw ∈ Sym(D[X]),
ξ′(D−S) ≤ ξ′(xw) ≤ d+D−S(x)+d+D−S(w)−2 ≤ 2k1+2k2−3−2 < 3k1+3k2−11 ≤
ωD−S(X), contradicting (1).

Case 1.3.2. ωD(X) = 4k1 + 4k2 − 9. If |S ∩ (X,X)| ≤ k1 + k2 − 2, then, by
k1 + k2 ≥ 6, ωD−S(X) ≥ 3k1 + 3k2 − 7 > 2k1 + 2k2 − 2 = ξ′(D) ≥ ξ′(D − S),
contradicting (1).

If |S ∩ (X,X)| = k1 + k2 − 1, then ωD−S(X) = 3k1 + 3k2 − 8 and S ∩
A(D[X]) = ∅. By |S ∩ (X,X)| = k1 + k2 − 1 ≥ 5 and |X| = 4, there exist x ∈ X

such that |S ∩ ({x}, X)| ≥ 2. Note that |A(D[X])| = 9 and S ∩ A(D[X]) = ∅.
Thus there exists y ∈ X such that xy ∈ A(D[X]) or yx ∈ A(D[X]). Thus
ξ′(D − S) ≤ d+D−S(x) + d+D−S(y)− 1 ≤ d+D(x) + d+D(y)− 2− 1 = 2k1 + 2k2 − 3 <

3k1 + 3k2 − 8 = ωD−S(X), contradicting (1).

Case 1.4. a = 3. Note that D is (k1 + k2)-regular and D[X] has at most 6
arcs. Thus ωD(X) ≥ 3k1+3k2−6. By (2), 3k1+3k2−6 ≤ ωD(X) ≤ 3k1+3k2−3.

Case 1.4.1. ωD(X) = 3k1 + 3k2 − 6. Now D[X] ∼=
←→
K 3. If |S ∩ (X,X)| ≤

k1+k2−5, then ωD−S(X) = ωD(X)−|S∩(X,X)| ≥ 2k1+2k2−1 > 2k1+2k2−2 =
ξ′(D) ≥ ξ′(D − S), contradicting (1).

If k1+k2−4 ≤ |S∩ (X,X)| ≤ k1+k2−3, then ωD−S(X) ≥ 2k1+2k2−3 and
|S ∩ A(D[X])| ≤ 3. By |S ∩ (X,X)| ≥ k1 + k2 − 4 ≥ 2 and |X| = 3, there exist
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x, y ∈ X such that |S ∩ ({x, y}, X)| ≥ 2. Since D[X] ∼=
←→
K 3, xy ∈ Sym(D[X]).

If xy ∈ Sym(D[X] − S), then ξ′(D − S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y) − 2 ≤

d+D(x)+ d+D(y)− 2− 2 = 2k1+2k2− 4 < 2k1+2k2− 3 ≤ ωD−S(X), contradicting
(1). If exactly one of {xy, yx}, say yx, is in S, then ξ′(D − S) ≤ ξ′(xy) ≤
d+D−S(x) + d+D−S(y) − 1 ≤ 2k1 + 2k2 − 3 − 1 < 2k1 + 2k2 − 3 ≤ ωD−S(X),

contradicting (1). Next consider xy ∈ S and yx ∈ S. By |S ∩ ({x, y}, X)| ≥ 2,
there exists one of {x, y}, say x, such that |S ∩ ({x}, X)| ≥ 1. Let z = X \ {x, y}.
If xz ∈ Sym(D[X] − S), then ξ′(D − S) ≤ ξ′(xz) ≤ d+D−S(x) + d+D−S(z) − 2 ≤
2k1 + 2k2 − 2− 2 < 2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1). Otherwise, by
|S ∩ A(D[X])| ≤ 3, exactly one of {xz, zx}, say zx, is in S. Thus ξ′(D − S) ≤
ξ′(xz) ≤ d+D−S(x)+d+D−S(z)− 1 ≤ 2k1+2k2− 3− 1 < 2k1+2k2− 3 ≤ ωD−S(X),
contradicting (1).

If |S∩(X,X)| = k1+k2−2, then ωD−S(X) = 2k1+2k2−4 and |S∩A(D[X])|
≤ 1. Note that |S ∩ (X,X)| = k1 + k2 − 2 ≥ 4 and |X| = 3. Similar to
the proof of Claim in Case 1.3.1, we can prove that there exist x, y ∈ X such

that |S ∩ ({x, y}, X)| ≥ 3. Since D[X] ∼=
←→
K 3, xy ∈ Sym(D[X]). If xy ∈

Sym(D[X] − S), then ξ′(D − S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y) − 2 ≤ 2k1 +
2k2 − 3 − 2 < 2k1 + 2k2 − 4 = ωD−S(X), contradicting (1). Otherwise, by
|S ∩ A(D[X])| ≤ 1, exactly one of {xy, yx}, say yx, is in S. Thus ξ′(D − S) ≤
ξ′(xy) ≤ d+D−S(x)+d+D−S(y)− 1 ≤ 2k1+2k2− 4− 1 < 2k1+2k2− 4 = ωD−S(X),
contradicting (1).

If |S∩ (X,X)| = k1+k2−1, then ωD−S(X) = 2k1+2k2−5 and S∩A(D[X])
= ∅. Note that |S ∩ (X,X)| = k1 + k2 − 1 ≥ 5 and |X| = 3. Similar to the
proof of Claim in Case 1.3.1, we can prove that there exist x, y ∈ X such that

|S ∩ ({x, y}, X)| ≥ 4. Since D[X] ∼=
←→
K 3 and S ∩A(D[X]) = ∅, xy ∈ Sym(D[X]).

Thus ξ′(D − S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y) − 2 ≤ 2k1 + 2k2 − 4 − 2 <

2k1 + 2k2 − 5 = ωD−S(X), contradicting (1).

Case 1.4.2. ωD(X) = 3k1 + 3k2 − 5. Now D[X] ∼= D′, where D′ is a digraph

obtained from
←→
K 3 by deleting an arc.

If |S∩(X,X)| ≤ k1+k2−4, then ωD−S(X) ≥ 2k1+2k2−1 > 2k1+2k2−2 =
ξ′(D) ≥ ξ′(D − S), contradicting (1).

If k1+k2−3 ≤ |S∩ (X,X)| ≤ k1+k2−2, then ωD−S(X) ≥ 2k1+2k2−3 and
|S ∩ A(D[X])| ≤ 2. By |S ∩ (X,X)| ≥ k1 + k2 − 3 ≥ 3 and |X| = 3, there exist
x, y ∈ X such that |S ∩ ({x, y}, X)| ≥ 2. Since D[X] ∼= D′, xy ∈ A(D[X]) or
yx ∈ A(D[X]). Without loss of generality, suppose that xy ∈ A(D[X]). Consider
the following two possibilities.

Assume that xy 6∈ S. Consider yx ∈ A(D[X]). If yx 6∈ S, then xy ∈
Sym(D[X]− S). Thus ξ′(D − S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y)− 2 ≤ d+D(x) +

d+D(y)− 2− 2 = 2k1 + 2k2 − 4 < 2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1). If
yx ∈ S, then ξ′(D−S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y)− 1 ≤ 2k1 +2k2− 3− 1 <
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2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1). Consider yx 6∈ A(D[X]). Then, by
D[X] ∼= D′, every arc in D[X] − xy is symmetric. If |S ∩ ({x, y}, X)| ≥ 3, then
ξ′(D−S) ≤ ξ′(xy) ≤ d+D−S(x)+d+D−S(y)−1 ≤ 2k1+2k2−3−1 < 2k1+2k2−3 ≤

ωD−S(X), contradicting (1). Otherwise, |S∩({x, y}, X)| = 2. There exists one of
{x, y}, say x, such that |S∩({x}, X)| ≥ 1. Let z = X\{x, y}. By |S∩(X,X)| ≥ 3,
|S∩ ({z}, X)| ≥ 1. If xz ∈ Sym(D[X]−S), then ξ′(D−S) ≤ ξ′(xz) ≤ d+D−S(x)+

d+D−S(z) − 2 ≤ 2k1 + 2k2 − 2 − 2 < 2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting
(1). If exactly one of {xz, zx}, say zx, is in S, then ξ′(D − S) ≤ ξ′(xz) ≤
d+D−S(x)+d+D−S(z)−1 ≤ 2k1+2k2−3−1 < 2k1+2k2−3 ≤ ωD−S(X), contradicting
(1). If xz ∈ S and zx ∈ S, then, by |S ∩ A(D[X])| ≤ 2, yz ∈ Sym(D[X] − S).
Thus ξ′(D − S) ≤ ξ′(yz) ≤ d+D−S(y) + d+D−S(z) − 2 ≤ 2k1 + 2k2 − 2 − 2 <

2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1).

Assume that xy ∈ S. Consider yx ∈ A(D[X]). If yx 6∈ S, then ξ′(D − S) ≤
ξ′(yx) ≤ d+D−S(y)+d+D−S(x)− 1 ≤ 2k1+2k2− 3− 1 < 2k1+2k2− 3 ≤ ωD−S(X),
contradicting (1). If yx ∈ S, then, by |S∩A(D[X])| ≤ 2, S∩A(D[X]) = {xy, yx}.
Note that D[X] ∼= D′. Without loss of generality, suppose that zy 6∈ A(D[X]).
Then xz ∈ Sym(D[X] − S). If |S ∩ ({x}, X)| ≥ 1, then ξ′(D − S) ≤ ξ′(xz) ≤
d+D−S(x) + d+D−S(z) − 2 ≤ 2k1 + 2k2 − 2 − 2 < 2k1 + 2k2 − 3 ≤ ωD−S(X),

contradicting (1). Otherwise, |S ∩ ({y}, X)| ≥ 2. Thus ξ′(D − S) ≤ ξ′(yz) ≤
d+D−S(y) + d+D−S(z) − 1 ≤ 2k1 + 2k2 − 3 − 1 < 2k1 + 2k2 − 3 ≤ ωD−S(X),
contradicting (1). Consider yx 6∈ A(D[X]). Then, by D[X] ∼= D′, every arc in
D[X]− xy is symmetric. Suppose that |S ∩ ({x}, X)| ≥ 2. By |S ∩A(D[X])| ≤ 2
and xy ∈ S, at least one of {xz, zx}, say xz, is not in S. Thus ξ′(D − S) ≤
ξ′(xz) ≤ d+D−S(x)+d+D−S(z)− 1 ≤ 2k1+2k2− 3− 1 < 2k1+2k2− 3 ≤ ωD−S(X),

contradicting (1). Suppose that |S ∩ ({x}, X)| ≤ 1. Then, by |S ∩ (X,X)| ≥ 3,
|S ∩ ({y, z}, X)| ≥ 2. If yz ∈ Sym(D[X] − S), then ξ′(D − S) ≤ ξ′(yz) ≤
d+D−S(y) + d+D−S(z) − 2 ≤ 2k1 + 2k2 − 2 − 2 < 2k1 + 2k2 − 3 ≤ ωD−S(X),
contradicting (1). Otherwise, by |S ∩ A(D[X])| ≤ 2 and xy ∈ S, exactly one of
{yz, zy}, say zy, is in S. Thus ξ′(D − S) ≤ ξ′(yz) ≤ d+D−S(y) + d+D−S(z) − 1 ≤
2k1 + 2k2 − 3− 1 < 2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1).

If |S∩ (X,X)| = k1+k2−1, then ωD−S(X) = 2k1+2k2−4 and S∩A(D[X])
= ∅. Note that |S ∩ (X,X)| = k1 + k2 − 1 ≥ 5 and |X| = 3. Similar to the
proof of Claim in Case 1.3.1, we can prove that there exist x, y ∈ X such that
|S ∩ ({x, y}, X)| ≥ 4. Since D[X] ∼= D′, xy ∈ A(D[X]) or yx ∈ A(D[X]). Thus
ξ′(D−S) ≤ d+D−S(x)+d+D−S(y)−1 ≤ 2k1+2k2−4−1 < 2k1+2k2−4 = ωD−S(X),
contradicting (1).

Case 1.4.3. ωD(X) = 3k1 + 3k2 − 4. If |S ∩ (X,X)| ≤ k1 + k2 − 3, then
ωD−S(X) ≥ 2k1+2k2−1 > 2k1+2k2−2 = ξ′(D) ≥ ξ′(D−S), contradicting (1).

If k1 + k2 − 2 ≤ |S ∩ (X,X)| ≤ k1 + k2 − 1, then ωD−S(X) ≥ 2k1 + 2k2 − 3
and |S ∩A(D[X])| ≤ 1. Note that |X| = 3 and |A(D[X])| = 4. Thus there exists
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xy ∈ Sym(D[X]). Assume that |S ∩ ({x, y}, X)| ≥ 2. If xy ∈ Sym(D[X] − S),
then ξ′(D − S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y) − 2 ≤ d+D(x) + d+D(y) − 2 − 2 =
2k1 + 2k2 − 4 < 2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1). Otherwise, by
|S ∩ A(D[X])| ≤ 1, exactly one of {xy, yx}, say yx, is in S. Thus ξ′(D − S) ≤
ξ′(xy) ≤ d+D−S(x)+d+D−S(y)− 1 ≤ 2k1+2k2− 3− 1 < 2k1+2k2− 3 ≤ ωD−S(X),

contradicting (1). Assume that |S ∩ ({x, y}, X)| ≤ 1. Let z = X \ {x, y}. By
|S ∩ (X,X)| ≥ k1 + k2 − 2 ≥ 4, |S ∩ ({z}, X)| ≥ 3. Note that |A(D[X])| = 4 and
|S∩A(D[X])| ≤ 1. Thus at least one of {zx, xz, zy, yz}, say zx, is in A(D[X]−S).
This means that ξ′(D−S) ≤ ξ′(zx) ≤ d+D−S(z)+d+D−S(x)−1 ≤ 2k1+2k2−3−1 <

2k1 + 2k2 − 3 ≤ ωD−S(X), contradicting (1).

Case 1.4.4. ωD(X) = 3k1 + 3k2 − 3. If |S ∩ (X,X)| ≤ k1 + k2 − 2, then
ωD−S(X) ≥ 2k1+2k2−1 > 2k1+2k2−2 = ξ′(D) ≥ ξ′(D−S), contradicting (1).

If |S∩ (X,X)| = k1+k2−1, then ωD−S(X) = 2k1+2k2−2 and S∩A(D[X])
= ∅. By |S ∩ (X,X)| = k1 + k2 − 1 ≥ 5 and |X| = 3, there exist x ∈ X

such that |S ∩ ({x}, X)| ≥ 2. Let {y, z} = X \ {x}. Note that |A(D[X])| = 3.
Thus at least one of {xy, yx, xz, zx}, say xy, is in A(D[X]). This means that
ξ′(D − S) ≤ ξ′(xy) ≤ d+D−S(x) + d+D−S(y) − 1 ≤ d+D(x) + d+D(y) − 2 − 1 =
2k1 + 2k2 − 3 < 2k1 + 2k2 − 2 = ωD−S(X), contradicting (1).

Case 2. Sym(D) = ∅. Note that D is (k1 + k2)-regular. Thus ξ′(D) =
2k1+2k2−1. Similar to the first paragraph of the proof of Case 1, we can deduce
that 3 ≤ a ≤ 7. Moreover, similar to (2), we have

(7) ωD(X) ≤ 3k1 + 3k2 − 2.

Note that Sym(D) = ∅. When a = 4, 5, 6, 7, ωD(X) ≥ 4k1 + 4k2 − 6, 5k1 +
5k2− 10, 6k1 +6k2− 15, 7k1 +7k2− 21, respectively. In all cases, by k1 + k2 ≥ 6,
ωD(X) > 3k1 + 3k2 − 2, contradicting (7).

If a = 3, then ωD(X) ≥ 3k1 + 3k2 − 3. By (7), 3k1 + 3k2 − 3 ≤ ωD(X) ≤
3k1 + 3k2 − 2. If |S ∩ (X,X)| ≤ k1 + k2 − 3, then ωD−S(X) = ωD(X) − |S ∩
(X,X)| ≥ 3k1 + 3k2 − 3− (k1 + k2 − 3) = 2k1 + 2k2 > 2k1 + 2k2 − 1 = ξ′(D) ≥
ξ′(D − S), contradicting (1). If k1 + k2 − 2 ≤ |S ∩ (X,X)| ≤ k1 + k2 − 1, then
ωD−S(X) ≥ 2k1 + 2k2 − 2. By |S ∩ (X,X)| ≥ k1 + k2 − 2 ≥ 4 and |X| = 3,
there exists x ∈ X such that |S ∩ ({x}, X)| ≥ 2. Combining |S| ≤ k1 + k2 − 1
with |S ∩ (X,X)| ≥ k1 + k2 − 2, we have |S ∩ (X,X)| ≤ 1. Since D is (k1 + k2)-
regular and k1 + k2 ≥ 6, there exists an arc ux ∈ (X,X) with ux 6∈ S. Thus
ξ′(D − S) ≤ ξ′(ux) ≤ d+D−S(u) + d+D−S(x) − 1 ≤ d+D(u) + d+D(x) − 2 − 1 =
2k1 + 2k2 − 3 < 2k1 + 2k2 − 2 ≤ ωD−S(X), contradicting (1).

The case that X ⊂ V (Dx0

2 ) with x0 ∈ V (D1) can be proved similarly. Lemma
8 holds.

Lemma 9. Let D = D1×D2, where Di is a strongly connected ki-regular digraph

with ki = λi ≥ 3 for i = 1, 2. Then ωD−S(X) > ξ′(D − S) holds for any
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S ⊆ A(D) and any X ⊆ V (D) such that |S| ≤ k1 + k2 − 1 and X = X0 ∪ X1,

where X0 ∩ X1 = ∅, |X0| ≥ 1, |X1| ≥ 1, |X0 ∪ X1| ≥ 3 and X0 ⊂ V (Dy0
1 )

(respectively, X0 ⊂ V (Dx0

2 )) and X1 ⊂ V (Dy1
1 ) (respectively, X1 ⊂ V (Dx1

2 )) with
{y0, y1} ⊆ V (D2) (respectively, {x0, x1} ⊆ V (D1)).

Proof. Suppose, to the contrary, that there exists a subset S of A(D) and a
subset X of V (D) satisfying the conditions of the lemma such that

(8) ωD−S(X) = ωD−S(X0 ∪X1) ≤ ξ′(D − S).

Case 1. Sym(D) 6= ∅. Note that D is (k1 + k2)-regular. Thus ξ
′(D) = 2k1 +

2k2− 2. By |S| ≤ k1+k2− 1, Lemma 6 yields ξ′(D−S) ≤ ξ′(D) = 2k1+2k2− 2.
Thus 2k1 + 2k2 − 2 ≥ ξ′(D − S) ≥ ωD−S(X0 ∪ X1) ≥ ωD(X0 ∪ X1) − |S| ≥
ωD(X0 ∪X1)− (k1 + k2 − 1) and so

(9) ωD(X0 ∪X1) ≤ 3k1 + 3k2 − 3.

Let |X0| = a and |X1| = b. Then a, b ≥ 1 and a + b ≥ 3. Assume that
X0 ⊂ V (Dy0

1 ) and X1 ⊂ V (Dy1
1 ) with {y0, y1} ⊆ V (D2). Then ωD(X0 ∪ X1) ≥

ωD
y0
1

(X0) +
∣∣∣
(
X0, V (Dy0

1 )
)∣∣∣− a+ ωD

y1
1

(X1) +
∣∣∣
(
X1, V (Dy1

1 )
)∣∣∣− b = ωD

y0
1

(X0) +

ωD
y1
1

(X1) + ak2 + bk2 − a− b. Combining this with (9), we have

(10) 3k1 ≥ ωD
y0
1

(X0) + ωD
y1
1

(X1) + (a+ b− 3)k2 − a− b+ 3.

Note that a+ b ≥ 3 and k2 ≥ 3. Thus (10) yields

(11) 3k1 ≥ ωD
y0
1

(X0) + ωD
y1
1

(X1) + 2(a+ b)− 6.

Note that ωD
y0
1

(X0) =
∑

z∈X0
|({z}, V (Dy0

1 )\X0)| ≥ a(k1−a+1) and ωD
y1
1

(X1) ≥

b(k1 − b+ 1). Combining this with (11), we have

(12) (a+ b− 3)k1 ≤ a2 + b2 − 3(a+ b) + 6.

Note that ωD
y0
1

(X0) ≥ λ1 = k1 and ωD
y1
1

(X1) ≥ λ1 = k1. By (11), k1 ≥

2(a+ b)− 6. Combining this with (12), we have

(13) (a+ b)2 − 9(a+ b) + 12 + 2ab ≤ 0,

that is, (a + b − 2)(a + b − 7) + 2ab − 2 ≤ 0. Since a, b ≥ 1 and a + b ≥ 3,
2ab− 2 > 0. Thus (a+ b− 2)(a+ b− 7) < 0, which yields 2 < a+ b < 7 and so
3 ≤ a+ b ≤ 6.

If a + b = 6, then, by (13), we have ab ≤ 3, a contradiction. If a + b = 5,
then, by (13), we have ab ≤ 4. Recall that a, b ≥ 1. Thus {a, b} = {1, 4}. By the
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definition of Cartesian product, D[X0 ∪X1] has at most 14 arcs. By k1+ k2 ≥ 6,
ωD(X0 ∪X1) ≥ 5k1 + 5k2 − 14 > 3k1 + 3k2 − 3, contradicting (9).

If a + b = 4, then {a, b} is equal to {1, 3} or {2, 2}. By the definition of
Cartesian product, D[X0∪X1] has at most 8 arcs. By k1+k2 ≥ 6, ωD(X0∪X1) ≥
4k1 + 4k2 − 8 > 3k1 + 3k2 − 3, contradicting (9).

If a + b = 3, then {a, b} is equal to {1, 2}. By the definition of Cartesian
product, D[X0 ∪ X1] has at most 4 arcs and so ωD(X0 ∪ X1) ≥ 3k1 + 3k2 − 4.
By (9), 3k1 + 3k2 − 4 ≤ ωD(X0 ∪X1) = ωD(X) ≤ 3k1 + 3k2 − 3. Its proof is the
same as the proof of Cases 1.4.3 and 1.4.4 of Lemma 8.

Case 2. Sym(D) = ∅. Note that D is (k1 + k2)-regular. Thus ξ′(D) =
2k1+2k2−1. Similar to the first paragraph of the proof of Case 1, we can deduce
that 3 ≤ a+ b ≤ 7. Moreover, similar to (9) and (13), we have

(14) ωD(X0 ∪X1) ≤ 3k1 + 3k2 − 2,

and

(15) (a+ b)2 − 10(a+ b) + 14 + 2ab ≤ 0,

respectively.
If a+b = 7, then, by (15), we have 2ab ≤ 7, a contradiction. If a+b = 6, then,

by (15), we have ab ≤ 5. Recall that a, b ≥ 1. Thus {a, b} = {1, 5}. Note that
Sym(D) = ∅. By the definition of Cartesian product, D[X0 ∪X1] has at most 11
arcs. By k1+k2 ≥ 6, ωD(X0∪X1) ≥ 6k1+6k2−11 > 3k1+3k2−2, contradicting
(14). If a + b = 5, then, by (15), we have 2ab ≤ 11. Recall that a, b ≥ 1. Thus
{a, b} = {1, 4}. By the definition of Cartesian product, D[X0 ∪X1] has at most
7 arcs. Thus ωD(X0 ∪X1) ≥ 5k1 + 5k2 − 7 > 3k1 + 3k2 − 2, contradicting (14).

If a + b = 4, then {a, b} is equal to {1, 3} or {2, 2}. By the definition of
Cartesian product, D[X0∪X1] has at most 4 arcs. By k1+k2 ≥ 6, ωD(X0∪X1) ≥
4k1 + 4k2 − 4 > 3k1 + 3k2 − 2, contradicting (14).

If a + b = 3, then {a, b} is equal to {1, 2}. By the definition of Cartesian
product, D[X0 ∪X1] has at most 2 arcs and so ωD(X0 ∪X1) ≥ 3k1+3k2− 2. By
(14), ωD(X0 ∪X1) = ωD(X) = 3k1 + 3k2 − 2. If |S ∩ (X,X)| ≤ k1 + k2 − 2, then
ωD−S(X) ≥ 2k1 +2k2 > 2k1 +2k2− 1 = ξ′(D) ≥ ξ′(D−S), contradicting (8). If
|S ∩ (X,X)| = k1 + k2− 1, then ωD−S(X) = 2k1 +2k2− 1 and S ∩A(D[X]) = ∅.
By |S∩(X,X)| = k1+k2−1 ≥ 5, there exists x ∈ X such that |S∩({x}, X)| ≥ 1.
Note that |X| = 3, |A(D[X])| = 2 and Sym(D) = ∅. Thus there exists y ∈ X such
that xy ∈ A(D[X]) or yx ∈ A(D[X]). This means that ξ′(D − S) ≤ d+D−S(x) +

d+D−S(y)−1 ≤ d+D(x)+d+D(y)−1−1 = 2k1+2k2−2 < 2k1+2k2−1 = ωD−S(X),
contradicting (8).

The case that X0 ⊂ V (Dx0

2 ) and X1 ⊂ V (Dx1

2 ) with {x0, x1} ⊆ V (D1) can
be proved similarly. Lemma 9 holds.
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By considering the out-degrees of vertices inX, we proved ωD−S(X) > ξ′(D−
S) in Lemmas 8 and 9. Note that ∂+

D−S(X) = ∂−
D−S(X). Thus ωD−S(X) =

∂−
D−S(X). In the following, by considering the in-degrees of vertices in X and

using the similar approaches to the two employed to prove Lemmas 8 and 9, we
have:

Lemma 10. Let D = D1 × D2, where Di is a strongly connected ki-regular

digraph with ki = λi ≥ 3 for i = 1, 2. Then ωD−S(X) > ξ′(D − S) holds for

any S ⊆ A(D) and any X ⊆ V (D) such that |S| ≤ k1 + k2 − 1, |X| ≥ 3 and

X ⊂ V (Dy0
1 ) with y0 ∈ V (D2) or X ⊂ V (Dx0

2 ) with x0 ∈ V (D1).

Lemma 11. Let D = D1 × D2, where Di is a strongly connected ki-regular

digraph with ki = λi ≥ 3 for i = 1, 2. Then ωD−S(X) > ξ′(D − S) holds for

any S ⊆ A(D) and any X ⊆ V (D) such that |S| ≤ k1 + k2 − 1, X = X0 ∪X1,

where X0 ∩ X1 = ∅, |X0| ≥ 1, |X1| ≥ 1, |X0 ∪ X1| ≥ 3 and X0 ⊂ V (Dy0
1 )

(respectively, X0 ⊂ V (Dx0

2 )) and X1 ⊂ V (Dy1
1 ) (respectively, X1 ⊂ V (Dx1

2 )) with
{y0, y1} ⊆ V (D2) (respectively, {x0, x1} ⊆ V (D1)).

Lemma 12 [15]. Let Di be a nontrivial strongly connected digraph for i = 1, 2.
Then λ(D1 ×D2) = min

{
δ−1 + δ−2 , δ

+
1 + δ+2 , λ1ν2, λ2ν1

}
.

Theorem 13. Let Di be a strongly connected ki-regular digraph with ki = λi ≥ 3
for i = 1, 2. Then min{k1+k2−1, ν1k2−2k1−2k2, ν2k1−2k1−2k2} ≤ Sλ′(D1×
D2) ≤ k1 + k2 − 1.

Proof. By ki ≥ 3 for i = 1, 2, Theorem 4 implies that D1×D2 is super-λ′. Note
that D1 ×D2 is (k1 + k2)-regular. For any x ∈ V (D1 ×D2), let S be the set of
arcs with S = ∂+

D1×D2
(x). Then |S| = k1 + k2. D1 ×D2 − S is not super-λ′ since

D1 × D2 − S is not strongly connected. By the definition of Sλ′(D1 × D2), we
have Sλ′(D1 ×D2) ≤ k1 + k2 − 1.

Denote m = min{k1 + k2 − 1, ν1k2 − 2k1 − 2k2, ν2k1 − 2k1 − 2k2}. Let
D = D1 × D2. To show that Sλ′(D) ≥ m, it suffices to show that for any
S ⊆ A(D) with |S| ≤ m, D − S is still super-λ′. By Lemma 12, λ(D) =
min{δ−1 + δ−2 , δ

+
1 + δ+2 , λ1ν2, λ2ν1}. Note that Di is ki-regular and ki = λi for

i = 1, 2. Thus λ1ν2 = k1ν2 ≥ k1(k2 + 1) ≥ k1 + k2. Similarly, λ2ν1 ≥ k1 + k2.
Hence λ(D) = k1+k2. By |S| ≤ m ≤ k1+k2−1, D−S is strongly connected. Note
that D is (k1+ k2)-regular and |S| ≤ k1+ k2− 1. Lemma 7 yields δ+(D−S) ≥ 3
or δ−(D − S) ≥ 3. Let X be any subset of V (D − S) with |X| ≥ 3 and |X| ≥ 3.
Then, by Lemma 5, in order to show that D − S is super-λ′, it suffices to prove
that ωD−S(X) > ξ′(D − S) holds. By Lemma 6, ξ′(D − S) ≤ ξ′(D). Clearly,
ωD−S(X) ≥ ωD(X)−|S| ≥ ωD(X)−m. If ωD(X) > ξ′(D)+m, then ωD−S(X) >
ξ′(D) ≥ ξ′(D − S). In the following, we assume that

(16) ωD(X) ≤ ξ′(D) +m,
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and prove that ωD−S(X) > ξ′(D − S) holds in this case.
Denote I1 = {x : x ∈ V (D1) and Dx

2 − (X,X) is not strongly connected}
and I2 = {y : y ∈ V (D2) and D

y
1 − (X,X) is not strongly connected}. We give

three claims.

Claim 1. |Ii| < νi for i = 1, 2.

By contradiction. Suppose, without loss of generality, that |I1| = ν1. Then
Dx

2 − (X,X) is not strongly connected for all x ∈ V (D1) and so ωD(X) ≥ ν1λ2 =
ν1k2. Combining this with (16), we have

ν1k2 ≤ ξ′(D) +m ≤ 2k1 + 2k2 − 1 + ν1k2 − 2k1 − 2k2 = ν1k2 − 1,

a contradiction. Claim 1 holds.

Claim 2. |Ii| ≥ 1 for i = 1, 2.

By contradiction. Suppose, without loss of generality, that |I1| = 0. Then
Dx

2 − (X,X) is strongly connected for all x ∈ V (D1). By Claim 1, there exists
y ∈ V (D2) such that D

y
1 − (X,X) is strongly connected. Thus we have that

D − (X,X) is strongly connected, a contradiction. Claim 2 holds.

Claim 3. |I1| ≤ 2 or |I2| ≤ 2.

By contradiction. Suppose that |I1| ≥ 3 and |I2| ≥ 3. Then

ωD(X) ≥ 3λ1 + 3λ2 = 3k1 + 3k2

= 2k1 + 2k2 − 1 + k1 + k2 − 1 + 2 ≥ ξ′(D) +m+ 2,

contradicting (16). Claim 3 holds.

By Claims 2 and 3, we assume, without loss of generality, that 1 ≤ |I2| ≤ 2.
We consider the following two cases.

Case 1. |I2| = 1. Let I2 = {y0}. Then D
y0
1 −(X,X) is not strongly connected

and D
y
1 − (X,X) is strongly connected for all y ∈ V (D2) \ {y0}. By Claim 1,

there exists x ∈ V (D1) such that Dx
2 − (X,X) is strongly connected. Thus

Dx
2 ∪

(⋃
y∈V (D2)\{y0}

D
y
1

)
− (X,X) is strongly connected and so is contained in

D[X] or D[X]. If Dx
2 ∪

(⋃
y∈V (D2)\{y0}

D
y
1

)
− (X,X) is contained in D[X], then

X ⊆ V (Dy0
1 ). Since D

y0
1 − (X,X) is not strongly connected, X ⊂ V (Dy0

1 ). By
Lemma 8, we have ωD−S(X) > ξ′(D − S). The theorem holds in this case. If
Dx

2 ∪
(⋃

y∈V (D2)\{y0}
D

y
1

)
−(X,X) is contained in D[X], then X ⊆ V (Dy0

1 ). Since

D
y0
1 − (X,X) is not strongly connected, X ⊂ V (Dy0

1 ). By Lemma 10, we have
ωD−S(X) > ξ′(D − S). The theorem holds in this case.

Case 2. |I2| = 2. Let I2 = {y0, y1}. Then D
y0
1 − (X,X) and D

y1
1 − (X,X) are

not strongly connected, but Dy
1−(X,X) is strongly connected for all y ∈ V (D2)\
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{y0, y1}. By Claim 1, there exists x ∈ V (D1) such that Dx
2 − (X,X) is strongly

connected. Thus Dx
2 ∪
(⋃

y∈V (D2)\{y0,y1}
D

y
1

)
− (X,X) is strongly connected and

so is contained in D[X] or D[X]. If Dx
2 ∪

(⋃
y∈V (D2)\{y0,y1}

D
y
1

)
− (X,X) is

contained in D[X], then X ⊆ V (Dy0
1 ∪D

y1
1 ). Let X = X0∪X1 with X0∩X1 = ∅,

X0 ⊆ V (Dy0
1 ) and X1 ⊆ V (Dy1

1 ). Then |X0 ∪X1| = |X| ≥ 3. Since D
y0
1 − (X,X)

and D
y1
1 − (X,X) are not strongly connected, |X0| ≥ 1, |X1| ≥ 1, X0 ⊂ V (Dy0

1 )
and X1 ⊂ V (Dy1

1 ). By Lemma 9, we have ωD−S(X) > ξ′(D − S). The theorem
holds in this case. If Dx

2 ∪
(⋃

y∈V (D2)\{y0,y1}
D

y
1

)
− (X,X) is contained in D[X],

then X ⊆ V (Dy0
1 ∪D

y1
1 ). Let X = X0 ∪X1 with X0 ∩X1 = ∅, X0 ⊆ V (Dy0

1 ) and
X1 ⊆ V (Dy1

1 ). Then |X0 ∪X1| = |X| ≥ 3. Since D
y0
1 − (X,X) and D

y1
1 − (X,X)

are not strongly connected, |X0| ≥ 1, |X1| ≥ 1, X0 ⊂ V (Dy0
1 ) and X1 ⊂ V (Dy1

1 ).
By Lemma 11, we have ωD−S(X) > ξ′(D−S). The theorem holds in this case.

Remark 14. The lower and upper bounds on Sλ′(D1 ×D2) in Theorem 13 are

best possible. The reasons are as follows. Let D1
∼=
←→
K 5 and D2

∼=
←→
K 8. Then

Di is a strongly connected ki-regular graph with ki = λi ≥ 3 for i = 1, 2. Clearly
min{k1 + k2 − 1, ν1k2 − 2k1 − 2k2, ν2k1 − 2k1 − 2k2} = 10 = k1 + k2 − 1 =
ν2k1 − 2k1 − 2k2. By Theorem 13, Sλ′(D1 ×D2) = k1 + k2 − 1 = min{k1 + k2 −
1, ν1k2 − 2k1 − 2k2, ν2k1 − 2k1 − 2k2} = ν2k1 − 2k1 − 2k2, which implies that the
lower and upper bounds on Sλ′(D1 ×D2) in Theorem 13 are attainable.

Corollary 15. Let Di be a strongly connected ki-regular digraph with ki = λi ≥ 3
for i = 1, 2. Then Sλ′(D1 ×D2) = k1 + k2 − 1 if one of the following conditions

holds:

(a) k1 ≥ 5 and k2 ≥ 5,

(b) D1 and D2 are not complete digraphs and k1, k2 ≥ 4.

Proof. By Theorem 13, min{k1 + k2 − 1, ν1k2 − 2k1 − 2k2, ν2k1 − 2k1 − 2k2} ≤
Sλ′(D1×D2) ≤ k1+k2−1. It suffices to show that ν1k2−2k1−2k2 ≥ k1+k2−1
and ν2k1 − 2k1 − 2k2 ≥ k1 + k2 − 1.

(a) Note that ν1k2 − 2k1 − 2k2 − (k1 − k2 − 1) = ν1k2 − 3k1 − 3k2 + 1 ≥
(k1 + 1)k2 − 3k1 − 3k2 + 1 = k1k2 − 3k1 − 2k2 + 1 = (k1 − 2)(k2 − 3) − 5 > 0
because k1 ≥ 5 and k2 ≥ 5. Thus ν1k2 − 2k1 − 2k2 > k1 + k2 − 1. Similarly,
ν2k1 − 2k1 − 2k2 > k1 + k2 − 1.

(b) Since D1 is not a complete digraph, ν1 ≥ k1 + 2. Thus ν1k2 − 2k1 −
2k2 − (k1 − k2 − 1) = ν1k2 − 3k1 − 3k2 + 1 ≥ (k1 + 2)k2 − 3k1 − 3k2 + 1 =
k1k2 − 3k1 − k2 + 1 = (k1 − 1)(k2 − 3)− 2 > 0 because k1 ≥ 4 and k2 ≥ 4. Thus
ν1k2 − 2k1 − 2k2 > k1 + k2 − 1. Similarly, ν2k1 − 2k1 − 2k2 > k1 + k2 − 1.

In fact, Theorem 13 can be generalized to the Cartesian product of n strongly
connected regular digraphs. We need the following lemma.
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Lemma 16. Let Di be a strongly connected ki-regular digraph with ki = λi ≥ 3
for i = 1, 2, . . . , n. Then D1×D2×· · ·×Dn is super-λ′ and λ(D1×D2×· · ·×Dn) =
k1 + k2 + · · ·+ kn.

Proof. We first prove that λ(D1 × D2 × · · · × Dn) = k1 + k2 + · · · + kn by
induction on n. If n = 2, then, by Lemma 12, λ(D1 ×D2) = min{δ−1 + δ−2 , δ

+
1 +

δ+2 , λ1ν2, λ2ν1}. Note that Di is ki-regular and ki = λi for i = 1, 2. Thus λ1ν2 =
k1ν2 ≥ k1(k2+1) ≥ k1+k2. Similarly, λ2ν1 ≥ k1+k2. Hence λ(D1×D2) = k1+k2.
Suppose that n ≥ 3 and λ(D1 × D2 × · · · × Dn−1) = k1 + k2 + · · · + kn−1.
Note D1 ×D2 is a strongly connected (k1 + k2)-regular digraph with k1 + k2 =
λ(D1 × D2). Thus, by the induction hypothesis, λ(D1 × D2 × · · · × Dn) =
λ((D1×D2)×D3×· · ·×Dn) = (k1+k2)+k3+ · · ·+kn = k1+k2+ · · ·+kn. Next
we prove that D1 ×D2 × · · · ×Dn is super-λ′. Note that D1 ×D2 × · · · ×Dn−1

is a strongly connected (k1 + k2 + · · · + kn−1)-regular digraph with k1 + k2 +
· · · + kn−1 = λ(D1 × D2 × · · · × Dn−1). By ki ≥ 3, Theorem 4 implies that
D1 ×D2 × · · · ×Dn = (D1 ×D2 × · · · ×Dn−1)×Dn is super-λ′.

Theorem 17. Let Di be a strongly connected ki-regular digraph with ki = λi ≥ 3
for i = 1, 2, . . . , n. Then min1≤i≤n

{∑n
j=1 kj−1, νi

(∑n
j=1 kj−ki

)
−2
∑n

j=1 kj
}
≤

Sλ′(D1 ×D2 × · · · ×Dn) ≤
∑n

j=1 kj − 1.

Proof. By Lemma 16, D1 × D2 × · · · × Dn is super-λ′. Note that D1 × D2 ×
· · · × Dn−1 is a strongly connected (k1 + k2 + · · · + kn−1)-regular digraph with
k1 + k2 + · · ·+ kn−1 = λ(D1 ×D2 × · · · ×Dn−1) by Lemma 16. For any integer
i with 1 ≤ i ≤ n− 1, we have |V (D1 ×D2 × · · · ×Dn−1)|kn = ν1ν2 · · · νn−1kn ≥
(1+k1) · · · (1+ki−1)νi(1+ki+1) · · · (1+kn−1)kn ≥ νi

(∑n
j=1 kj−ki

)
. By Theorem

13, we see that

n∑

j=1

kj − 1 ≥ Sλ′

(
(D1 ×D2 × · · · ×Dn−1)×Dn

)

≥ min
{
k1 + k2 + · · ·+ kn−1 + kn − 1,

|V (D1 ×D2 × · · · ×Dn−1)|kn − 2(k1 + k2 + · · ·+ kn−1)− 2kn,

νn(k1 + k2 + · · ·+ kn−1)− 2(k1 + k2 + · · ·+ kn−1)− 2kn
}

≥ min
1≤i≤n−1

{
n∑

j=1

kj − 1, νi

(
n∑

j=1

kj − ki

)
− 2

n∑

j=1

kj , νn

(
n∑

j=1

kj − kn

)
− 2

n∑

j=1

kj

}

= min
1≤i≤n

{
n∑

j=1

kj − 1, νi(

n∑

j=1

kj − ki)− 2

n∑

j=1

kj

}
.
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4. Conclusions

In this paper, the concept of the arc fault tolerance Sλ′(D) of a digraph D on
the super-λ′ property was presented. The parameter can be used to evaluate
the reliability of interconnection networks. We investigate Sλ′(D1 ×D2) for the
Cartesian product D1 ×D2 of regular digraphs D1 and D2. We give a necessary
and sufficient condition for D1 × D2 to be super-λ′ and obtain min{k1 + k2 −
1, ν1k2 − 2k1 − 2k2, ν2k1 − 2k1 − 2k2} ≤ Sλ′(D1 ×D2) ≤ k1 + k2 − 1, where Di

is ki-regular and νi = |V (Di)| for i = 1, 2. An example shows that the lower and
upper bounds are best possible. Moreover, we show that Sλ′(D1×D2) = k1+k2−1
in some cases. The above results show that the arc fault-tolerant capability of the
Cartesian product of regular digraphs is nice in terms of the super-λ′ property.
The lower and upper bounds on Sλ′(D1×D2) are also generalized to the Cartesian
product of n regular digraphs. The value of Sλ′(D) will provide a beneficial
reference for engineers when designing or selecting interconnection networks to
build parallel systems. The determination of the exact value of Sλ′(D) remains
an open problem for the general digraphs.
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