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Abstract

A set S of vertices of a graph G is called a decycling set if G−S is acyclic.
The minimum order of a decycling set is called the decycling number of G,
and denoted by ∇(G). Our results include: (a) For any graph G,

∇(G) = n−max
T

{α(G− E(T ))},

where T is taken over all the spanning trees of G and α(G − E(T )) is the
independence number of the co-tree G − E(T ). This formula implies that
computing the decycling number of a graph G is equivalent to finding a
spanning tree inG such that its co-tree has the largest independence number.
Applying the formula, the lower bounds for the decycling number of some
(dense) graphs may be obtained. (b) For any decycling set S of a k-regular
graph G,

|S| =
1

k − 1
(β(G) +m(S)),

where β(G) = |E(G)| − |V (G)|+1 and m(S) = c+ |E(S)| − 1, c and |E(S)|
are, respectively, the number of components of G − S and the number of
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edges in G[S]. Hence S is a ∇-set if and only if m(S) is minimum, where
∇-set denotes a decycling set containing exactly ∇(G) vertices of G. This
provides a new way to locate ∇(G) for k-regular graphs G. (c) 4-regular

graphs G with the decycling number ∇(G) =
⌈

β(G)
3

⌉

are determined.

Keywords: decycling number, independence number, cycle rank, margin
number.
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1. Introduction

Graphs throughout this paper are loopless and multiple edges are permitted.
For general theoretic notations, we follow Diestel [4]. The minimum number of
edges whose removal eliminates all cycles in a given graph has been known as
the cycle rank of the graph, and this parameter has a simple expression β(G) =
|E(G)| − |V (G)| + w (see [9]), where w is the number of components of G. The
corresponding problem of eliminating all cycles from a graph by means of deletion
of vertices goes back at least to the work of Kirchhoff on spanning trees [10].

Let G = (V,E) be a graph. We define a vertex set S of G to be a decycling

set if G − S is cycle-free. The cardinality of a minimum decycling set of G is
called the decycling number, and denoted by ∇(G) (or ∇ for short). A decycling
set containing exactly ∇(G) vertices of G is called a ∇-set. Vertices of a decycling
set are labeled by “ • ” and the bold edges induce a spanning tree T of a graph
G in the following figures. Let m(S) = c+ |E(S)| − 1 be the margin number of a
decycling set S, where c and |E(S)| are, respectively, the number of components
of G− S and the number of edges in G[S]. Determining the decycling number is
equivalent to finding the size of the largest induced forest of G proposed first by
Erdös [5]. If S ⊆ V (G) is a ∇-set, then G − S is a largest induced forest of G.
The problem of determining the decycling number of graphs have been proved to
be NP-complete by Karp [11], even for general graphs such as bipartite graphs,
planar graphs and perfect graphs, the decycling problem is very hard to solve. It
is easy to see that ∇(G) = 0 if and only if G is a forest, and ∇(G) = 1 if and
only if G has at least one cycle and a vertex on all of its cycles. One may see [2]
as a brief survey.

In this paper, we consider the decycling problem from two new perspectives:
the effects of (a) spanning trees and (b) the margin number, respectively, on the
decycling number of graphs. Given a connected graph G and a surface P , we say
that G can be embedded into P if there exists a polyhedron

∑

on P such that the
1-skeleton of

∑

has a subgraph homeomorphic to G. The components of
∑

−G

are called the faces of the embedding. When each face is homeomorphic to an
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open disc, the embedding is called a cellular. The maximum genus, denoted by
γM (G), of a connected graph G is the largest genus of an orientable surface on
which G admits a cellular embedding. Let T be a spanning tree of a connected
graph G. The subgraph G − E(T ) of G is called a co-tree of G. Note that the
number of edges in any co-tree of G is just the cycle rank β(G). The Betti defi-

ciency of G, denoted by ξ(G), is defined the minimum number of odd components
(i.e., the components containing odd number of edges) among co-trees of G. We
call T a Xuong-tree if the number of odd components of G− E(T ) is ξ(G). The
following result of Xuong defines an edge-partition of a co-tree.

Lemma 1 [20]. Let G be a connected graph and TX be a Xuong-tree of G. Then

there exists an edge-partition of E(G)− E(TX) as follows:

E(G)− E(TX) = {e1, e2} ∪ {e3, e4} ∪ · · · ∪ {e2m−1, e2m} ∪ {f1, f2, . . . , fs},

where (1) m = γM (G), s = ξ(G); (2) for any i = 1, 2, . . . ,m, e2i−1 ∩ e2i 6= ∅, and
{f1, f2, . . . , fs} is a matching of G.

Let TX be a Xuong-tree and the edge-partition of E(G)−E(TX) be as defined
in Lemma 1. Consider a set

SX = {ui |ui ∈ e2i−1 ∩ e2i, 1 ≤ i ≤ m} ∪ {vj | vj is an end of fj , 1 ≤ j ≤ s}.

Then G−SX contains no cycle (since removing SX from G will eliminate all the
possible fundamental cycles of G) and hence SX is a decycling set of G, that is,
∇(G) ≤ |SX |.

Corollary 2. ∇(G) ≤ |SX | ≤ γM (G) + ξ(G) holds for every graph G.

It is easy to see that the bound |SX | heavily depends on the choice of Xuong-
tree TX (since different TX may lead to quiet different value of |SX |). For instance,
the wheel graph W1,n = K1∨Cn with n spokes has ∇(W1,n) = 2. If one chooses a
Xuong-tree K1,n as a spanning tree of W1,n, then the corresponding |SX | =

⌈

n
2

⌉

;
meanwhile, a Hamilton path in W1,n will determine another SX whose number
of elements reaches the best value ∇(W1,n) = 2. Therefore, how to find a set
SX ⊆ V (G) with the smallest size is a key to determine ∇(G).

This paper is organized as follows.
In Section 2, we show that ∇(G) = n −maxT {α(G − E(T ))} holds for any

graph G. This implies that determining the decycling number is equivalent to
finding the largest independence number of a co-tree. So, finding the decycling
number ∇(G), determining the largest independence number of a co-tree G −
E(T ) and finding the size of a largest induced forest in a graph G are mutually
equivalent. In this sense, finding the decycling number of a graph is very hard.
Applying this formula, we may obtain lower bounds for the decycling number of
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some (dense) graphs. As an example, we prove that ∇(Kn − (E(T1) ∪ E(T2) ∪
· · · ∪E(Tk−1))) ≥ n− 2k, where T1, T2, . . . , Tk−1 are k− 1 edge-disjoint spanning
trees of a complete graph Kn. Many examples and applications are presented to
show how to apply trees into identifying the decycling number of a graph.

In Section 3, we obtain an another formula to compute the decycling number
of regular graphs. For any decycling set S of a k-regular graph G, we get that
|S| = 1

k−1(β(G)+m(S)). Obviously, S is a ∇-set if and only if m(S) is minimum.
Therefore, lower bounds for the decycling number of some (dense) graphs can
be obtained. For a k-regular graph G, if m(S) ≥ 0 for any ∇-set S of G, then

∇(G) ≥ β(G)
k−1 . In many cases, these lower bounds may be tight (i.e., best possible)

(see [3, 8, 12, 14–16, 18, 19]). Observe that for some (4-regular) graphs G of order
n, there exists a decycling set S such that the margin number m(S) is a linear
function of n. For instance, a toroidal 4-regular graph G contains n disjoint
K5 − e’s (see Figure 4) whose decycling number of G is 2n+ 1. It is easy to see
that the margin nuber m(S) = n+2 for any ∇-set S of G. Moreover, we discuss
some relationships between the decycling number and the large genus embeddings
of graphs, and show the effects of spanning trees on such topics. In particular, we
give a new and direct proof of a result due to Speckenmeyer [17] and thus solve
an open problem of Speckenmeyer searching for an efficient algorithm to compute
Z(G), the cardinality of the maximum nonseparating independent set of G.

In Section 4, we investigate the extremal 4-regular graphs G with the decy-

cling number ∇(G) =
⌈

β(G)
3

⌉

. Our conclusion is that for any ∇-set S of graph

G, there exists a spanning tree T in G such that elements of S are taken from
the leaves of T with at most two exceptions (from the 2 or 3-degree vertices of
T ). Finally, we extend this result to general case.

2. A Formula Between the Decycling Number and the

Independence Number

In this section, α(G) and a(G) denote, respectively, the independence number
and the number of vertices in a largest induced forest of a graph G.

Theorem 3. Let G be a connected graph of order n. Then

∇(G) = n−max
T

{α(G− E(T ))},

where T is taken over all spanning trees of G.

The above result reveals a relation among the decycling number, the inde-
pendence number and the spanning trees in a graph and gives a new way to
investigate these numbers.
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Lemma 4. Let G be a connected graph of order n. Then

a(G) = max
T

{α(G− E(T ))},

where T is taken over all spanning trees of G.

Proof. Let F be a largest induced forest of G with |F | = a(G). Then V (G) −
V (F ) is a decycling set of G. Since G is connected, there exists a spanning tree
T of G such that F ⊆ T , and α(G− E(T )) ≥ |F |. Hence,

a(G) ≤ max
T

{α(G− E(T ))}.

Conversely, let T1 be a spanning tree of G such that

max
T

{α(G− E(T ))} = α(G− E(T1),

and suppose that A is the largest independent set of G − E(T1), that is, | A |=
α(G− E(T1)). When we recover the edges of T1 into A, it induces a forest, and
G−A is a decycling set. Hence |A| ≤ a(G). That is,

max
T

{α(G− E(T ))} ≤ a(G).

Proof of Theorem 3. By Lemma 4 and a(G)+∇(G) = n, the theorem follows.

From the proof of Theorem 3, one may see that if T is a spanning tree of
G and A is the maximum independent set of the co-tree G − E(T ) (i.e., |A| =
α(G−E(T ))), then S = V (G)−A is a decycling set, and so |V (G)−A|+ |A| = n,
which means that |A| is the largest among all spanning trees of G if and only if
the corresponding decycling set S = V (G) − A is minimum. Therefore, how to
find a spanning tree T of G such that α(G−E(T )) is the maximum is very crucial
to computing the decycling number ∇(G) of G. In the following, we shall present
several applications and examples to show the effects of the spanning trees on
searching for the value ∇(G) of a graph G.

Example 1. Let T be a Hamilton path of a complete graph Kn. Then T is a
spanning tree of Kn (see Figure 1(a)), and so α(Kn − E(T )) ≥ 2. By Theorem
3, ∇(Kn) ≤ n− 2. It deduces that ∇(Kn) = n− 2 because of ∇(Kn) ≥ n− 2 (if
we remove at most n− 3 vertices of Kn, then the resultant graph will contain a
cycle).

Example 2. For a complete bipartite graph Km,n, let V (Km,n) = V = X ∪
Y , where X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}. Assume that m ≤ n.
We construct a spanning tree T of Km,n as follows: E(T ) = {xmyj , xiyi | i =
1, 2, . . . ,m− 1, j = 1, 2, . . . , n} (see Figure 1(b)). Then α(Km,n −E(T )) ≥ n+1.



130 C. Yang and H. Ren

By Theorem 3, ∇(Km,n) ≤ m − 1. Since ∇(Km,n) ≥ m − 1 (otherwise, there is
a cycle by removing at most m − 2 vertices of Km,n in the resultant graph), we
have ∇(Km,n) = m− 1.

( )a ( )b

Figure 1. (a) ∇(K5) = 5− 2 = 3; (b) ∇(K3,4) = 3− 1 = 2.

Example 3. For a complete k-partite graph Km1,m2,...,mk
, let V (Km1,m2,...,mk

) =
V = X1 ∪ X2 ∪ · · · ∪ Xk. Then |Xi| = mi, i = 1, 2, . . . , k. Without loss of
generality, suppose that m1 ≤ m2 ≤ · · · ≤ mk. We construct a spanning tree T

ofKm1,m2,...,mk
as follows: E(T ) = {x1jy, x11z}, where y ∈ V \X1, z takes over the

elements of V \X1, x11, x1j ∈ X1, j = 2, . . . ,m1. By Theorem 3, ∇(Km1,m2,...,mk
−

E(T )) ≤
∑k

i=1mi −mk − 1. Since ∇(Km1,m2,...,mk
−E(T )) ≥

∑k
i=1mi −mk − 1

(otherwise, removing at most
∑k

i=1mi−mk−2 vertices of Km1,m2,...,mk
will leave

a cycle in the resultant graph), ∇(Km1,m2,...,mk
) =

∑k
i=1mi −mk − 1.

Example 4. Ren [16] proved that ∇(G) = γM (G) + ξ(G) for G being a cubic
graph, where γM (G) and ξ(G) are the maximum genus and Betti deficiency of
G, respectively. We consider a Xuong-tree TX of a cubic graph G and an edge-
partition of its co-tree G − E(TX) as defined in Lemma 1. Then the set SX (as
defined in Corollary 2) is a ∇-set since G − SX contains no cycle and |SX | =
γM (G) + ξ(G). Now V (G) − SX is an independent set whose cardinality is n −
maxT {α(G − E(T ))}. Conversely, let T1 be a spanning tree of G such that
α(G−E(T1)) = maxT {α(G−E(T ))}. Then there exists an independent set S of
G−E(T1) with |S| = α(G−E(T1)) such that G−E(T1) contains an independent
set A with |A| = α(G−E(T1)) = maxT {α(G−E(T ))}. It is clear that G[A] is a
largest induced forest of G and S = V (G)−A is a ∇-set. As shown in [16], T1 is
a Xuong-tree of G (since the number of odd components of G− E(T1) is ξ(G)).

Based on Theorem 3, many results and problems on the largest induced
forests and the decycling set can be translated into one another. For instance,
Albertson and Berman [1] posed the following conjecture.

Conjecture 5 [1]. Every planar graph has an induced forest with at least half

the vertices.

The above conjecture can also be expressed into the following three forms.
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Theorem 6. Let G be a planar graph of order n. Then the following statements

are mutually equivalent:

(a) ∇(G) ≤ n
2 ;

(b) |F | ≥ n
2 holds for a largest induced forest F of G;

(c) There exists a spanning tree T in G such that α(G− E(T )) ≥ n
2 .

For a plane triangulation G, a plane with all faces are triangles. By Theorem
6(c), we may first find a spanning tree T of G to determine the independence
number of its co-tree G − E(T ), and further to solve the decycling number of
G. Since the number of edges of G − E(T ) is 2n − 5, a natural idea is that the
problem of the computation of the decycling number of a plane triangulation G

can be put into the following problem.

Problem 7. Determine the independence number for a planar graph G of order

n with at most 2n− 5 edges.

In the literature, there are many results on the decycling number for sparse
graphs such as 3 (or 4)-regular graphs, see [3, 8, 12, 14–16, 18, 19], but little is
known for those with many edges (i.e., dense graphs). Theorem 3 offers a way
to estimate the lower bounds for the decycling number of dense graphs. The
following result is an application.

Theorem 8. Let T1, T2, . . . , Tk−1 be k− 1 edge-disjoint spanning trees of a com-

plete graph Kn. Then

∇(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1))) ≥ n− 2k.

And the equality holds if and only if Kn−(E(T1)∪E(T2)∪· · ·∪E(Tk−1)) contains
a spanning tree Tk such that the graph T1 ∪ T2 ∪ · · · ∪ Tk−1 ∪ Tk contains K2k.

Proof. Let T1, T2, . . . , Tk−1 be k − 1 edge-disjoint spanning trees of a complete
graph Kn. Assume (reductio ad absurdum) that Tk is a spanning tree of Kn −
(E(T1)∪E(T2)∪ · · · ∪E(Tk−1)) such that α(Kn− (E(T1)∪E(T2)∪ · · · ∪E(Tk−1)
∪ E(Tk))) ≥ 2k + 1. Then T1 ∪ T2 ∪ · · · ∪ Tk−1 ∪ Tk contains K2k+1, and hence

|{E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1) ∪ E(Tk)} ∩ E(K2k+1)| ≥ k(2k + 1).

Color the edges of K2k+1 with k different colors, then the number of edges with
the same color is not more than 2k. Otherwise, there will exist a subgraph
(induced by these edges) containing a cycle, which contraries to the number of
edges of K2k+1. By Theorem 3,

∇(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1)))

= n−max
Tk

{α(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1) ∪ E(Tk)))},
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that is,

max
Tk

{α(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1) ∪ E(Tk)))} ≤ 2k.

Let ∇(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1))) = n − 2k. By Theorem 3,
there exists a spanning tree Tk of Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1)) such
that α(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1) ∪ E(Tk)) = 2k. The edges of each
Ti (1 ≤ i ≤ k) in K2k form a spanning tree of K2k. Conversely, for k − 1
edge-disjoint spanning trees T1, T2, . . . , Tk−1 of Kn, if there is a spanning tree
Tk of Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1)) such that the subgraphs of Kn

determined by these trees T1, T2, . . . , Tk−1, Tk containing a complete graph K2k,
then α(Kn − (E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk−1) ∪ E(Tk))) ≥ 2k.

3. A Formula Between the Decycling Number and the Margin

Number

Let E(S,G− S) be the set of edges such that each edge has one vertex in S and
another one in G− S. dG(x) and ∆(G) (or ∆ for short) represent the degree of
vertex x and the maximum degree of G, respectively. In this section, we present
another formula for the decycling number ∇(G) of a k-regular graph G.

Theorem 9. Let S be a decycling set of G. Then
∑

x∈S

(dG(x)− 1) = β(G) +m(S).

Proof. Let S = {x1, x2, . . . , x|S|} be a decycling set of G. Then

q −

|S|
∑

i=1

dG(xi) = q − |E(S,G− S)| − 2|E(S)|

= p− |S| − c− |E(S)|,

where p = |V (G)|, q = |E(G)|, c and |E(S)| are, respectively, the number of
components of G− S and the number of edges of G[S].

As β(G) = q − p+ 1,

|S|
∑

i=1

(dG(xi)− 1) = β(G) + c+ |E(S)| − 1.

And for m(S) = c+ |E(S)| − 1, we have

|S|
∑

i=1

(dG(xi)− 1) = β(G) +m(S).

This completes the proof.
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Remark 1. Observe that if all the vertices of S have degree k, then |S| =
1

k−1(β(G) +m(S)). In particular, if G is a k-regular graph, then S is a ∇-set if
and only if m(S) is minimum among all the decycling set S of G.

Although there exists some uncertain parameter like m(S), this result pro-
vides a way to locate the value of ∇(G): once we find a decycling set S such that
m(S) reaches the minimum, then S is a ∇-set of G. We will show its applications
in the discussion to come.

A simple corollary of Theorem 9 is:

Corollary 10. Let G be a graph with maximum degree ∆ which has the ∇-set

such that each vertex of this set has degree ∆. Then

∇(G) ≥
β(G)

∆− 1
.(1)

Remark 2. (i)∇(G) = β(G)
∆−1 if and only ifm(S) = 0 which means that for a∇-set

S of G, G−S is a tree T0 and G[S] is an empty subgraph. In this case, ∇(G) has
a strong combinatorial characterization: for any vertex x ∈ S incident to a vertex
y ∈ V (T0), insert the edge xy into T0. This procedure determines a spanning tree
T (it is in fact a Xuong-tree) of G (such that ξ(G) = 0) if we add |S| edges into
T0. Therefore, deleting a vertex x of S will destroy dG(x)− 1 fundamental cycles
of G and deleting ∇(G) vertices of S will destroy all fundamental cycles of G;

(ii) the inequality (1) may be tight, see [3, 8, 12, 14–16,18, 19].

The following examples show the formula of Theorem 9 applying on some
types of regular graphs.

Example 5. Let S be a decycling set of a hypercube Qn (a graph contains
2n n-tuples of 0’s and 1’s as vertices with two vertices adjacent if they differ in
exactly one position). Then

2n−1 −
2n−1 − 1

n− 1
≤ ∇(Qn) ≤ 2n−1 −

2n−1 −m(S)− 1

n− 1
.(2)

The inequalities in (2) are equalities for n = 3, 4 [3] (see Figure 2).

Proof. By the definition of Qn, β(Qn) = (n − 2)2n−1 + 1. By Corollary 10,

∇(Qn) ≥ 2n−1 − 2n−1−1
n−1 . Let S be a decycling set of Qn. Then |S| = 2n−1 −

2n−1−m(S)−1
n−1 , thus ∇(Qn) ≤ |S| = 2n−1 − 2n−1−m(S)−1

n−1 .

Remark 3. (i) Two spanning trees T1 and T2 which induced by the bold edges
in Figure 2(a) and (b) of Qn satisfying that Qn −E(Ti) (i = 1, 2) has the largest
independence number, respectively.
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(ii) Focardi [6] proved that 2n−1 − 2n−1−1
n−1 ≤ ∇(Qn) ≤ 2n−1 − 2n−1

2(n−1) . The

lower bound was also proved by Beineke and Vandell [3]. In fact, if the upper
bound of Focardi’s result is best possible, then m(S) = 2n−2− 1 for any ∇-set S.
Therefore, determining the decycling number of Qn for larger n is very difficult.

( )a ( )b

Figure 2. (a) Q3 with m(S) = 1; (b) Q4 with m(S) = 1.

Example 6. For any two cycles Cm and Cn, their Cartesian product is the graph
Cm×Cn with vertex set V (Cm×Cn) = {wij | i = 1, 2, . . . ,m, j = 1, 2, . . . , n} and
edge set E(Cm × Cn) = {wijwrs | i = r, vjvs ∈ E(Cn) or j = s, uiur ∈ E(Cm)}.
Clearly, Cm × Cn is a 4-regular graph, see Figure 3. For any decycling set S of
Cm × Cn, we have

mn+ 1

3
≤ ∇(Cm × Cn) ≤

mn+m(S) + 1

3
,m, n ≥ 3.(3)

In particular, the bounds of ∇(Cm × Cn) in (3) are sharp for m = 3 (or n = 3)
(see Figure 3).

Proof. It is easy to see that β(Cm × Cn) = mn + 1. By Corollary 10, ∇(Cm ×
Cn) ≥

1
3(mn + 1). Let S be a decycling set of Cm × Cn. Then ∇(Cm × Cn) ≤

|S| = 1
3(mn +m(S) + 1). When m = 3, 3n+1

3 ≤ ∇(C3 × Cn) ≤
3n+m(S)+1

3 , that

is, n + 1 ≤ ∇(C3 × Cn) ≤ n + m(S)+1
3 , we can find a decycling set S such that

m(S) = 2 (see Figure 3), then ∇(C3 × Cn) = n+ 1.

( )a ( )b

Figure 3. A drawing of Cm × Cn on the torus.

Remark 4. (i) The spanning trees T of C3 × Cn in Figure 3(a) and (b) satisfy
that C3 × Cn − E(T ) has the largest independence number, respectively.



New Formulae for the Decycling Number of Graphs 135

(ii) Our result shows that ∇(Cm × Cn) =
mn+m(S)+1

3 for S being a ∇-set of
Cm × Cn, which equals to Pike’s result ∇(Cm × Cn) =

⌈

mn+2
3

⌉

(m,n 6= 4) when
m(S) ≤ 1 [13]. Therefore, this provides a way to locate the exact value of ∇(G)
(to find a decycling set S with the minimum m(S)).

The formula of Theorem 9 also has some applications in topological graph
theory.

A vertex set S is called a nonseparating independent set of G if S is an
independent set of G and G − S is connected. The cardinality of a maximum
nonseparating independent set of G is denoted by Z(G). The following result
shows a close relation between nonseparating independence number Z(G) and
the maximum genus γM (G) of a cubic graph G and makes an extention of a
result due to Speckenmeyer [17], we give a new and direct proof of it via trees.

Theorem 11. Let G be a cubic graph. Then

(a) Z(G) = γM (G);

(b) for every maximum nonseparating independent set S of G, G−S contains no

two cycles sharing a vertex in common. Moreover, there exists a Xuong-tree

TX such that the elements in S are leaves of TX .

Proof. Let TX be a Xuong-tree of G with an edge-partition of G − E(T ) as
defined in Lemma 1. Then for 1 ≤ i ≤ γM (G), e2i−1 ∩ e2i = {ui} forms a set of
independent vertices of G (which are leaves of TX). Hence {u1, u2, . . . , uγM (G)}
is a nonseparating independent set of G. Therefore, Z(G) ≥ γM (G). To see the
converse inequality, we consider a nonseparating independent set S. Then G−S

is connected. We may suppose further that G−S is a tree T0 and T is a spanning
tree built in Remark 2(i). Then elements of S are leaves of T . After repeating
the argument in Remark 2(i), we may see that |S| ≤ γM (G) which means that
Z(G) ≤ γM (G). This proves (a).

Suppose that G − S contains two cycles with one vertex in common. Then
by Lemma 1, γM (G − S) ≥ 1, which together with the construction of a largest
genus embedding stated in the proof of (a), γM (G) ≥ Z(G) + 1(= γM (G) + 1), a
contradiction. Therefore, cycles of G−S are independent. In fact, the number of
cycles in G−S is ξ(G). In addition, any spanning tree T0 of G−S is a subgraph
of a Xuong-tree TX of G (as stated in the proof of (a)). This proves (b).

By Theorem 11, we obtain a result which has been proved by Speckenmeyer
in [17] as follows.

Corollary 12. Let G be a cubic graph of order n. Then ∇(G) + Z(G) = n+2
2 .

Furthermore, the formula (a) in Theorem 11, together with a result of Furst
[7], provide an efficient way to compute the value Z(G) for cubic graphs and
solves an open problem raised in [17] searching for a polynomial time algorithm
to decide Z(G) and ∇(G).
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Theorem 13. Let S be a ∇-set of a k-regular graph G.

(a) If m(S) = 0, then for every ∇-set S, there exists a spanning tree T in G

such that all vertices of S are leaves of T .

(b) If m(S) = 0, and k ≡ 1 (mod 2), then ∇(G) = 2
k−1γM (G), and each spanning

tree T in (a) is a Xuong-tree of G.

Proof. Let S = {x1, x2, . . . , x∇} be a ∇-set of a k-regular graph G with m(S) =
0. Then G[S] has no cycle and G− S is a tree T0. Suppose that yi is a neighbor
of xi in T0 (i = 1, 2, . . . ,∇). Then T = T0 + {ei = xiyi | 1 ≤ i ≤ ∇} is a spanning
tree of G and S is a subset of leaves of T . If k ≡ 1 (mod 2), then we arrange the
left k−1 edges (other than xiyi) into

k−1
2 pairs for each i (1 ≤ i ≤ ∇) and thus it

gives rise to an edge-partition of G−E(T ) with ξ(G) = 0. Notice that in Xuong’s
construction of the maximum genus embedding [20], each pair of adjacent edges
in G − E(T ) will contribute a genus, the graph G may be embedded into an
orientable surface with k−1

2 ∇ = γM (G) handles. This ends the proof of (b). As
for (a), it follows from the discussion used in the proof of (a) of Theorem 11.

One case may appear if there is a vertex x of a decycling set S such that
dG(x) < ∆. Then the formula of Theorem 9 will be invalid for this case. For
instance, a grid of paths Pm and Pn is the graph Pm × Pn with vertex set
V (Pm ×Pn) = {wij | i = 1, 2, . . . ,m, j = 1, 2, . . . , n}) and edge set E(Pm ×Pn) =
{wijwrs | i = r, vjvs ∈ E(Pn) or j = s, uiur ∈ E(Pm)}. We have to choose at least
one vertex of degree 3 to eliminate the boundary cycle of Pm × Pn. It is clear
that any ∇-set S of the grid Pm ×Pn does not need to contain a 2-degree vertex
(since subdividing an edge of a graph does not change its decycling number).
Therefore, we may only consider the ∇-set S whose vertices are of degree 4 or 3.
Here, we slightly extend the formula of Theorem 9 as follows.

Theorem 14. Let G be a non-regular graph with maximum degree ∆ and S

a decycling set of G. Suppose that d (d < ∆) is a fixed natural number with

S = Sα ∪ Sβ, Sα = {x | dG(x) = ∆, x ∈ S}, Sβ = {x | dG(x) = d < ∆, x ∈ S}.
Then |S| = 1

∆−1(β(G) + (∆− d) |Sβ |+m(S)).

Proof. Let S be a decycling set of a graph G. Similar to the proof of Theorem 9,

(∆− 1)(|S| − |Sβ |) + (d− 1)|Sβ | = β(G) + c+ |E(S)| − 1,

i.e.,
(∆− 1)|S| − (∆− d)|Sβ | = β(G) + c+ |E(S)| − 1,

and then

|S| =
1

∆− 1
(β(G) + (∆− d)|Sβ |+m(S))

since m(S) = c+ |E(S)| − 1.
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Corollary 15. Let G be a non-regular graph with maximum degree ∆ which has

the ∇-set such that each vertex of this set has degree ∆. Then

∇(G) ≥
1

∆− 1
(β(G) + ∆− d),

where d (d < ∆) is the degree of some vertices of a ∇-set of G.

Example 7 (Cartesian product of two paths). For any decycling set S of Pm×Pn,

mn−m− n+ 2

3
≤ ∇(Pm × Pn) ≤

mn−m− n+ |Sβ |+m(S) + 1

3
(4)

for m,n ≥ 3.
The bounds of ∇(Pm × Pn) in (4) are best possible for n = 4, 6, 7 [3].

Proof. By the definition of Pm×Pn, β(Pm×Pn) = mn−m−n+1. By Corollary
15, it follows that ∇(Pm × Pn) ≥

1
3(mn −m − n + 2). Let S be a decycling set

of Pm × Pn. Then ∇(Pm × Pn) ≤ |S| = 1
3(mn−m− n+ |Sβ |+m(S) + 1).

Remark 5. Some nonregular graphs may also have a ∇-set with a large margin
number, such as the grid P5 × Pn. Beineke [3] proved that ∇(P5 × Pn) =

⌊

3n
2

⌋

−
⌊

n
8

⌋

−1. Together with Theorem 14, we get m(S)+|Sβ | = 3
(⌊

3n
2

⌋

−
⌊

n
8

⌋)

−4n+1,
which tends to infinite as n → ∞.

The above discussions imply that the margin number m(S) of a decycling set
S may be arbitrarily large for some regular graphs. For some (4-regular) graphs
G of order n, there exists a decycling set S such that the margin number m(S)
is a linear function of n. For instance, a toroidal 4-regular graph G containing n

disjoint K5 − e’s (see Figure 4) whose decycling number of G is 2n + 1, and by
formula (1), its margin number m(S) = n+ 2.

...

Figure 4. A toroidal 4-regular graph with m(S) = n+ 2.

On the other hand, suppose that S is a decycling set of a regular graph G, for
any vertex x ∈ S, adding an edge to join x and G−S, this procedure determines
a Xuong-tree TX since G−E(TX) has no odd components (i.e., ξ(G) = 0), which
means that the elements of S are taken from the leaves of a Xuong-tree. This
may be extended to the ∇-set S with the margin number m(S) are of relative
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small, that is, when the margin number is small enough, the elements of S are
taken from the leaves of a spanning tree T with few exceptions. We shall discuss
this situation in Section 4.

4. 4-Regular Graphs

In this section we concentrate on studying the combinatorial structure of 4-regular

graphs G with the decycling number ∇(G) =
⌈

β(G)
3

⌉

.

Theorem 16. Let G be a 4-regular graph with ∇(G) =
⌈

β(G)
3

⌉

. Then there exists

a spanning tree T in G such that elements of any ∇-set of G are simply the leaves

of T with at most two exceptions.

Proof. Let S be a ∇-set of a 4-regular graph G. Assume that β(G) = 3m + r,
0 ≤ r ≤ 2, m is a nonnegative integer. Then three claims arise.

Claim 1. If r = 0, then S is a ∇-set if and only if m(S) = 0 and vertices of S

are leaves of a spanning tree T of G.

Proof. The first part follows from Theorem 9. Now suppose that m(S) = 0.
Then c = 1 and |E(S)| = 0. We can construct a spanning tree T as we have
reasoned in the proof of Theorem 9. It is clear that the elements of S are leaves
of T .

Claim 2. If r = 1, then S is a ∇-set if and only if m(S) = 2 and vertices of S

are leaves of a spanning tree T of G with at most two exceptions.

Proof. The first part follows from Theorem 9. It is clear that c+|E(S)| = 3 since
m(S) = 2. We construct a spanning tree T of G satisfying the above condition.
There are three cases according to the values of c and |E(S)|.

Case 1. c = 1 and |E(S)| = 2. Since G is connected, there exists two
edges, say e1 = ab and e2 = cd (possibly b = c) in G[S]. For each vertex
x ∈ S − {a, b, c, d}, add edges e = xy, e3 = by and e4 = cy (prescribe e3 = e4
when b = c), into G− S, where y ∈ G− S. After this, we obtain a spanning tree
T of G containing G− S as its subgraph. Which satisfies the condition of Claim
2 (i.e., when b 6= c, S has two vertices b, c which are not leaves of T ; if b = c, then
the only exception of S is b = c).

Case 2. c = 2 and |E(S)| = 1. Without loss of generality, let Q1, Q2 be the
two components of G−S and E(S) = {xy}, x, y ∈ S. Since G is connected, there
exists an edge e = xy (possibly x = y) in G[S]. Two situations will appear to
construct a spanning tree T of G: (a) If x 6= y, then (i) x and y join Q1 and Q2,
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respectively. Let x1 ∈ Q1 and x2 ∈ Q2 be such that xx1, yx2 ∈ E(G). The edges
xy, xx1, yx2, Q1 and Q2 form a tree T1 containing Q1, Q2; (ii) x joins Q1 and
Q2. Let x0 ∈ Q1 and y0 ∈ Q2 be such that xx0, xy0 ∈ E(G). Then the edges
xy, xx0, xy0, Q1 and Q2 form a tree T1 containing Q1, Q2. For other vertices
z ∈ S − {x, y}, we add an edge join z with Q1 ∪ Q2. It is clear that such edges
and T1 form a spanning tree T of G. (b) If x = y, then there is an edge e0 = fg

in G[S] such that x joins Q1 and Q2, f joins Q1 ∪Q2, the remaining vertices of
S − {x, f, g} as did in the case of x 6= y, so we may construct a spanning tree T

of G. The above spanning trees also satisfy the condition of Claim 2.

Case 3. c = 3 and |E(S)| = 0. Suppose that Q1, Q2 and Q3 are three comp-
onents of G − S. Then a spanning tree T of G will be constructed as follows.
Since G is connected, there exist two vertices, say x and y (possibly x = y), in S

such that x joins Q1 and Q2, y joins Q2 and Q3. This time we may also construct
a spanning tree T of G which contains Q1, Q2 and Q3 as we did in Case 2. And
hence, when x 6= y, x and y are the only two vertices in S which are not leaves
of T ; if x = y, then x is the only vertex in S is not the leaf of T .

Claim 3. If r = 2, then S is a ∇-set if and only if m(S) = 1. Meanwhile, there

exists a spanning tree T of G such that all (but at most one) vertices of S are

leaves of T .

Proof. The proof of Claim 3 is analogous to Claims 1 and 2, we omit its proof.

Now the entire proof of the theorem is complete.

We give three examples of 4-regular graphs with m(S) = 0, 1, 2, respectively.
See Figure 5(a), Figure 5(b) and Figure 2(b).

( )a ( )b

Figure 5. (a) 4-regular graph with m(S) = 0; (b) 4-regular graph with m(S) = 2.

After a similar discussion in 4-regular graphs, we may extend Theorem 16 to
general case.

Theorem 17. Let G be a k-regular graph with ∇(G) =
⌈

β(G)
k−1

⌉

and β(G) =

m(k− 1)+ r, 0 ≤ r ≤ k− 2, m is a nonnegative integer. Then S is a ∇-set of G
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if and only if

m(S) =

{

0, for r = 0,
k − r − 1, for otherwise.

Moreover, there exists a spanning tree T in G such that elements of S are simply

the leaves of T with at most m(S) exceptions.
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