RAINBOW DISCONNECTION IN GRAPHS

Gary Chartrand 1 , Stephen Devereaux 2 , Teresa W. Haynes 3 ,

Stephen T. Hedetniemi 4 and Ping Zhang 1

¹Department of Mathematics Western Michigan University Kalamazoo, MI 49008-5248 USA

²Department of Mathematics Cornerstone University Grand Rapids, MI 49525 USA

³Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37614-0002 USA

> ⁴School of Computing Clemson University Clemson, SC 29634 USA

e-mail: gary.chartrand@wmich.edu stephen.devereaux@cornerstone.edu haynes@etsu.edu hedet@clemson.edu ping.zhang@wmich.edu

Abstract

Let G be a nontrivial connected, edge-colored graph. An edge-cut R of G is called a rainbow cut if no two edges in R are colored the same. An edge-coloring of G is a rainbow disconnection coloring if for every two distinct vertices u and v of G, there exists a rainbow cut in G, where u and v belong to different components of G-R. We introduce and study the rainbow disconnection number $\operatorname{rd}(G)$ of G, which is defined as the minimum number of colors required of a rainbow disconnection coloring of G. It is shown that the rainbow disconnection number of a nontrivial connected graph G equals the maximum rainbow disconnection number among the blocks of G. It is also shown that for a nontrivial connected graph G of order n, $\operatorname{rd}(G) = n-1$ if and only if G contains at least two vertices of degree n-1. The rainbow disconnection numbers of all grids $P_m \square P_n$ are determined. Furthermore, it is shown for integers k and n with $1 \le k \le n-1$ that the minimum

size of a connected graph of order n having rainbow disconnection number k is n + k - 2. Other results and a conjecture are also presented.

Keywords: edge coloring, rainbow connection, rainbow disconnection.

2010 Mathematics Subject Classification: 05C15, 05C40.

1. Introduction

An edge-coloring of a graph G is a function $c: E(G) \to [k] = \{1, 2, ..., k\}$ for some positive integer k where adjacent edges may be assigned the same color. A graph with an edge-coloring is an edge-colored graph. If no two adjacent edges of G are colored the same, then c is a proper edge-coloring. The minimum number of colors required of a proper edge-coloring of G is the chromatic index of G, denoted by $\chi'(G)$. The minimum and maximum degrees of G are denoted by $\delta(G)$ and $\delta(G)$, respectively. By a famous 1964 theorem of Vizing [7],

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

for every nonempty graph G.

A set R of edges in a connected edge-colored graph G is a rainbow set if no two edges in R are colored the same. A path P in G is a rainbow path if no two edges in P are colored the same. The graph G is rainbow-connected if every two vertices of G are connected by a rainbow path. An edge-coloring of G with this property is called a rainbow coloring. The minimum number of colors needed in a rainbow coloring of G is the rainbow connection number of G, denoted by rc(G). Rainbow connection was introduced [1] in 2006. For more details on rainbow connection, see the book [6] and the survey paper[5].

The object of this paper is to introduce a concept that is somewhat reverse to rainbow connection and to present some results dealing with this new concept.

2. An Introduction to Rainbow Disconnection

An edge-cut of a nontrivial connected graph G is a set R of edges of G such that G-R is disconnected. The minimum number of edges in an edge-cut of G is its edge-connectivity $\lambda(G)$. We then have the well-known inequality $\lambda(G) \leq \delta(G)$. For two distinct vertices u and v of G, let $\lambda(u,v)$ denote the minimum number of edges in an edge-cut R of G such that u and v lie in different components of G-R. The following result of Elias, Feinstein and Shannon [2] and Ford and Fulkerson [3] presents an alternate interpretation of $\lambda(u,v)$.

Theorem 2.1. For every two vertices u and v in a graph G, $\lambda(u,v)$ is the maximum number of pairwise edge-disjoint u-v paths in G.

The upper edge-connectivity $\lambda^+(G)$ is defined by

$$\lambda^+(G) = \max\{\lambda(u, v): \ u, v \in V(G)\}.$$

Consider, for example, the graph $K_n + v$ obtained from the complete graph K_n , one vertex of which is attached to a single leaf v. For this graph, $\lambda(K_n + v) = 1$ while $\lambda^+(K_n + v) = n - 1$. Thus, $\lambda(G)$ denotes the global minimum edge-connectivity of a graph, while $\lambda^+(G)$ denotes the local maximum edge-connectivity of a graph.

A set R of edges in a nontrivial connected, edge-colored graph G is a rainbow cut of G if R is both a rainbow set and an edge-cut. A rainbow cut R is said to separate two vertices u and v of G if u and v belong to different components of G-R. Any such rainbow cut in G is called a u-v rainbow cut in G. An edge-coloring of G is a rainbow disconnection coloring if for every two distinct vertices u and v of G, there exists a u-v rainbow cut in G. The rainbow disconnection number rd(G) of G is the minimum number of colors required of a rainbow disconnection coloring of G. A rainbow disconnection coloring with rd(G) colors is called an rd-coloring of G. We now present bounds for the rainbow disconnection number of a graph.

Proposition 2.2. If G is a nontrivial connected graph, then

$$\lambda(G) < \lambda^+(G) < \operatorname{rd}(G) < \chi'(G) < \Delta(G) + 1.$$

Proof. First, by Vizing's theorem, $\chi'(G) \leq \Delta(G) + 1$. Now, let there be given a proper edge-coloring of G using $\chi'(G)$ colors. Then, for each vertex x of G, the set E_x of edges incident with x is a rainbow set and $|E_x| = \deg x \leq \Delta(G) \leq \chi'(G)$. Furthermore, E_x is a rainbow cut in G and so $\mathrm{rd}(G) \leq \chi'(G)$.

Next, let there be given an rd-coloring of G. Let u and v be two vertices of G such that $\lambda^+(G) = \lambda(u,v)$ and let R be a u-v rainbow cut with $|R| = \lambda(u,v)$. Then $|R| \leq \operatorname{rd}(G)$. Thus, $\lambda(G) \leq \lambda^+(G) = |R| \leq \operatorname{rd}(G)$.

We now present examples of two classes of connected graphs G for which $\lambda(G) = rd(G)$, namely cycles and wheels.

Proposition 2.3. If C_n is a cycle of order $n \geq 3$, then $rd(C_n) = 2$.

Proof. Since $\lambda(C_n)=2$, it follows by Proposition 2.2 that $\operatorname{rd}(C_n)\geq 2$. To show that $\operatorname{rd}(C_n)\leq 2$, let c be an edge-coloring of C_n that assigns the color 1 to exactly n-1 edges of C_n and the color 2 to the remaining edge e of C_n . Let u and v be two vertices of C_n . There are two u-v paths P and Q in C_n , exactly one of which contains the edge e, say $e\in E(P)$. Then any set $\{e,f\}$, where $f\in E(Q)$, is a u-v rainbow cut. Thus, c is a rainbow disconnection coloring of C_n using two colors. Hence, $\operatorname{rd}(C_n)=2$.

Proposition 2.4. If $W_n = C_n \vee K_1$ is the wheel of order $n + 1 \geq 4$, then $rd(W_n) = 3$.

Proof. Since $\lambda(W_n)=3$, it follows by Proposition 2.2 that $\operatorname{rd}(W_n)\geq 3$. It remains to show that there is a rainbow disconnection coloring of W_n using only the colors 1, 2, 3. Suppose that $C_n=(v_1,v_2,\ldots,v_n,v_1)$ and that v is the center of W_n . Define an edge-coloring $c:E(W_n)\to\{1,2,3\}$ of W_n as follows. First, let c be a proper edge-coloring of C_n using the colors 1, 2, 3. For each integer i with $1\leq i\leq n$, let $a_i\in\{1,2,3\}-\{c(v_{i-1}v_i),c(v_iv_{i+1})\}$ where each subscript is expressed as an integer $1,2,\ldots,n$ modulo n, and let $c(vv_i)=a_i$. Thus, the set E_{v_i} of the three edges incident with v_i is a rainbow set for $1\leq i\leq n$. Let x and y be two distinct vertices of W_n . Then at least one of x and y belongs to C_n , say $x\in V(C_n)$. Since E_x separates x and y, it follows that c is a rainbow disconnection coloring of W_n using three colors. Hence, $\operatorname{rd}(W_n)=3$.

Since $\chi'(C_n) = 3$ when $n \geq 3$ is odd and $\chi'(W_n) = n$ for each integer $n \geq 3$, it follows that $rd(G) < \chi'(G)$ if G is an odd cycle or if G is a wheel of order at least 4. Wheels therefore illustrate that there are graphs G for which $\chi'(G) - rd(G)$ can be arbitrarily large. We now give an example of a graph G for which $\lambda^+(G) < rd(G) = \chi'(G)$.

Proposition 2.5. The rainbow disconnection number of the Petersen graph is 4.

Proof. Let P denote the Petersen graph where $V(P) = \{v_1, v_2, \ldots, v_{10}\}$. Since $\lambda(P) = 3$ and $\chi'(P) = 4$, it follows by Proposition 2.2 that $\operatorname{rd}(P) = 3$ or $\operatorname{rd}(P) = 4$. Assume, to the contrary, that $\operatorname{rd}(P) = 3$ and let there be given a rainbow disconnection 3-coloring of P. Now, let u and v be two vertices of P and let R be a u - v rainbow cut. Hence, $|R| \leq 3$ and P - R is disconnected, where v and v belong to different components of v and v be the vertex set of the component of v and v assume that v be the vertex set of the component of v and v be the vertex set of the component of v and v be the vertex set of the component of v and v be the vertex set of the component of v and v be the vertex set of the component of v and v be the vertex set of the component of v and v are the component of v and v are the v and v are the v and v are the v are the v are the v and v are the v are the v and v are the v are the v and v are the v are the v are the v and v are the v are the v and v are the v and v are the v and v are the v are the v and v are the v are the v are the v are the v and v are the v are the v and v are the v are the v are the v and v are the v are the v are the v and v are the v are

Let the colors assigned to the edges of P be red, blue and green. Since $\chi'(P)=4$, there is at least one vertex of P that is incident with two edges of the same color. We claim, in fact, that there are at least two such vertices. Let E_R , E_B and E_G denote the sets of edges of P colored red, blue and green, respectively, and let P_R , P_B and P_G be the spanning subgraphs of P with edge sets E_R , E_B and E_G . We may assume that $|E_R| \ge |E_B| \ge |E_G|$ and so $|E_R| \ge 5$. If $|E_R| \ge 7$, then $\sum_{i=1}^{10} \deg_{P_R} v_i \ge 14$. Since $\deg_{P_R} v_i \le 3$ for each i with $1 \le i \le 10$, at least

two vertices are incident with two red edges, verifying the claim. If $|E_R| = 6$, then $\sum_{i=1}^{10} \deg_{P_R} v_i = 12$. Then either (i) at least two vertices are incident with two red edges or (ii) there is a vertex, say v_{10} , incident with three red edges and each of v_1, v_2, \ldots, v_9 is incident with exactly one red edge. If (ii) occurs, then either $|E_B| = 6$ or $|E_B| = 5$ and so $\sum_{i=1}^{9} \deg_{P_B} v_i \ge 10$, which implies that at least one of the vertices v_1, v_2, \ldots, v_9 is incident with two blue edges, again verifying the claim.

The only remaining possibility is therefore $|E_R| = |E_B| = |E_G| = 5$. If E_R is an independent set of five edges, then $P - E_R$ is a 2-regular graph. Since the girth of P is 5 and P is not Hamiltonian, it follows that $P - E_R$ consists of two vertex-disjoint 5-cycles. Thus, there is a vertex of P in each cycle incident with two blue edges or with two green edges, verifying the claim. Hence, none of E_R , E_B or E_G is an independent set. This implies that for each of these colors, there is a vertex of P incident with two edges of this color, verifying the claim in general.

Thus, P contains two vertices u and v, each of which is incident with two edges of the same color. Since the only u-v rainbow cut is the set of edges incident with u or v, this is a contradiction.

The following two results are useful.

Proposition 2.6. If H is a connected subgraph of a graph G, then $rd(H) \leq rd(G)$.

Proof. Let c be an rd-coloring of G and let u and v are two vertices of G. Suppose that R is a u-v rainbow cut. Then $R \cap E(H)$ is a u-v rainbow cut in H. Hence, c restricted to H is a rainbow disconnection coloring of H. Thus, $rd(H) \leq rd(G)$.

A block of a graph is a maximal connected graph of G containing no cutvertices. The block decomposition of G is the set of blocks of G.

Proposition 2.7. Let G be a nontrivial connected graph, and let B be a block of G such that rd(B) is maximum among all blocks of G. Then rd(G) = rd(B).

Proof. Let G be a nontrivial connected graph. Let $\{B_1, B_2, \ldots, B_t\}$ be a block decomposition of G, and let $k = \max\{\operatorname{rd}(B_i) | 1 \le i \le t\}$. If G has no cut-vertex, then $G = B_1$ and the result follows. Hence, we may assume that G has at least one cutvertex. By Proposition 2.6, $k \le \operatorname{rd}(G)$.

Let c_i be an rd-coloring of B_i . We define the edge-coloring $c: E(G) \to [k]$ of G by $c(e) = c_i(e)$ if $e \in E(B_i)$.

Let $x, y \in V(G)$. If there exists a block, say B_i , that contains both x and y, then any x - y rainbow cut in B_i is an x - y rainbow cut in G. Hence, we can assume that no block of G contains both x and y, and that $x \in B_i$ and $y \in B_j$,

where $i \neq j$. Now every x-y path contains a cut-vertex, say v, of G in B_i and a cutvertex, say w, of G in B_j . Note that v could equal w. If $x \neq v$, then any x-v rainbow cut of B_i is an x-y rainbow cut in G. Similarly, if $y \neq w$, then any y-w rainbow cut of B_j is an x-y rainbow cut in G. Thus, we may assume that x=v and y=w. It follows that $v \neq w$. Consider the x-y path $P=(x=v_1,v_2,\ldots,v_p=y)$. Since x and y are cutvertices in different blocks and no block contains both x and y, P contains a cut-vertex z of G in G, that is, $z=v_k$ for some k ($0 \leq k \leq p-1$). Then any $0 \leq k$, and so $0 \leq k$.

As a consequence of Proposition 2.7, the study of rainbow disconnection numbers can be restricted to 2-connected graphs. We now present several corollaries of Proposition 2.7.

Corollary 2.8. Let G and H be any two nontrivial connected graphs, and let GvH be a graph formed by identifying a vertex in G with a vertex in H. Then $rd(GvH) = max\{rd(G), rd(H)\}.$

Corollary 2.9. Let G and H be any two nontrivial connected graphs, and let GuvH be a graph formed by adding an edge between any vertex u in G and any vertex v in H. Then $rd(GuvH) = max\{rd(G), rd(H)\}$.

Corollary 2.10. Let G be a nontrivial connected graph and G' the graph obtained by attaching a pendant edge uv to some vertex u of G. Then rd(G') = rd(G).

The corona $G \circ K_1$ is the graph obtained from G by attaching a leaf to each vertex of G. Thus, if G has order n, then the corona $G \circ K_1$ has order 2n and has precisely n leaves.

Corollary 2.11. If G is a nontrivial connected graph, then $rd(G \circ K_1) = rd(G)$.

Corollary 2.12. Let G be a nontrivial connected graph, let T be a nontrivial tree and let u and v be vertices of G and T, respectively. If H is the graph obtained from G and T by identifying u and v, then rd(H) = rd(G).

A unicyclic graph is a connected graph with exactly one cycle.

Corollary 2.13. If G is a unicyclic graph G, then rd(G) = 2.

3. Graphs with Prescribed Order and Rainbow Disconnection Number

In this section, we characterize all those nontrivial connected graphs of order n with rainbow disconnection number k for each $k \in \{1, 2, n-1\}$. The result for graphs having rainbow disconnection number 1 follows directly from Propositions 2.6 and 2.7.

Proposition 3.1. Let G be a nontrivial connected graph. Then rd(G) = 1 if and only if G is a tree.

Next, we characterize all nontrivial connected graphs of order n having rainbow disconnection number 2. By Proposition 3.1, such a graph must contain a cycle. An ear of a graph G is a maximal path whose internal vertices have degree 2 in G. An ear decomposition of a graph is a decomposition H_0, H_1, \ldots, H_k such that H_0 is a cycle in G and H_i is an ear of the subgraph of G with edge set $E(H_0) \cup E(H_1) \cup \cdots \cup E(H_i)$ for each integer i with $1 \le i \le k$. Whitney [8] proved the following result in 1932.

Theorem 3.2. A graph G is 2-connected if and only if G has an ear decomposition. Furthermore, every cycle is the initial cycle in some ear decomposition of G.

The following is a consequence of Theorem 3.2.

Lemma 3.3. A 2-connected graph G is a cycle if and only if for every two vertices u and v of G, there are exactly two internally disjoint u - v paths in G.

Also, by Theorem 3.2, if G is a 2-connected, non-Hamiltonian graph, then G contains a theta subgraph (a subgraph consisting of two vertices connected by three internally disjoint paths of length 2 or more).

Theorem 3.4. Let G be a nontrivial connected graph. Then rd(G) = 2 if and only if each block of G is either K_2 or a cycle and at least one block of G is a cycle.

Proof. If G a nontrivial connected graph, each block of which is either K_2 or a cycle and at least one block of G is a cycle, then Propositions 2.3 and 2.7 imply that rd(G) = 2.

We now verify the converse. Assume, to the contrary, that there is a connected graph G with rd(G) = 2 that does not have the property that each block of G is either K_2 or a cycle and at least one block of G is a cycle. First, not all blocks can be K_2 , for otherwise, G is a tree and so rd(G) = 1 by Proposition 3.1. Hence, G contains a block that is neither K_2 nor a cycle. By Lemma 3.3, there exist two distinct vertices u and v of G for which G contains at least three internally disjoint u - v paths P_1 , P_2 and P_3 . Thus, any u - v rainbow cut R must contain at least one edge from each of P_1 , P_2 and P_3 and so $|R| \ge 3$, which is impossible.

We now consider those graphs that are, in a sense, opposite to trees.

Proposition 3.5. For each integer $n \ge 4$, $rd(K_n) = n - 1$.

Proof. Suppose first that $n \geq 4$ is even. Then $\lambda(K_n) = \chi'(K_n) = n-1$. It then follows by Proposition 2.2 that $\operatorname{rd}(K_n) = n-1$. Next, suppose that $n \geq 5$ is odd. Then $n-1 = \lambda(K_n) \leq \operatorname{rd}(K_n) \leq \chi'(K_n) = n$ by Proposition 2.2. To show that $\operatorname{rd}(K_n) = n-1$, it remains to show that there is a rainbow disconnection coloring of K_n using n-1 colors. Let $x \in V(K_n)$. Then $K_n - x = K_{n-1}$. Since n-1 is even, it follows that $\chi'(K_{n-1}) = n-2$. Thus, there is a proper edge-coloring c_0 of K_{n-1} using the colors $1, 2, \ldots, n-2$. We now extend c_0 to an edge-coloring c of K_n by assigning the color n-1 to each edge of K_n that is incident with x. We show that c is a rainbow disconnection coloring of K_n . Let u and v be two vertices of K_n , where say $u \neq x$. Then the set E_u of edges incident with u is a u-v rainbow cut. Thus, c is a rainbow disconnection coloring of K_n and so $\operatorname{rd}(K_n) \leq n-1$ and so $\operatorname{rd}(K_n) = n-1$.

By Propositions 2.2, 2.6 and 3.5, if G is a nontrivial connected graph of order n, then

$$(1) 1 \le \operatorname{rd}(G) \le n - 1.$$

Furthermore, rd(G) = 1 if and only if G is a tree by Proposition 3.1. We have seen that the complete graphs K_n of order $n \geq 2$ have rainbow disconnection number n-1. We now characterize all nontrivial connected graphs of order n having rainbow disconnection number n-1.

Theorem 3.6. Let G be a nontrivial connected graph of order n. Then rd(G) = n - 1 if and only if G contains at least two vertices of degree n - 1.

Proof. First, suppose that G is a nontrivial connected graph of order n containing at least two vertices of degree n-1. Since $\operatorname{rd}(G) \leq n-1$ by (1), it remains to show that $\operatorname{rd}(G) \geq n-1$. Let $u,v \in V(G)$ such that $\deg u = \deg v = n-1$. Among all sets of edges that separate u and v in G, let S be one of minimum size. We show that $|S| \geq n-1$. Let U be a component of G-S that contains u and let W = V(G) - U. Thus, $v \in W$ and S = [U,W] consists of those edges in G-S joining a vertex of U and a vertex of W. Suppose that |U| = k for some integer k with $1 \leq k \leq n-1$ and then |W| = n-k. The vertex u is adjacent to each of the n-k vertices of W and each of the remaining k-1 vertices in U is adjacent to at least one vertex in W. Hence, $|S| \geq n-k+(k-1)=n-1$. This implies that every u-v rainbow cut contains at least n-1 edges of G and so $\operatorname{rd}(G) \geq n-1$.

For the converse, suppose that G is a nontrivial connected graph of order n having at most one vertex of degree n-1. We show that $\mathrm{rd}(G) \leq n-2$. We consider two cases.

Case 1. Exactly one vertex v of G has degree n-1. Let H=G-v. Thus, $\Delta(H) \leq n-3$. Since $\chi'(H) \leq \Delta(H) + 1 = n-2$, there is a proper edge-coloring

of H using n-2 colors. We now define an edge-coloring $c: E(G) \to [n-2]$ of G. First, let c be a proper (n-2)-edge-coloring of H. For each vertex $x \in V(H)$, since $\deg_H x \leq n-3$, there is $a_x \in [n-2]$ such that a_x is not assigned to any edge incident with x. Define $c(vx) = a_x$. Thus, the set E_x of edges incident with x is a rainbow set for each $x \in V(H)$. Let u and w be two distinct vertices of G. Then at least one of u and w belongs to H, say $u \in V(H)$. Since E_u separates u and w, it follows that c is a rainbow disconnection coloring of G using n-2 colors. Hence, $\operatorname{rd}(G) \leq n-2$.

Case 2. No vertex of G has degree n-1. Therefore $\Delta(G) \leq n-2$. If $\Delta(G) \leq n-3$, then $\operatorname{rd}(G) \leq \chi'(G) \leq n-2$ by Proposition 2.2. Thus, we may assume that $\Delta(G) = n-2$. Suppose first that G is not (n-2)-regular. We claim that G is a connected spanning subgraph of some graph G^* of order n having exactly one vertex of degree n-1. Let u be a vertex of degree $k \leq n-3$ in G. Let N(u) be the neighborhood of u and W = V(G) - N[u], where $N[u] = N(u) \cup \{u\}$ is the closed neighborhood of u. Then |N(u)| = k and $|W| = n - k - 1 \geq 2$. If W contains a vertex v of degree n-2 in G, then v is the only vertex of degree n-1 in $G^* = G + uv$. If no vertex in W has degree n-2 in G, then let G^* be the graph obtained from G by joining u to each vertex in W. In this case, u is the only vertex of degree n-1 in G^* . It then follows by Case 1 that $\operatorname{rd}(G^*) \leq n-2$. Since G is a connected spanning subgraph of G^* , it follows by Proposition 2.6 that $\operatorname{rd}(G) \leq \operatorname{rd}(G^*) \leq n-2$. Finally, suppose that G is (n-2)-regular. Thus, G is 1-factorable and so $\chi'(G) = \Delta(G) = n-2$. Therefore, $\operatorname{rd}(G) \leq \chi'(G) = n-2$ by Proposition 2.2.

4. Rainbow Disconnection in Grids and Prisms

We now determine the rainbow disconnection numbers of graphs belonging to one of two well-known classes formed by Cartesian products. The *Cartesian product* $G \square H$ of two vertex-disjoint graphs G and H is the graph with vertex set $V(G) \times V(H)$, where (u, v) is adjacent to (w, x) in $G \square H$ if and only if either u = w and $vx \in E(H)$ or $uw \in E(G)$ and v = x. We consider the $m \times n$ grid graph $G_{m,n} = P_m \square P_n$, which consists of m horizontal paths P_n and n vertical paths P_m .

Theorem 4.1. The rainbow disconnection numbers of the grid graphs $G_{m,n}$ are as follows:

- (i) for all $n \ge 2$, $rd(G_{1,n}) = rd(P_n) = 1$,
- (ii) for all $n \ge 3$, $rd(G_{2,n}) = 3$,
- (iii) for all $n \ge 4$, $rd(G_{3,n}) = 3$,
- (iv) for all $4 \leq m \leq n$, $rd(G_{m,n}) = 4$.

Proof. (i) That $rd(G_{1,n}) = rd(P_n) = 1$ for $n \geq 2$ is a consequence of Proposition 3.1.

For the remainder of the proof, we consider the vertices of $G_{m,n}$ as a matrix, letting $x_{i,j}$ denote the vertex in row i and column j, where $1 \leq i \leq m$ and $1 \leq j \leq n$.

(ii) For the graph $G_{2,n}$, $n \geq 3$, $\Delta(G_{2,n}) = 3$. First, we define an edge-coloring c of $G_{2,n}$. It is convenient to use the elements of the set \mathbb{Z}_3 of integer modulo 3 as colors here. Define the edge-coloring $c: E(G_{2,n}) \to \mathbb{Z}_3$ by

```
* c(x_{i,j}x_{i,j+1}) = i + j + 1 for 1 \le i \le 2 and 1 \le j \le n - 1;
```

$$\star c(x_{1,j}x_{2,j}) = j \text{ for } 1 \le j \le n.$$

Next, we show that c is a rainbow disconnection coloring of $G_{2,n}$. Let u and v be any two vertices of $G_{2,n}$. If u and v belong to two different columns, then there exist two parallel edges joining vertices in the same two columns whose removal separates u and v. Each such set of two edges is a u-v rainbow cut. Next, suppose that u and v belong to the same column. Then, without loss of generality, u belongs to the first row and v belongs to the second row. Then u and v both have degree 2 or both have degree 3. Therefore, the edges incident with u form a rainbow cut, and so, $\mathrm{rd}(G_{2,n}) \leq 3$.

On the other hand, $\lambda(u, v) = 2$ if u and v are two vertices of $G_{2,n}$ belonging to the same row, or different rows and columns or are two vertices of degree 2 belonging to the same column; while $\lambda(u, v) = 3$ if u and v are (adjacent) vertices of degree 3 belonging to the same column. It then follows by Proposition 2.2 that $3 = \lambda^+(G_{2,n}) \leq \operatorname{rd}(G_{2,n})$, and so $\operatorname{rd}(G_{2,n}) = 3$.

- (iii) As with $G_{2,n}$, we define an edge-coloring c of $G_{3,n}$. Again we use the elements of the set \mathbb{Z}_3 of integer modulo 3 as colors here. Define the edge-coloring $c: E(G_{3,n}) \to \mathbb{Z}_3$ by
 - $\star c(x_{i,j}x_{i,j+1}) = i + j + 1 \text{ for } 1 \le i \le 3 \text{ and } 1 \le j \le n-1;$
 - $\star \ c(x_{1,j}x_{2,j}) = j \text{ for } 1 \le j \le n;$
 - $\star c(x_{2,j}x_{3,j}) = j + 2 \text{ for } 1 \le j \le n.$

Next, we show that c is a rainbow disconnection coloring of $G_{3,n}$. Let u and v be any two vertices of $G_{3,n}$. If u and v belong to two different columns, then there exist three parallel edges joining vertices in the same two columns whose removal separates u and v. Each such set of three edges is a u-v rainbow cut. Next, suppose that u and v belong to the same column. Then at least one of u and v belongs to the top or bottom row, say u is such a vertex, which has degree 2 or 3. Then the edges incident with u is a u-v rainbow cut. Thus, $\operatorname{rd}(G_{3,n}) \leq 3$.

On the other hand, for any two adjacent vertices u and v of degree 4 in $G_{3,n}$ (necessarily in the middle row), $\lambda^+(u,v)=3$. Thus, by Proposition 2.2, $3 \leq \lambda^+(G_{3,n}) \leq \operatorname{rd}(G_{3,n}) \leq 3$ and so $\operatorname{rd}(G_{3,n})=3$.

(iv) Finally, we consider $G_{m,n}$ for $4 \leq m \leq n$. Since there are four pairwise edge-disjoint u-v paths in $G_{m,n}$ for every two vertices u and v of degree 4, it follows by Theorem 2.1 that $\lambda(u,v)=4$. For any other pair u,v of vertices of $G_{m,n}$, it follows that $\lambda(u,v)\leq 3$. By Proposition 2.2 then, $4=\lambda^+(G_{m,n})\leq \mathrm{rd}(G_{m,n})$. On the other hand, since $G_{m,n}$ is bipartite, $\chi'(G_{m,n})=\Delta(G_{m,n})=4$. Again, by Proposition 2.2, $\mathrm{rd}(G_{m,n})\leq 4$ and so $\mathrm{rd}(G_{4,n})=4$.

Next we determine the rainbow disconnection number of prisms, namely those graphs of the type $G \square K_2$ for some graph G.

Proposition 4.2. If G is a nontrivial connected graph, then

$$rd(G \square K_2) = \Delta(G) + 1.$$

Proof. Let G and G' be the two copies of G in the prism $G \square K_2$, and for each $v \in V(G)$, let v' be its corresponding vertex in G'. We first show that $G \square K_2$ has a proper edge-coloring using $\Delta(G \square K_2) = \Delta(G) + 1$ colors, that is, $\chi'(G \square K_2) = \Delta(G) + 1$. Let G be a proper edge-coloring of G using $\chi'(G)$ colors. Color the edges of G and G' using G, that is, G and G' have an identical edge-coloring G. By Vizing's Theorem, G is G in the edge incident to G in G' because G and G' have the identical colorings. Hence, assigning G in G' in G' because G and G' have the identical colorings. Hence, assigning G in G in

To establish the lower bound, let u be a vertex of G with $\deg u = \Delta(G) = \Delta$. In $G \square K_2$, there exist $\Delta + 1$ edge-disjoint u - u' paths, one of which is the edge uu' and the remaining Δ of which have the form (u, w, w', u'), where $w \in V(G)$ and w' is the corresponding vertex of w in G'. It again follows by Proposition 2.2 that $\operatorname{rd}(G \square K_2) \geq \lambda^+(G \square K_2) \geq \Delta(G) + 1$.

Complementary products were introduced in [4] as a generalization of Cartesian products. We consider a subfamily of complementary products, namely, complementary prisms. For a graph G = (V, E), the complementary prism, denoted $G\overline{G}$, is formed from the disjoint union of G and its complement \overline{G} by adding a perfect matching between corresponding vertices of G and \overline{G} . For each $v \in V(G)$, let \overline{v} denote the vertex in \overline{G} corresponding to v. Formally, the graph $G\overline{G}$ is formed from $G \cup \overline{G}$ by adding the edge $v\overline{v}$ for every $v \in V(G)$. We note that complementary prisms are a generalization of the Petersen graph. In particular, the Petersen graph is the complementary prism $C_5\overline{C}_5$. For another example of a complementary prism, the corona $K_n \circ K_1$ is the complementary prism $K_n\overline{K}_n$.

We refer to the complementary prism $G\overline{G}$ as a copy of G and a copy of \overline{G} with a perfect matching between corresponding vertices. For a set $S\subseteq V(G)$, let \overline{S} denote the corresponding set of vertices in $V(\overline{G})$. We note that $G\overline{G}$ is isomorphic to $\overline{G}G$.

Since $\Delta(G\overline{G}) = \max\{\Delta(G), \Delta(\overline{G})\}+1$, Proposition 2.2 implies that $\operatorname{rd}(G\overline{G}) \leq \max\{\Delta(G), \Delta(\overline{G})\}+2$. This bound is sharp for the Petersen graph $P=C_5\overline{C}_5$ since by Proposition 2.5, $\operatorname{rd}(P)=4=\Delta(C_5)+2$. On the other hand, for the complementary prisms $K_n\overline{K}_n$, Corollary 2.11 and Proposition 3.5 imply that $\operatorname{rd}(K_n\overline{K}_n)=\operatorname{rd}(K_n)=n-1=\Delta(K_n)<\max\{\Delta(K_n),\Delta(\overline{K}_n)+2=n+1$. Our next result shows that for graphs G with sufficiently large girth, $\operatorname{rd}(G\overline{G})$ is strictly greater than the maximum degree of G.

Proposition 4.3. If G is a graph of order n, maximum degree $\Delta(G) < n-1$, and girth at least five, then

$$\Delta(G) + 1 \le \operatorname{rd}(G\overline{G}).$$

Proof. Consider a vertex u in G such that $\deg_{G} u = \Delta(G)$. Let $A = N_G(u)$ and $B = V - N_G[u]$. Thus, in $G\overline{G}$, $N(\overline{u}) = \overline{B} \cup \{u\}$. Note that since $n - 1 > \Delta(G)$, it follows that $\overline{B} \neq \emptyset$.

We claim there are $\Delta(G)+1$ edge-disjoint $u-\overline{b}$ paths, where $\overline{b} \in \overline{B}$. To see this note that one such path is $(u,\overline{u},\overline{b})$. Next consider the $u-\overline{b}$ paths containing a vertex $a \in A$. If a is not adjacent to b in G, then \overline{a} is adjacent to \overline{b} in \overline{G} and $(u,a,\overline{a},\overline{b})$ is a $u-\overline{b}$ path. If $ab \in E(G)$, then (u,a,b,\overline{b}) is a $u-\overline{b}$ path. Moreover, since $g(G) \geq 5$, at most one vertex in A is adjacent to b, else a 4-cycle is formed. In any case, the collection of these $|A|+1=\Delta(G)+1$ paths are edge-disjoint. Hence, by Proposition 2.2, it follows that $\operatorname{rd}(G\overline{G}) \geq \lambda^+(G\overline{G}) \geq \Delta(G)+1$.

For an example of a complementary prism attaining the lower bound, let G be the graph formed from a 5-cycle by attaching a leaf x to a vertex v of the cycle. Then, $\Delta(G)=3$. We show that $\operatorname{rd}(G\overline{G})=4$. First note that the Petersen graph P is a proper subgraph of $G\overline{G}$, and by Propositions 2.5 and 2.6, $\operatorname{rd}(G\overline{G}) \geq \operatorname{rd}(P)=4$. Furthermore, there is a proper edge-coloring c of P using four colors such that three colors are used to color C_5 and \overline{C}_5 and the fourth color is used on the matching edges. Thus, we may assume, without loss of generality, that v is incident to the edges colored 1 and 2 in G and that $v\overline{v}$ is assigned color 4. We extend c to a rainbow disconnection coloring of $G\overline{G}$ as follows: let c(vx)=3, $c(x\overline{x})=4$, and $c(\overline{x}\overline{u})$ be the color missing from the edges incident to \overline{u} for each \overline{u} adjacent to \overline{x} in \overline{G} . Consider two arbitrary vertices of $G\overline{G}$. At least one of the vertices, say u, is not \overline{x} . Thus, the edges incident with u are a rainbow cut separating the two vertices. Since every such vertex u has degree at most four, $\operatorname{rd}(G\overline{G}) \leq 4$, and so, $\operatorname{rd}(G\overline{G}) = 4$.

5. Extremal Problems

In this section, we investigate the following problem:

For a given pair k, n of positive integers with $k \leq n - 1$, what are the minimum possible size and maximum possible size of a connected graph G of order n such that the rainbow disconnection number of G is k?

We have seen in Proposition 3.1 that the only connected graphs of order n having rainbow disconnection number 1 are the trees of order n. That is, the connected graphs of order n having rainbow disconnection number 1 have size n-1. We have also seen in Theorem 3.4 that the minimum size of a connected graph of order $n \geq 3$ having rainbow disconnection number 2 is n. Furthermore, we have seen in Theorem 3.6 that the minimum size of a connected graph of order $n \geq 2$ having rainbow disconnection number n-1 is 2n-3. In fact, these are special cases of a more general result. In order to show this, we first present a lemma.

Lemma 5.1. Let H be a connected graph of order n that is not complete and let x and y be two nonadjacent vertices of H. Then $rd(H + xy) \le rd(H) + 1$.

Proof. Suppose that rd(H) = k for some positive integer k and let c_0 be a rainbow disconnection coloring of H using the colors 1, 2, ..., k. Extend the coloring c_0 to the edge-coloring c of H + xy by assigning the color k + 1 to the edge xy. Let u and v be two vertices of H and let R be a u - v rainbow cut in H. Then $R \cup \{xy\}$ is a u - v rainbow cut in H + xy. Hence, c is a rainbow disconnection (k + 1)-coloring of H + xy. Therefore, $rd(H + xy) \le k + 1 = rd(H) + 1$.

Theorem 5.2. For integers k and n with $1 \le k \le n-1$, the minimum size of a connected graph of order n having rainbow disconnection number k is n+k-2.

It remains to show that for each pair k, n of integers with $1 \le k \le n-1$ there is a connected graph G of order n and size n+k-2 such that $\mathrm{rd}(G)=k$. Since this

is true for k=1,2,n-1, we now assume that $3 \le k \le n-2$. Let $H=K_{2,k}$ with partite set $U=\{u_1,u_2\}$ and $W=\{w_1,w_2,\ldots,w_k\}$. Now, let G be the graph of order n and size n+k-2 obtained from H by subdividing the edge u_1w_1 a total of n-k-2 times, producing the path $P=(u_1,v_1,v_2,\ldots,v_{n-k-2},w_1)$ in G. Since $\chi'(H)=k$, there is a proper edge-coloring c_H of H using the colors $1,2,\ldots,k$. We may assume that $c(u_1w_1)=1$ and $c(u_2w_1)=2$. Next, we extend the coloring c_H to a proper edge-coloring c_G of G using the colors $1,2,\ldots,k$ by defining $c_G(u_1v_1)=1$ and alternating the colors of the edges of P with 1 and 1 thereafter. Hence, $\chi'(G)=k$ and so $rd(G)\leq\chi'(G)=k$ by Proposition 2.2. Furthermore, since $\lambda(u_1,u_2)=k$ and $\lambda(x,y)=2$ for all other pairs x,y of vertices of G, it follows that $\lambda^+(G)=k$. Again, by Proposition 2.2, $rd(G)\geq\lambda^+(G)=k$ and so rd(G)=k.

For given integers k and n with $1 \le k \le n-1$, we have determined the minimum size of a connected graph G of order n with $\mathrm{rd}(G) = k$. So, this brings up the question of determining the maximum size of a connected graph G of order n with $\mathrm{rd}(G) = k$. Of course, we know this size when k = 1; it is n - 1. Also, we know this size when k = n - 1; it is $\binom{n}{2}$. For odd integers n, we have the following conjecture.

Conjecture 5.3. Let k and n be integers with $1 \le k \le n-1$ and $n \ge 5$ is odd. Then the maximum size of a connected graph G of order n with rd(G) = k is $\frac{(k+1)(n-1)}{2}$.

Notice that when k=1, then $\frac{(k+1)(n-1)}{2}=n-1$ and when k=n-1, then $\frac{(k+1)(n-1)}{2}=\binom{n}{2}$. Also, when k=2, then $\frac{(k+1)(n-1)}{2}=\frac{3n-3}{2}$. This is the size of the so-called friendship graph $\left(\frac{k-1}{2}\right)K_2\vee K_1$ of order n (every two vertices has a unique friend). Since each block of a friendship graph is a triangle, it follows by Theorem 3.4 that each such graph has rainbow disconnection number 2.

For given integers k and n with $1 \le k \le n-1$ and $n \ge 5$ is odd, let H_k be a (k-1)-regular graph of order n-1. Since n-1 is even, such graphs H_k exist. Now, let $G_k = H_k \vee K_1$ be the join of H_k and K_1 . Thus, G_k is a connected graph of order n having one vertex of degree n-1 and n-1 vertices of degree k. The size m of G_k satisfies the equation:

$$2m = (n-1) + (n-1)k = (k+1)(n-1)$$

and so $m = \frac{(k+1)(n-1)}{2}$. The graph H_k can be selected so that it is 1-factorable and so $\chi'(H_k) = k-1$. If a proper (k-1)-edge-coloring of H_k is given using the colors $1, 2, \ldots, k-1$, and every edge incident with the vertex of G_k of degree n-1 is assigned the color k, then the edges incident with each vertex of degree k are properly colored with k colors. For any two vertices u and v of G_k , at least one of

u and v has degree k in G_k , say $\deg_{G_k} u = k$. Then the set of edges incident with u is a u - v rainbow cut in H. Since this is a rainbow disconnection k-coloring of G, it follows that $\mathrm{rd}(G_k) \leq k$. It is reasonable to conjecture that $\mathrm{rd}(G_k) = k$.

We would still be left with the question of whether every graph H of order n and size $\frac{(k+1)(n-1)}{2} + 1$ must have $\mathrm{rd}(H) > k$. Certainly, every such graph H must contain at least two vertices whose degrees exceed k.

Acknowledgment

We greatly appreciate the valuable suggestions made by two anonymous referees, which resulted in an improved paper.

References

- [1] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, *Rainbow connection in graphs*, Math. Bohem. **133** (2008) 85–98.
- P. Elias, A. Feinstein and C.E. Shannon, A note on the maximum flow through a network, IRE Trans. Inform. Theory, IT 2 (1956) 117–119. doi:10.1109/TIT.1956.1056816
- [3] L.R. Ford Jr. and D.R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404. doi:10.4153/CJM-1956-045-5
- [4] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, *The complementary product of two graphs*, Bull. Inst. Combin. Appl. **51** (2007) 21–30.
- [5] X.L. Li, Y. Shi and Y.F. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38.
 doi:10.1007/s00373-012-1243-2
- [6] X.L. Li and Y.F. Sun, Rainbow Connections of Graphs (Springer, Boston, MA, 2012). doi:10.1007/978-1-4614-3119-0
- [7] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964) 25–30, in Russian.
- [8] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150–168.
 doi:10.2307/2371086

Received 12 December 2016 Revised 12 April 2017 Accepted 12 April 2017