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Abstract

Suppose G = (V,E) is a graph with no isolated vertex. A subset S of V is
called a locating-total dominating set of G if every vertex in V is adjacent to
a vertex in S, and for every pair of distinct vertices u and v in V −S, we have
N(u)∩S 6= N(v)∩S. The locating-total domination number of G, denoted
by γL

t
(G), is the minimum cardinality of a locating-total dominating set of

G. The annihilation number of G, denoted by a(G), is the largest integer k
such that the sum of the first k terms of the nondecreasing degree sequence
of G is at most the number of edges in G. In this paper, we show that for
any tree of order n ≥ 2, γL

t
(T ) ≤ a(T ) + 1 and we characterize the trees

achieving this bound.
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1. Introduction

Given a graph G = (V (G), E(G)), we usually use n for the number of vertices
and m for the number of edges. For a vertex v in G, the set NG(v) = {u ∈
V (G) | uv ∈ E(G)} (or N(v)) is called the neighborhood of v. The degree of v
in G, denoted by dG(v) or d(v), is equal to |N(v)|. A vertex of degree one is
a leaf and a vertex adjacent to a leaf is a support vertex. We will use l(G) to
denote the number of leaves of G. For arbitrary two vertices u and v in G, the
distance between u and v, denoted by d(u, v), is the number of edges in a shortest
path joining u and v. If there is no such path, then we define d(u, v) = ∞. The
diameter of G is the maximum distance among all pairs of vertices of G, denoted
by diam(G). For a subset S ⊆ V (G), we use G−S to denote the graph obtained
from G by deleting the vertices in S and all edges incident with vertices in S. If
S = {v}, we simply write G− v rather than G− {v}. We define

Σ(S,G) =
∑

v∈S

dG(v).

Suppose G = (V,E) is a graph with no isolated vertex. A subset S of V
is called a total dominating set (TDS) of G if every vertex in V is adjacent to
a vertex in S. A total dominating set S is called a locating-total dominating

set (LTDS) if for every pair of distinct vertices u and v in V − S, we have
N(u) ∩ S 6= N(v) ∩ S. The locating-total domination number of G, denoted by
γLt (G), is the minimum cardinality of a locating-total dominating set of G. An
LTDS of cardinality γLt (G) is called a γLt (G)-set. The concept of a locating-total
dominating set in a graph was first introduced in [9], since this time many results
have been obtained on this parameter (see, for instance, [1–4,10]).

The annihilation number was first introduced in Pepper’s dissertation [13].
Originally it was defined in terms of a reduction process on the degree sequence
akin to the Havel-Hakimi process (see, for example, [8, 14]). In [13], Pepper
showed the following equivalent way to define the annihilation number. Let d1 ≤
d2 ≤ · · · ≤ dn be the nondecreasing degree sequence of a graph G having n
vertices and m edges. Then the annihilation number of G, denoted by a(G), is
the largest integer k such that

∑k
i=1

di ≤ m or, equivalently, the largest integer
k such that

k∑

i=1

di ≤

n∑

i=k+1

di.

The relation between annihilation number and some graph parameters have been
studied by several authors (see for example [5–7,11–14]).

For a graph G = (V (G), E(G)) with m edges, an a-set of G is a subset S
of V (G) such that |S| = a(G) and Σ(S,G) ≤ m, where a(G) is the annihilation
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number of G. An amin-set of G is an a-set S of G with Σ(S,G) minimum.
Thus, if S is an amin-set of G, then S is a set of vertices (not necessarily unique)
corresponding to the first a(G) vertices in the nondecreasing degree sequence
of G.

In order to prove our theorem, we introduce a variation of the annihilation
number of a graph defined in [6]. The upper annihilation number of a graph
G, denoted by a∗(G), is the largest integer k such that the first k terms of the
nondecreasing degree sequence of G is at most |E(G)|+ 1. That is, if d1 ≤ d2 ≤
· · · ≤ dn is the nondecreasing degree sequence of a graph G with m edges, then
a∗(G) is the largest integer k such that

∑k
i=1

di ≤ m + 1. Similarly, we define
an a∗min-set of G to be a set S of vertices in G such that |S| = a∗(G) and S
corresponds to the first a∗(G) vertices in the nondecreasing degree sequence of
G. By the definitions of the annihilation number and the upper annihilation
number, we have a(G) ≤ a∗(G) ≤ a(G) + 1.

A path of order n is Pn. A star of order n is denoted by Sn. A tree is called
a double star S(p, q), if it is obtained from Sp+2 and Sq+1 by identifying a leaf of
Sp+2 with the center of Sq+1, where p, q ≥ 1.

In this paper, we establish an upper bound on the locating-total domination
number of a tree in terms of its annihilation number. We show that for any tree
of order n ≥ 2, γLt (T ) ≤ a(T ) + 1 and we characterize the trees achieving this
bound.

2. The Main Result

In order to characterize the trees satisfying γLt (T ) = a(T ) + 1, we first introduce
a family Γ of labeled trees defined in [4].

For each tree T ∈ Γ, every vertex v in T has a label sta(v) ∈ {A,B,C}, called
its status. Let Γ be the family of labeled trees T = Tk that can be obtained as
follows. Let T0 be a path P6 in which the two leaves have status C, the two
support vertices have status A and the remaining two vertices have status B. If
k ≥ 1, then Tk can be obtained from Tk−1 by one of the following operations.

• Operation τ1. For any y ∈ V (Tk−1), if sta(y) = C and dTk−1
(y) = 1, then

add a path xwvz and the edge xy. Let sta(x) = sta(w) = B, sta(v) = A and
sta(z) = C.

• Operation τ2. For any y ∈ V (Tk−1), if sta(y) = B, then add a path xwv and
the edge xy. Let sta(x) = B, sta(w) = A and sta(v) = C.

Chen and Sohn [4] established the following upper bound of γLt (T ) of a tree in
terms of its order and number of leaves. Moreover, they gave a characterization
of the trees achieving this bound.
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Theorem 1 [4]. If T is a tree of order n ≥ 3 with l leaves, then γLt (T ) ≤
n+l
2
.

Theorem 2 [4]. If T is a tree of order n ≥ 3 with l leaves, then γLt (T ) =
n+l
2

if and only if T ∈ Γ.

For each tree T ∈ Γ, we have the following lemma.

Lemma 3. Let T ∈ Γ. Then

(1) γLt (T ) = a(T ) + 1 = a∗(T ).

(2) For any vertex v ∈ V (T ) with d(v) = 2, there are an a∗min-set S containing

v and an a∗min-set S
′ not containing v.

(3) For every a∗min-set A, it contains no vertices of degree larger than two.

Proof. Suppose T ∈ Γ is obtained from T0 by applying k1 τ1 operations and k2
τ2 operations. Then n(T ) = 6 + 4k1 + 3k2, l(T ) = 2 + k2 and by Theorem 2,

γLt (T ) =
n(T ) + l(T )

2
=

(6 + 4k1 + 3k2) + (2 + k2)

2
= 4 + 2k1 + 2k2.

Note that V (T ) consists of 2 + k2 leaves with status C, 4 + 4k1 + k2 vertices of
degree two and k2 vertices with status B and degree larger than two. By simple
calculation, we have a(T ) = 3 + 2k1 + 2k2 and a∗(T ) = 4 + 2k1 + 2k2. Thus, (1)
holds.

By the definition of an a∗min-set, for any a∗min-set S, S consists of 2+k2 leaves
and 2 + 2k1 + k2 vertices of degree two. Note that T has exactly 4 + 4k1 + k2
vertices of degree two and k2 vertices of degree larger than two. Thus, (2) and
(3) hold.

Now we present our main result.

Theorem 4. For a tree T of order n ≥ 2, the following hold.

(1) γLt (T ) ≤ a∗(T ).

(2) γLt (T ) ≤ a(T ) + 1.

(3) γLt (T ) = a(T ) + 1 if and only if T = P2 or T ∈ Γ.

Proof. We proceed by induction on the order n. If n = 2, then T = P2 and
γLt (T ) = 2 = a∗(T ) = a(T ) + 1. If n = 3, then T = P3 /∈ {P2} ∪ Γ and
γLt (T ) = 2 = a∗(T ) = a(T ). This establishes the base cases. Next we assume
that every tree T ′ of order 3 ≤ n′ < n satisfies properties (1)–(3) in the statement
of the theorem. Let T be a tree of order n.

If diam(T ) = 2, then T is a star. Obviously, T /∈ {P2} ∪ Γ and γLt (T ) =
n − 1 = a∗(T ) = a(T ). If diam(T ) = 3, then T is a double star, i.e., T ∼= Sp,q.
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Note that T /∈ {P2} ∪ Γ, γLt (T ) = n − 2 = a(T ), a∗(T ) = n − 1 if min{p, q} = 1
and a∗(T ) = n− 2 if min{p, q} ≥ 2. Hence we may assume diam(T ) ≥ 4.

Let P = x0x1 · · ·xd be a path of length d = diam(T ) in T . We root T at xd.

Claim 1. We may assume that d(x1) = 2.

Proof. Suppose d(x1) ≥ 3. Then T /∈ Γ. Let Q = N(x1) \ {x2}. Then Q is the
set of all leaves adjacent to x1. Let T

′ = T −Q∪{x1} and S be an a∗min-set of T
′.

Then |E(T )| = |E(T ′)|+ |Q|+1 and Σ(S, T ′) ≤ |E(T ′)|+1. Letting S1 = S ∪Q,
we have

Σ(S1, T ) = Σ(S ∪Q, T ) = Σ(S, T ) + |Q|

≤ Σ(S, T ′) + 1 + |Q|

≤ |E(T ′)|+ 2 + |Q| = |E(T )|+ 1.

Then a∗(T ) ≥ a∗(T ′) + |Q|. Note that every LTDS of T ′ can extend to an LTDS
of T by combining it with (Q \ {x0}) ∪ {x1}. Thus, γLt (T ) ≤ γLt (T

′) + |Q|. By
the inductive hypothesis, we have

γLt (T ) ≤ γLt (T
′) + |Q| ≤ a∗(T ′) + |Q| ≤ a∗(T )

≤ a(T ) + 1.

Thus (1) and (2) hold. Next we will show that γLt (T ) ≤ a(T ).
Suppose γLt (T ) = a(T ) + 1. Then equalities hold throughout the above

inequalities, that is, γLt (T ) = γLt (T
′)+ |Q|, γLt (T

′) = a∗(T ′) and a∗(T ) = a∗(T ′)+
|Q| = a(T ) + 1. Let A be an amin-set of T

′ and A1 = A ∪Q. Then

Σ(A1, T ) = Σ(A ∪Q, T ) = Σ(A, T ) + |Q|

≤ Σ(A, T ′) + 1 + |Q|

≤ |E(T ′)|+ 1 + |Q| = |E(T )|.

Hence a(T ) ≥ a(T ′) + |Q|. If γLt (T
′) ≤ a(T ′), then γLt (T ) = γLt (T

′) + |Q| ≤
a(T ′) + |Q| ≤ a(T ), a contradiction to the assumption of γLt (T ) = a(T ) + 1.
Thus, γLt (T

′) = a(T ′) + 1. Since d ≥ 4, we have n(T ′) ≥ 3. By the inductive
hypothesis, we have T ′ ∈ Γ. Thus, γLt (T

′) = (n(T ′) + l(T ′))/2 by Theorem 2.
If dT ′(x2) ≥ 2, then there is an a∗min-set B not containing x2 by Lemma 3

(2) and (3). Let B1 = B ∪Q. Then

Σ(B1, T ) = Σ(B ∪Q, T ) = Σ(B, T ) + |Q|

= Σ(B, T ′) + |Q|

≤ |E(T ′)|+ 1 + |Q| = |E(T )|,



36 W. Ning, M. Lu and K. Wang

and so a(T ) ≥ a∗(T ′) + |Q|, a contradiction to a∗(T ′) + |Q| = a(T ) + 1. Thus,
dT ′(x2) = 1. Now, we have

γLt (T ) = γLt (T
′) + |Q| = (n(T ′) + l(T ′))/2 + |Q|

= ((n(T )− |Q| − 1) + (l(T )− |Q|+ 1))/2 + |Q|

= (n(T ) + l(T ))/2.

By Theorem 2, T ∈ Γ, a contradiction. �

By Claim 1, d(x1) = 2. Let Y = {y1, . . . , yl} be the children of x2, where
y1 = x1. By Claim 1, we may assume 1 ≤ d(yi) ≤ 2 for all yi ∈ Y \ {y1}.

Claim 2. We may assume that dT (y) = 1 for any y ∈ Y \ {y1}.

Proof. Suppose there is a vertex, say y2 ∈ Y \ {y1}, such that dT (y2) = 2. Then
T /∈ Γ. Let z2 be the leaf adjacent to y2. Let T ′ = T − {x0, x1} and S be an
a∗min-set of T ′. Then |E(T )| = |E(T ′)| + 2 and Σ(S, T ′) ≤ |E(T ′)| + 1. Since
d ≥ 4, dT (x2) ≥ 3 and dT ′(x2) ≥ 2.

If x2 ∈ S, by letting S2 = (S ∪ {x0, x1}) \ {x2}, we have

Σ(S2, T ) = Σ(S \ {x2}, T ) + 3 = Σ(S \ {x2}, T
′) + 3

= Σ(S, T ′)− dT ′(x2) + 3 ≤ Σ(S, T ′)− 2 + 3

≤ |E(T ′)|+ 1 + 1 = |E(T )|.

If x2 /∈ S, by letting S2 = S ∪ {x0}, we have

Σ(S2, T ) = Σ(S, T ) + 1 = Σ(S, T ′) + 1

≤ |E(T ′)|+ 1 + 1 = |E(T )|.

In both cases, we have Σ(S2, T ) ≤ |E(T )| which implies a(T ) ≥ a∗(T ′) + 1.

Let D be a γLt (T
′)-set of T ′ that contains a minimum number of leaves. Then

{x2, y2} ⊆ D, and so D ∪ {x1} is an LTDS of T . Thus, γLt (T ) ≤ γLt (T
′) + 1. By

the inductive hypothesis, we have

γLt (T ) ≤ γLt (T
′) + 1 ≤ a∗(T ′) + 1 ≤ a(T ) ≤ a∗(T )

and we are done. �

Claim 3. We may assume that Y = {x1}, i.e., l = 1.

Proof. Suppose l ≥ 2. Then T 6∈ Γ and every vertex in Y \ {y1} is a leaf in T
by Claim 2.
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Let T ′ = T − {x0} ∪ (Y \ {y1}) and S be an a∗min-set of T
′. Then |E(T )| =

|E(T ′)| + l and Σ(S, T ′) ≤ |E(T ′)| + 1. Since dT ′(x1) = 1 and dT ′(x2) = 2, we
can choose S so that {x1, x2} ⊆ S. Let S3 = (S \ {x2})∪{x0}∪ (Y \ {y1}). Then

Σ(S3, T ) = Σ(S \ {x2}, T ) + l = Σ(S \ {x2}, T
′) + 1 + l

= Σ(S, T ′)− dT ′(x2) + 1 + l = Σ(S, T ′) + l − 1

≤ |E(T ′)|+ l = |E(T )|,

and so a(T ) ≥ a∗(T ′) + l − 1. Let D be a γLt (T
′)-set of T ′ that contains a

minimum number of leaves. Then x2 ∈ D. Thus, D ∪ (Y \ {yl}) is an LTDS of T
and γLt (T ) ≤ γLt (T

′) + l − 1. By the inductive hypothesis, we have

γLt (T ) ≤ γLt (T
′) + l − 1 ≤ a∗(T ′) + l − 1 ≤ a(T ) ≤ a∗(T )

and we are done. �

By Claim 3, we have Y = {x1}. Since d ≥ 4, dT (x3) ≥ 2. We will finish the
proof by considering the following two cases.

Case 1. dT (x3) ≥ 3. Let T ′ = T − {x0, x1, x2} and S be an a∗min-set of T ′.
Then |E(T )| = |E(T ′)|+ 3, dT ′(x3) ≥ 2 and Σ(S, T ′) ≤ |E(T ′)|+ 1.

If x3 /∈ S, by letting S4 = S ∪ {x0, x1}, we have

Σ(S4, T ) = Σ(S, T ) + 3 = Σ(S, T ′) + 3

≤ |E(T ′)|+ 1 + 3 = |E(T )|+ 1.

If x3 ∈ S, by letting S4 = (S \ {x3}) ∪ {x0, x1, x2}, we have

Σ(S4, T ) = Σ(S \ {x3}, T
′) + 5 = Σ(S, T ′)− dT ′(x3) + 5

≤ Σ(S, T ′)− 2 + 5 ≤ |E(T ′)|+ 1 + 3

= |E(T )|+ 1.

In both cases, we have Σ(S4, T ) ≤ |E(T )|+ 1 which implies a∗(T ) ≥ a∗(T ′) + 2.
Note that every LTDS of T ′ can extend to an LTDS of T by combining it with
{x1, x2}. Thus, γ

L
t (T ) ≤ γLt (T

′) + 2. By the inductive hypothesis, we have

γLt (T ) ≤ γLt (T
′) + 2 ≤ a∗(T ′) + 2 ≤ a∗(T ) ≤ a(T ) + 1.

It remains to show that T satisfies property (3). By Lemma 3, if T ∈ Γ, then
γLt (T ) = a(T ) + 1, as desired. Suppose now γLt (T ) = a(T ) + 1. Then equalities
hold throughout the above inequalities, that is, γLt (T ) = γLt (T

′) + 2, γLt (T
′) =
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a∗(T ′) and a∗(T ) = a∗(T ′) + 2 = a(T ) + 1. Since dT (x3) ≥ 3, x3 is not a leaf of
T ′. Thus, by Theorem 2, we have

γLt (T ) = γLt (T
′) + 2 = (n(T ′) + l(T ′))/2 + 2

= (n(T )− 3 + l(T )− 1)/2 + 2 = (n(T ) + l(T ))/2,

and then T ∈ Γ.

Case 2. dT (x3) = 2. Let T ′ = T−{x0, x1, x2, x3}. Then |E(T )| = |E(T ′)|+4.
If n(T ′) = 1, then T = P5 /∈ {P2} ∪ Γ and γLt (T ) = 3 = a(T ) = a∗(T ). Thus,
we may assume that n(T ′) ≥ 2. Let S be an a∗min-set of T ′. Then Σ(S, T ′) ≤
|E(T ′)|+ 1.

If x4 /∈ S, by letting S5 = S ∪ {x0, x1}, we have Σ(S5, T ) = Σ(S, T ′) + 3 ≤
|E(T ′)|+4 = |E(T )|, and so a(T ) ≥ a∗(T ′) + 2. Note that every LTDS of T ′ can
extend to an LTDS of T by combining it with {x1, x2}. Thus, γ

L
t (T ) ≤ γLt (T

′)+2.
By the inductive hypothesis, we have

γLt (T ) ≤ γLt (T
′) + 2 ≤ a∗(T ′) + 2 ≤ a(T ) ≤ a∗(T ).

Suppose now x4 ∈ S. Let S6 = (S \ {x4}) ∪ {x0, x1, x2}. Then we have

Σ(S6, T ) = Σ(S \ {x4}, T
′) + 5 = Σ(S, T ′)− dT ′(x4) + 5

≤ Σ(S, T ′) + 4 ≤ |E(T ′)|+ 5

= |E(T )|+ 1

which implies that a∗(T ) ≥ a∗(T ′) + 2. By the inductive hypothesis, we have

γLt (T ) ≤ γLt (T
′) + 2 ≤ a∗(T ′) + 2 ≤ a∗(T ) ≤ a(T ) + 1.

It remains to show that T satisfies property (3). By Lemma 3, if T ∈ Γ, then
γLt (T ) = a(T ) + 1, as desired. Suppose now γLt (T ) = a(T ) + 1.

Obviously, we have γLt (T ) = γLt (T
′) + 2, γLt (T

′) = a∗(T ′) and a∗(T ) =
a∗(T ′) + 2 = a(T ) + 1. If dT ′(x4) ≥ 2, then we have

Σ(S6, T ) = Σ(S, T ′)− dT ′(x4) + 5 ≤ Σ(S, T ′) + 3 ≤ |E(T )|,

implying that a(T ) ≥ a∗(T ′)+2, a contradiction to a∗(T ) = a∗(T ′)+2 = a(T )+1.
Thus, dT ′(x4) = 1. If T ′ = P2, then T = P6 ∈ Γ. If n(T ′) ≥ 3, then

γLt (T ) = γLt (T
′) + 2 = (n(T ′) + l(T ′))/2 + 2

= (n(T )− 4 + l(T ))/2 + 2 = (n(T ) + l(T ))/2,

and then T ∈ Γ by Theorem 2.
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3. Corollaries

Since γt(T ) ≤ γLt (T ) for any tree T of order n ≥ 2 and γt(T0) = γLt (T0) for
any tree T0 ∈ Γ (see [4]), by Theorems 2 and 4, we easily obtain the following
corollaries which are stated as main theorems in [5].

Corollary 5 [5]. If T is a nontrivial tree, then γt(T ) ≤ a(T )+1, and this bound

is sharp.

Corollary 6 [5]. Let T be a nontrivial tree of order n with n1 vertices of degree 1.
Then, γt(T ) = a(T ) + 1 if and only if γt(T ) = (n+ n1)/2.
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