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Abstract

Coxeter referred to generalizing the Petersen graph. Zhou and Feng
modified the graphs and introduced the double generalized Petersen graphs
(DGPGs). Kutnar and Petecki proved that DGPGs are Hamiltonian in
special cases and conjectured that all DGPGs are Hamiltonian. In this
paper, we prove the conjecture by constructing Hamilton cycles in any given
DGPG.
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1. Introduction

A Hamilton cycle in a graph is a cycle which contains all vertices of the graph
exactly once. In graph theory, the existence of Hamilton cycles is one of basic
properties of graphs and it has been researched for many years. In general, it is
very difficult to determine if a given graph has Hamilton cycles. Karp [5] proved
that the problem is NP-complete.

Now we introduce the history of double generalized Petersen graphs (DGPGs)
in brief.

Generalized Petersen graphs first appeared in work by Coxeter in 1950 on self-
dual configurations [3]. They were reintroduced and termed generalized Petersen
graphs (GPGs) by Watkins [7], who studied their Tait coloring. Castagna and
Prins [2] proved Watkins’ conjecture that all GPGs except the Petersen graph
have a Tait coloring. Further properties of GPGs have been studied. For instance,
Alspach [1] completed the determination of which GPGs have a Hamilton cycle.
Fu, Yang and Jiang [4] studied the domination number of GPGs.
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Zhou and Feng [8] extended the notion of GPGs to DGPGs. Let Zn denote
the set of integers Z/nZ throughout this paper.

Definition 1 [8]. Let n and t be integers that satisfy n ≥ 3 and 2 ≤ 2t < n. The
double generalized Petersen graph DP(n, t) is an undirected simple graph with
vertex set V and edge set E, where

V = {xi, ui, vi, yi | i ∈ Zn},
E = {xixi+1, yiyi+1, xiui, yivi, uivi+t, viui+t | i ∈ Zn}.

Both GPGs and DGPGs are cubic graphs.

Figure 1. DP(7, 3).

Zhou and Feng [9] determined all non-Cayley vertex-transitive graphs and
all vertex-transitive graphs among DGPGs.

Theorem 2 [9]. DP(n, t) is vertex-transitive if and only if either n = 5 and t = 2,
or n = 2k and t2 ≡ ±1(mod k). For the former case, DP(5, 2) is isomorphic to

Dodecahedron GP(10, 2), which is a non-Cayley graph, and for the latter case, if

t2 ≡ 1(mod k), then DP(n, t) is a Cayley graph, and if t2 ≡ −1(mod k), then

DP(n, t) is a non-Cayley graph.

Using this result, Kutnar and Petecki [6] gave the complete classification of
automorphism groups of DGPGs. They also tried to find Hamilton cycles in
DGPGs.
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Theorem 3 [6]. DP(n, t) is Hamiltonian if n is even.

Theorem 4 [6]. DP(n, t) is Hamiltonian if n is odd and the greatest common

divisor of n and t equals to 1.

Theorems 2, 3 and 4 give some specific examples of the open question of
whether all Cayley graphs of finite groups are Hamiltonian.

Theorem 5 [6]. DP(n, t) is Hamiltonian if n ≤ 31.

Kutnar and Petecki used computers to prove Theorem 5. From the above
theorems, they proposed the following conjecture.

Conjecture 6 [6]. All DP(n, t) are Hamiltonian.

In this paper, we shall prove the conjecture by constructing Hamilton cycles
in any given DGPG.

Theorem 7. All DP(n, t) are Hamiltonian.

2. Preliminaries

As mentioned in the previous section, Zn denotes the set of integers Z/nZ. A
sequence of vertices w0w1w2 · · ·wn denote a path in a graph. A path whose end
points are the same vertex is called a cycle. Let V (G) denotes the vertex set of
a graph G. Let G be an arbitrary subgraph of DP(n, t). We define functions
Vx, Vy, Vu, Vv as follows:

Vx(G) = V (G) ∩ {xi | i ∈ Zn},

Vy(G) = V (G) ∩ {yi | i ∈ Zn},

Vu(G) = V (G) ∩ {ui | i ∈ Zn},

Vv(G) = V (G) ∩ {vi | i ∈ Zn}.

3. The Construction of Hamilton Cycles in DP(n, t)

We assume that n is even. In this case, Kutnar and Petecki [6] showed that all
DP(n, t) are Hamiltonian. We define paths Xi for each i ∈ Zn/2 as follows

Xi : u2ix2ix2i+1u2i+1v2i+1−ty2i+1−ty2i+2−tv2i+2−tu2(i+1).

Joining all of the paths gives a Hamilton cycle in DP(n, t).
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Figure 2. A Hamilton cycle in DP(n, t) (2k + 1 = 5).

We assume that n is odd. Let 2k + 1 be the greatest common divisor of
n and t. In order to construct a Hamilton cycle in DP(n, t), we define paths
Pi, Qi, Ri, Si for each i ∈ Z2k+1 as follows

Pi : uai+txai+txai+t+1xai+t+2 · · ·xai+2+t−1uai+2+t−1,

Qi : vaiyaiyai+1yai+2 · · · yai+2−1vai+2−1,

Ri : uai+1+t−1vai+1+2t−1uai+1+3t−1 · · · vai ,

Si : vai+1−1uai+1−t−1vai+1−2t−1 · · ·uai+t

where a0, a1, a2, . . . , a2k ∈ Zn satisfy the following conditions:

ai ≡ i (mod 2k + 1) for each i ∈ Z2k+1,

0 ≤ a0 < a2 < a4 < · · · < a2k < a1 < a3 < a5 < · · · < a2k−1 < n.

For instance, if a0 = 0, a2 = 2, a4 = 4, . . . , a2k = 2k, a1 = 2k + 2, a3 =
2k+4, a5 = 2k+6, . . . , a2k−1 = 4k, the above conditions are met. Join the paths
in the following way, noting that the terminal and initial vertices of successive
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paths do coincide, including those of Q2k and S0.

((S0 - P0) - (R1 - Q1) - (S2 - P2) - (R3 - Q3) - · · ·

· · · - (R2k - 1 - Q2k - 1) - (S2k - P2k)) -

- ((R0 - Q0) - (S1 - P1) - (R2 - Q2) - (S3 - P3) - · · ·

· · · - (S2k - 1 - P2k - 1) - (R2k - Q2k))

We shall prove that the above walk is indeed a Hamilton cycle in the next
section. An example of a Hamilton cycle in DP(n, t) is shown in Figure 2.

4. The Main Theorem

Theorem 7. All DP(n, t) are Hamiltonian.

For any odd integer n ≥ 3, we shall prove that the walk described in the
previous section contains all vertices of DP(n, t), and each vertex appears exactly
once. This shows that the walk is a Hamilton cycle. Let G be DP(n, t) and 2k+1
be the greatest common divisor of n and t.

Firstly, we note that paths Q0, Q1, . . . , Q2k contain all of Vy(G) since we have

2k
⋃

i=0

Vy(Qi) =

(

k
⋃

i=0

Vy(Q2i)

)

∪

(

k−1
⋃

i=0

Vy(Q2i+1)

)

=

(

k
⋃

i=0

{yj | a2i ≤ j < a2i+2}

)

∪

(

k−1
⋃

i=0

{yj | a2i+1 ≤ j < a2i+3}

)

={yj | j ∈ Zn} = Vy(G).

In a similar manner, it is clear that
⋃2k

i=0 Vx(Pi) = Vx(G).
Secondly, we will prove that paths R0, R1, . . . , R2k, S0, S1, . . . , S2k contain all

of Vu(G) ∪ Vv(G). We define cycles Ci in DP(n, t) for all i ∈ Z2k+1 as follows:

Ci : uivi+tui+2tvi+3t · · ·ui+(p−1)tviui+tvi+2tui+3t · · · vi+(p−1)tui.

Let p and q be relatively prime odd integers that satisfy n = p(2k+1) and t =
q(2k+1). For all i ∈ Z2k+1, Ci consists of paths Di : uivi+tui+2tvi+3t · · ·ui+(p−1)t

and Ei : viui+tvi+2tui+3t · · · vi+(p−1)t. Since p is odd, the last vertex of Di is
indeed ui+(p−1)t and not vi+(p−1)t. By symmetry, the last vertex of Ei is vi+(p−1)t.
In addition, ui+(p−1)t and vi+(p−1)t are respectively adjacent to vi and ui since
pt = pq(2k + 1) is a multiple of n. Since pt is the least common multiple of
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n and t, we note that the vertices ui, ui+t, ui+2t, ui+3t, . . . , ui+(p−1)t are distinct.
Similarly, the vertices vi, vi+t, vi+2t, vi+3t, . . . , vi+(p−1)t are also distinct.

We know that cycles C0, C1, . . . , C2k contain all of Vu(G) since

2k
⋃

i=0

Vu(Ci) =

2k
⋃

i=0

{ui+jt | 0 ≤ j < p}

=
2k
⋃

i=0

{ui+jq(2k+1) | 0 ≤ j < p}

=

2k
⋃

i=0

{ui+j(2k+1) | 0 ≤ j < p}

=
2k
⋃

i=0

{um | m ∈ Zn,m ≡ i (mod 2k + 1)}

= {um | m ∈ Zn}.

By symmetry, we have

(

2k
⋃

i=0

Vu(Ci)

)

∪

(

2k
⋃

i=0

Vv(Ci)

)

= {um | m ∈ Zn} ∪ {vm | m ∈ Zn}

= Vu(G) ∪ Vv(G).

Therefore cycles C0, C1, . . . , C2k contain all of Vu(G) ∪ Vv(G).
Observe that both Ri and Si are subgraphs of Ci. For all i ∈ Z2k+1, Ri and

Si share no vertex and contain all vertices in Ci since the first vertex of Ri and
the last vertex of Ri are respectively adjacent to the first vertex of Si and the
last vertex of Si. Therefore, paths R0, R1, . . . , R2k, S0, S1, . . . , S2k contain all of
Vu(G) ∪ Vv(G). This completes the proof of Theorem 7.
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